Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Spectral properties of cubic complex Pisot units


Authors: Tomáš Hejda and Edita Pelantová
Journal: Math. Comp. 85 (2016), 401-421
MSC (2010): Primary 11A63, 11K16, 52C23, 52C10; Secondary 11H99, 11-04
DOI: https://doi.org/10.1090/mcom/2983
Published electronically: June 9, 2015
MathSciNet review: 3404455
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a real number $ \beta >1$, Erdős, Joó and Komornik study distances between consecutive points in the set

$\displaystyle X^m(\beta )=\Bigl \{\sum _{j=0}^n a_j \beta ^j \bm : n\in \mathbb{N},\,a_j\in \{0,1,\dots ,m\}\Bigr \}.$

Pisot numbers play a crucial role for the properties of $ X^m(\beta )$. Following the work of Zaïmi, who considered $ X^m(\gamma )$ with $ \gamma \in \mathbb{C}\setminus \mathbb{R}$ and $ \vert\gamma \vert>1$, we show that for any non-real $ \gamma $ and $ m<\vert\gamma \vert^2-1$, the set $ X^m(\gamma )$ is not relatively dense in the complex plane.

Then we focus on complex Pisot units $ \gamma $ with a positive real conjugate $ \gamma '$ and $ m>\vert\gamma \vert^2-1$. If the number $ 1/\gamma '$ satisfies Property (F), we deduce that $ X^m(\gamma )$ is uniformly discrete and relatively dense, i.e., $ X^m(\gamma )$ is a Delone set. Moreover, we present an algorithm for determining two parameters of the Delone set $ X^m(\gamma )$ which are analogous to minimal and maximal distances in the real case $ X^m(\beta )$. For $ \gamma $ satisfying $ \gamma ^3+\gamma ^2+\gamma -1=0$, explicit formulas for the two parameters are given.


References [Enhancements On Off] (What's this?)

  • [Aki00] Shigeki Akiyama, Cubic Pisot units with finite beta expansions, Algebraic number theory and Diophantine analysis (Graz, 1998) de Gruyter, Berlin, 2000, pp. 11-26. MR 1770451 (2001i:11095)
  • [ARS04] Shigeki Akiyama, Hui Rao, and Wolfgang Steiner, A certain finiteness property of Pisot number systems, J. Number Theory 107 (2004), no. 1, 135-160. MR 2059954 (2005g:11135), https://doi.org/10.1016/j.jnt.2004.02.001
  • [BH02] Peter Borwein and Kevin G. Hare, Some computations on the spectra of Pisot and Salem numbers, Math. Comp. 71 (2002), no. 238, 767-780. MR 1885627 (2003a:11135), https://doi.org/10.1090/S0025-5718-01-01336-9
  • [BH03] Peter Borwein and Kevin G. Hare, General forms for minimal spectral values for a class of quadratic Pisot numbers, Bull. London Math. Soc. 35 (2003), no. 1, 47-54. MR 1934431 (2003i:11154), https://doi.org/10.1112/S0024609302001455
  • [Bug96] Y. Bugeaud, On a property of Pisot numbers and related questions, Acta Math. Hungar. 73 (1996), no. 1-2, 33-39. MR 1415918 (98c:11113), https://doi.org/10.1007/BF00058941
  • [DMZ15] Daniel Dombek, Zuzana Masáková, and Volker Ziegler, On distinct unit generated fields that are totally complex, J. Number Theory 148 (2015), 311-327. MR 3283182, https://doi.org/10.1016/j.jnt.2014.09.029
  • [EJK90] Pál Erdös, István Joó, and Vilmos Komornik, Characterization of the unique expansions $ 1=\sum ^\infty _{i=1}q^{-n_i}$ and related problems, Bull. Soc. Math. France 118 (1990), no. 3, 377-390 (English, with French summary). MR 1078082 (91j:11006)
  • [EJK98] Paul Erdős, István Joó, and Vilmos Komornik, On the sequence of numbers of the form $ \epsilon _0+\epsilon _1q+\cdots +\epsilon _nq^n,\ \epsilon _i\in \{0,1\}$, Acta Arith. 83 (1998), no. 3, 201-210. MR 1611185 (99a:11022)
  • [Fen15] D.-J. Feng, On the topology of polynomials with bounded integer coefficients, to appear in J. Eur. Math. Soc., 2015. arXiv:1109.1407.
  • [FW02] De-Jun Feng and Zhi-Ying Wen, A property of Pisot numbers, J. Number Theory 97 (2002), no. 2, 305-316. MR 1942963 (2003i:11155), https://doi.org/10.1016/S0022-314X(02)00013-6
  • [KLP00] Vilmos Komornik, Paola Loreti, and Marco Pedicini, An approximation property of Pisot numbers, J. Number Theory 80 (2000), no. 2, 218-237. MR 1740512 (2000k:11116), https://doi.org/10.1006/jnth.1999.2456
  • [Kom02] Takao Komatsu, An approximation property of quadratic irrationals, Bull. Soc. Math. France 130 (2002), no. 1, 35-48 (English, with English and French summaries). MR 1906191 (2003b:11063)
  • [Moo97] Robert V. Moody, Meyer sets and their duals, The mathematics of long-range aperiodic order (Waterloo, ON, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 489, Kluwer Acad. Publ., Dordrecht, 1997, pp. 403-441. MR 1460032 (98e:52029)
  • [MPP15] Zuzana Masáková, Kateřina Pastirčáková, and Edita Pelantová, Description of spectra of quadratic Pisot units, J. Number Theory 150 (2015), 168-190. MR 3304612, https://doi.org/10.1016/j.jnt.2014.11.011
  • [MPZ03a] Z. Masáková, J. Patera, and J. Zich, Classification of Voronoi and Delone tiles in quasicrystals. I. General method, J. Phys. A 36 (2003), no. 7, 1869-1894. MR 1960699 (2004a:52041), https://doi.org/10.1088/0305-4470/36/7/306
  • [MPZ03b] Z. Masáková, J. Patera, and J. Zich, Classification of Voronoi and Delone tiles of quasicrystals. II. Circular acceptance window of arbitrary size, J. Phys. A 36 (2003), no. 7, 1895-1912. MR 1960700 (2004a:52042), https://doi.org/10.1088/0305-4470/36/7/307
  • [MPZ05] Z. Masáková, J. Patera, and J. Zich, Classification of Voronoi and Delone tiles of quasicrystals. III. Decagonal acceptance window of any size, J. Phys. A 38 (2005), no. 9, 1947-1960. MR 2124374 (2005j:52025), https://doi.org/10.1088/0305-4470/38/9/008
  • [Rén57] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477-493. MR 0097374 (20 #3843)
  • [Sage] The Sage Group, Sage: Open source mathematical software (version 6.1.1), 2014, http://www.sagemath.org.
  • [Sch80] Klaus Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), no. 4, 269-278. MR 576976 (82c:12003), https://doi.org/10.1112/blms/12.4.269
  • [TikZ] T. Tantau et al., TikZ & PGF (version 2.10), 2010, http://sourceforge.net/projects/pgf.
  • [Váv14] T. Vávra, On the finiteness property of negative cubic Pisot bases, 2014, submitted, 13 pp., arXiv:1404.1274.
  • [Zaï04] Toufik Zaïmi, On an approximation property of Pisot numbers. II, J. Théor. Nombres Bordeaux 16 (2004), no. 1, 239-249 (English, with English and French summaries). MR 2145586 (2006f:11133)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11A63, 11K16, 52C23, 52C10, 11H99, 11-04

Retrieve articles in all journals with MSC (2010): 11A63, 11K16, 52C23, 52C10, 11H99, 11-04


Additional Information

Tomáš Hejda
Affiliation: Department of Mathematics FNSPE, Czech Technical University in Prague, Trojanova 13, Prague 12000, Czech Republic
Address at time of publication: LIAFA, CNRS UMR 7089, Université Paris Diderot – Paris 7, Case 7014, 75205 Paris Cedex 13, France
Email: tohecz@gmail.com

Edita Pelantová
Affiliation: Department of Mathematics FNSPE, Czech Technical University in Prague, Trojanova 13, Prague 12000, Czech Republic
Email: edita.pelantova@fjfi.cvut.cz

DOI: https://doi.org/10.1090/mcom/2983
Received by editor(s): December 2, 2013
Received by editor(s) in revised form: May 14, 2014, and August 5, 2014
Published electronically: June 9, 2015
Additional Notes: This work was supported by Grant Agency of the Czech Technical University in Prague grant SGS14/205/OHK4/3T/14, Czech Science Foundation grant 13-03538S, and ANR/FWF project “FAN – Fractals and Numeration” (ANR-12-IS01-0002, FWF grant I1136)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society