Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Computing genus $ 1$ Jacobi forms

Author: Martin Raum
Journal: Math. Comp. 85 (2016), 931-960
MSC (2010): Primary 11F30, 11G18; Secondary 11F50, 11F27
Published electronically: July 7, 2015
MathSciNet review: 3434889
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop an algorithm to compute Fourier expansions of vector valued modular forms for Weil representations. As an application, we compute explicit linear equivalences of special divisors on modular varieties of orthogonal type. We define three families of Hecke operators for Jacobi forms, and analyze the induced action on vector valued modular forms. The newspaces attached to one of these families are used to give a more memory efficient version of our algorithm.

References [Enhancements On Off] (What's this?)

  • [BF10] Jan Hendrik Bruinier and Jens Funke, On the injectivity of the Kudla-Millson lift and surjectivity of the Borcherds lift, Moonshine: the first quarter century and beyond, London Math. Soc. Lecture Note Ser., vol. 372, Cambridge Univ. Press, Cambridge, 2010, pp. 12-39. MR 2681774 (2012a:11056)
  • [BK01] Jan Hendrik Bruinier and Michael Kuss, Eisenstein series attached to lattices and modular forms on orthogonal groups, Manuscripta Math. 106 (2001), no. 4, 443-459. MR 1875342 (2003g:11048),
  • [Bor98] Richard E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491-562. MR 1625724 (99c:11049),
  • [Bor00] Richard E. Borcherds, Reflection groups of Lorentzian lattices, Duke Math. J. 104 (2000), no. 2, 319-366. MR 1773561 (2001h:11086),
  • [Bru02] Jan H. Bruinier, Borcherds Products on O(2, $ l$) and Chern Classes of Heegner Divisors, Lecture Notes in Mathematics, vol. 1780, Springer-Verlag, Berlin, 2002. MR 1903920 (2003h:11052)
  • [Bru12] Jan H. Bruinier, On the converse theorem for Borcherds products, ArXiv: 1210.4821v1, 2012.
  • [CD12] M. Cheng and J. Duncan, The Largest Mathieu Group and (Mock) Automorphic Forms, ArXiv: 1201.4140v1, 2012.
  • [CG08] F. Cléry and V. Gritsenko, Siegel modular forms of genus 2 with the simplest divisor, Proc. Lond. Math. Soc. (3) 102 (2011), no. 6, 1024-1052. MR 2806099 (2012g:11089),
  • [CPS14] D. Cadé, X. Pujol, and D. Stehlé, fplll-4.0, a floating-point lll implementation, 2014,
  • [Das10] S. Das, Some Problems on Jacobi Forms, Ph.D. thesis, Homi Bhabha National Institute, India, 2010.
  • [DS10] Ö. Dagdelen and M. Schneider, Parallel enumeration of shortest lattice vectors, Proceedings of the 16th International Euro-Par Conference on Parallel Processing: Part II, Euro-Par'10, Springer-Verlag, 2010, pp. 211-222.
  • [EOT11] Tohru Eguchi, Hirosi Ooguri, and Yuji Tachikawa, Notes on the $ K3$ surface and the Mathieu group $ M_{24}$, Exp. Math. 20 (2011), no. 1, 91-96. MR 2802725 (2012e:58039),
  • [EZ85] Martin Eichler and Don Zagier, The Theory of Jacobi Forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735 (86j:11043)
  • [Fis87] Jürgen Fischer, An Approach to the Selberg Trace Formula via the Selberg Zeta-Function, Lecture Notes in Mathematics, vol. 1253, Springer-Verlag, Berlin, 1987. MR 892317 (88f:11053)
  • [Fre91] Eberhard Freitag, Singular Modular Forms and Theta Relations, Lecture Notes in Mathematics, vol. 1487, Springer-Verlag, Berlin, 1991. MR 1165941 (94b:11038)
  • [GKR11] Dominic Gehre, Judith Kreuzer, and Martin Raum, Computing Borcherds products, LMS J. Comput. Math. 16 (2013), 200-215. MR 3104938,
  • [Gri94] V. A. Gritsenko, Induction in the theory of zeta functions, Algebra i Analiz 6 (1994), no. 1, 3-63 (Russian); English transl., St. Petersburg Math. J. 6 (1995), no. 1, 1-49. MR 1274963 (95h:11092)
  • [Igu62] Jun-ichi Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175-200. MR 0141643 (25 #5040)
  • [JS05] Dileep P. Jatkar and Ashoke Sen, Dyon spectrum in CHL models, J. High Energy Phys. 4 (2006), 018, 32 pp. (electronic). MR 2219084 (2007b:81198),
  • [Kri90] Aloys Krieg, Hecke algebras, Mem. Amer. Math. Soc. 87 (1990), no. 435, x+158. MR 1027069 (90m:16024),
  • [Nik79] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111-177, 238 (Russian). MR 525944 (80j:10031)
  • [Par03] PARI/GP, Version 2.5.1, Bordeaux, 2003,
  • [PY07] Cris Poor and David S. Yuen, Computations of spaces of Siegel modular cusp forms, J. Math. Soc. Japan 59 (2007), no. 1, 185-222. MR 2302669 (2008a:11055)
  • [Rau12a] M. Raum, Homepage, 2012,
  • [Rau12b] M. Raum, Powers of $ M_{24}$-twisted Siegel product expansions are modular, ArXiv: 1208.3453, 2012.
  • [Rau14a] M. Raum, Genus 1 Jacobi forms, 2014, Sage Trac Server #16448.
  • [Rau14b] M. Raum, Reimplement short vector enumeration, 2014, Sage Trac Server #15758.
  • [S$^+$14] W. Stein et al., Sage Mathematics Software (Version 6.2), The Sage Development Team, 2014,
  • [Sch04] Nils R. Scheithauer, Generalized Kac-Moody algebras, automorphic forms and Conway's group. I, Adv. Math. 183 (2004), no. 2, 240-270. MR 2041900 (2004m:17036),
  • [Sch08] Nils R. Scheithauer, Generalized Kac-Moody algebras, automorphic forms and Conway's group. II, J. Reine Angew. Math. 625 (2008), 125-154. MR 2482218 (2010f:11063),
  • [Sch11] N. R. Scheithauer, Some constructions of modular forms for the Weil representation of $ \mathrm {SL}_{2}(\mathbb{Z})$, Preprint, 2011.
  • [Sie51] Carl Ludwig Siegel, Indefinite quadratische Formen und Funktionentheorie. I, Math. Ann. 124 (1951), 17-54 (German). MR 0067930 (16,800a)
  • [Sko84] N. Skoruppa, Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts, Ph.D. thesis, University of Bonn, Germany, 1984.
  • [Sko90] Nils-Peter Skoruppa, Binary quadratic forms and the Fourier coefficients of elliptic and Jacobi modular forms, J. Reine Angew. Math. 411 (1990), 66-95. MR 1072974 (91j:11030),
  • [Sko08] Nils-Peter Skoruppa, Jacobi forms of critical weight and Weil representations, Modular forms on Schiermonnikoog, Cambridge Univ. Press, Cambridge, 2008, pp. 239-266. MR 2512363 (2011a:11093),
  • [SZ88] Nils-Peter Skoruppa and Don Zagier, Jacobi forms and a certain space of modular forms, Invent. Math. 94 (1988), no. 1, 113-146. MR 958592 (89k:11029),
  • [SZ89] Nils-Peter Skoruppa and Don Zagier, A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989), 168-198. MR 972365 (90b:11045),
  • [Wal63] C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281-298. MR 0156890 (28 #133)
  • [Zie89] C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224. MR 1049896 (91g:11046),

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11F30, 11G18, 11F50, 11F27

Retrieve articles in all journals with MSC (2010): 11F30, 11G18, 11F50, 11F27

Additional Information

Martin Raum
Affiliation: ETH, Department of Mathematics, Rämistraße 101, CH-8092, Zürich, Switzerland
Address at time of publication: Chalmers tekniska högskola, Institutionen för Matematiska vetenskaper Martin Westerholt-Raum, SE-412 96 Göteborg, Sweden

Keywords: Fourier expansions of vector valued modular forms, special divisors, Hecke operators
Received by editor(s): October 4, 2013
Received by editor(s) in revised form: June 5, 2014, August 25, 2014, and September 1, 2014
Published electronically: July 7, 2015
Additional Notes: The author was supported by the ETH Zurich Postdoctoral Fellowship Program and by the Marie Curie Actions for People COFUND Program.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society