Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

A Hasse-type principle for exponential Diophantine equations and its applications


Authors: Csanád Bertók and Lajos Hajdu
Journal: Math. Comp. 85 (2016), 849-860
MSC (2010): Primary 11D61, 11D72, 11D79
DOI: https://doi.org/10.1090/mcom/3002
Published electronically: July 16, 2015
MathSciNet review: 3434884
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose a conjecture, similar to Skolem's conjecture, on a Hasse-type principle for exponential Diophantine equations. We prove that in a sense the principle is valid for ``almost all'' equations. Based upon this we propose a general method for the solution of exponential Diophantine equations. Using a generalization of a result of Erdős, Pomerance and Schmutz concerning Carmichael's $ \lambda $ function, we can make our search systematic for certain moduli needed in the method.


References [Enhancements On Off] (What's this?)

  • [1] Zs. Ádám, L. Hajdu, and F. Luca, Representing integers as linear combinations of $ S$-units, Acta Arith. 138 (2009), no. 2, 101-107. MR 2520130 (2010d:11041), https://doi.org/10.4064/aa138-2-1
  • [2] Leo J. Alex and Lorraine L. Foster, On the Diophantine equation $ 1+x+y=z$, Rocky Mountain J. Math. 22 (1992), no. 1, 11-62. MR 1159941 (93e:11040), https://doi.org/10.1216/rmjm/1181072793
  • [3] L. J. Alex and L. L. Foster, On the Diophantine equation $ w+x+y=z$, with $ wxyz=2^r3^s5^t$, Rev. Mat. Univ. Complut. Madrid 8 (1995), no. 1, 13-48. MR 1356433 (96i:11035)
  • [4] Francesco Amoroso and Evelina Viada, Small points on subvarieties of a torus, Duke Math. J. 150 (2009), no. 3, 407-442. MR 2582101 (2010m:11080), https://doi.org/10.1215/00127094-2009-056
  • [5] Boris Bartolome, Yuri Bilu, and Florian Luca, On the exponential local-global principle, Acta Arith. 159 (2013), no. 2, 101-111. MR 3062909, https://doi.org/10.4064/aa159-2-1
  • [6] M. Bennett, Effective $ S$-unit equations and a conjecture of Newman, unpublished conference talk, Marseille-Luminy, 2010.
  • [7] Michael A. Bennett, Yann Bugeaud, and Maurice Mignotte, Perfect powers with few binary digits and related Diophantine problems, II, Math. Proc. Cambridge Philos. Soc. 153 (2012), no. 3, 525-540. MR 2990629, https://doi.org/10.1017/S0305004112000345
  • [8] J. L. Brenner and Lorraine L. Foster, Exponential Diophantine equations, Pacific J. Math. 101 (1982), no. 2, 263-301. MR 675401 (83k:10035)
  • [9] Paul Erdős, Carl Pomerance, and Eric Schmutz, Carmichael's lambda function, Acta Arith. 58 (1991), no. 4, 363-385. MR 1121092 (92g:11093)
  • [10] J.-H. Evertse, H. P. Schlickewei, and W. M. Schmidt, Linear equations in variables which lie in a multiplicative group, Ann. of Math. (2) 155 (2002), no. 3, 807-836. MR 1923966 (2003f:11037), https://doi.org/10.2307/3062133
  • [11] K. Győry, On the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv. 54 (1979), no. 4, 583-600. MR 552678 (81g:10031), https://doi.org/10.1007/BF02566294
  • [12] Kálmán Győry, Résultats effectifs sur la représentation des entiers par des formes décomposables, Queen's Papers in Pure and Applied Mathematics, vol. 56, Queen's University, Kingston, Ont., 1980 (French). MR 627743 (83c:10021)
  • [13] Lajos Hajdu and István Pink, On the Diophantine equation $ 1+2^a+x^b=y^n$, J. Number Theory 143 (2014), 1-13. MR 3227330, https://doi.org/10.1016/j.jnt.2014.03.010
  • [14] Lajos Hajdu and Robert Tijdeman, Representing integers as linear combinations of powers, Publ. Math. Debrecen 79 (2011), no. 3-4, 461-468. MR 2907980, https://doi.org/10.5486/PMD.2011.5132
  • [15] Lajos Hajdu and Rob Tijdeman, Representing integers as linear combinations of power products, Arch. Math. (Basel) 98 (2012), no. 6, 527-533. MR 2935658, https://doi.org/10.1007/s00013-012-0380-4
  • [16] Dominik J. Leitner, Two exponential Diophantine equations, J. Théor. Nombres Bordeaux 23 (2011), no. 2, 479-487 (English, with English and French summaries). MR 2817941 (2012g:11059)
  • [17] A. Schinzel, On power residues and exponential congruences, Acta Arith. 27 (1975), 397-420. MR 0379432 (52 #337)
  • [18] A. Schinzel, Abelian binomials, power residues and exponential congruences, Acta Arith. 32 (1977), no. 3, 245-274. MR 0429819 (55 #2829)
  • [19] A. Schinzel, Addendum and corrigendum to the paper: ``Abelian binomials, power residues and exponential congruences'' [Acta Arith. 32 (1977), no. 3, 245-274; MR 55 #2829], Acta Arith. 36 (1980), no. 1, 101-104. MR 576586 (81g:12005)
  • [20] T. Skolem, Anwendung exponentieller Kongruenzen zum Beweis der Unlsbarkeit gewisser diophantischer Gleichungen, Vid. akad. Avh. Oslo I 1937 nr 12.
  • [21] W. A. Stein et al., Sage Mathematics Software (Version 6.1.1), The Sage Development Team, 2014, http://www.sagemath.org.
  • [22] Nobuhiro Terai, On the exponential Diophantine equation $ (4m^2+1)^x+(5m^2-1)^y=(3m)^z$, Int. J. Algebra 6 (2012), no. 21-24, 1135-1146. MR 2974671
  • [23] Paul Alan Vojta, Integral Points on Varieties, ProQuest LLC, Ann Arbor, MI, 1983. Thesis (Ph.D.)-Harvard University. MR 2632888

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11D61, 11D72, 11D79

Retrieve articles in all journals with MSC (2010): 11D61, 11D72, 11D79


Additional Information

Csanád Bertók
Affiliation: Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary
Email: bertok.csanad@science.unideb.hu

Lajos Hajdu
Affiliation: Institute of Mathematics, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary
Email: hajdul@science.unideb.hu

DOI: https://doi.org/10.1090/mcom/3002
Keywords: Exponential Diophantine equations, Hasse-principle, Carmichael's function
Received by editor(s): July 24, 2014
Received by editor(s) in revised form: August 25, 2014, October 1, 2014, and October 10, 2014
Published electronically: July 16, 2015
Additional Notes: This research was supported in part by the OTKA grants K100339 and NK101680, and by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The project was supported by the European Union, co-financed by the European Social Fund.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society