Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Estimates of $ \psi,\theta$ for large values of $ x$ without the Riemann hypothesis


Author: Pierre Dusart
Journal: Math. Comp. 85 (2016), 875-888
MSC (2010): Primary 11N56; Secondary 11A25, 11N05
DOI: https://doi.org/10.1090/mcom/3005
Published electronically: July 20, 2015
MathSciNet review: 3434886
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The enlargement of known zero-free regions has enabled us to find better effective estimates for classical number-theoretic functions linked to the distribution of prime numbers. In particular we draw the quintessence of the method of Rosser and Schoenfeld on the upper bounds for the usual Chebyshev prime and prime power counting functions to find an upper bound function directly linked to a zero-free region.


References [Enhancements On Off] (What's this?)

  • [1] Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York-Heidelberg, 1976. Undergraduate Texts in Mathematics. MR 0434929 (55 #7892)
  • [2] M. Deléglise and Jean-Louis Nicolas,
    Maximal product of primes whose sum is bounded,
    Bull. Proc. of the Steklov Institute 17 (2013), 82-112.
  • [3] William John Ellison, Les nombres premiers, Hermann, Paris, 1975 (French). En collaboration avec Michel Mendès France; Publications de l'Institut de Mathématique de l'Université de Nancago, No. IX; Actualités Scientifiques et Industrielles, No. 1366. MR 0417077 (54 #5138)
  • [4] Laura Faber and Habiba Kadiri, New bounds for $ \psi (x)$, Math. Comp. 84 (2015), no. 293, 1339-1357. MR 3315511, https://doi.org/10.1090/S0025-5718-2014-02886-X
  • [5] Kevin Ford, Florian Luca, and Pieter Moree, Values of the Euler $ \phi $-function not divisible by a given odd prime, and the distribution of Euler-Kronecker constants for cyclotomic fields, Math. Comp. 83 (2014), no. 287, 1447-1476. MR 3167466, https://doi.org/10.1090/S0025-5718-2013-02749-4
  • [6] D. A. Goldston and Kevin S. McCurley, Sieving the positive integers by large primes, J. Number Theory 28 (1988), no. 1, 94-115. MR 925610 (89d:11077), https://doi.org/10.1016/0022-314X(88)90121-7
  • [7] X. Gourdon,
    The $ 10^{13}$ first zeros of the Riemann zeta function, and zeros computation at very large height, 2004.
  • [8] J. -P. Gram, Note sur les zéros de la fonction $ \zeta (s)$ de Riemann, Acta Math. 27 (1903), no. 1, 289-304 (French). MR 1554986, https://doi.org/10.1007/BF02421310
  • [9] Habiba Kadiri, Une région explicite sans zéros pour la fonction $ \zeta $ de Riemann, Acta Arith. 117 (2005), no. 4, 303-339 (French). MR 2140161 (2005m:11159), https://doi.org/10.4064/aa117-4-1
  • [10] Jean-Louis Nicolas, Small values of the Euler function and the Riemann hypothesis, Acta Arith. 155 (2012), no. 3, 311-321. MR 2983456, https://doi.org/10.4064/aa155-3-7
  • [11] David J. Platt,
    Computing $ \pi (x)$ analytically,
    Math. Comp. 84 (2015), 1521-1535.
  • [12] Olivier Ramaré, Explicit estimates for the summatory function of $ \Lambda (n)/n$ from the one of $ \Lambda (n)$, Acta Arith. 159 (2013), no. 2, 113-122. MR 3062910, https://doi.org/10.4064/aa159-2-2
  • [13] Olivier Ramaré and Robert Rumely, Primes in arithmetic progressions, Math. Comp. 65 (1996), no. 213, 397-425. MR 1320898 (97a:11144), https://doi.org/10.1090/S0025-5718-96-00669-2
  • [14] Hans Riesel, Prime Numbers and Computer Methods for Factorization, Progress in Mathematics, vol. 57, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 897531 (88k:11002)
  • [15] Guy Robin, Estimation de la fonction de Tchebychef $ \theta $ sur le $ k$-ième nombre premier et grandes valeurs de la fonction $ \omega (n)$ nombre de diviseurs premiers de $ n$, Acta Arith. 42 (1983), no. 4, 367-389 (French). MR 736719 (85j:11109)
  • [16] Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211-232. MR 0003018 (2,150e)
  • [17] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR 0137689 (25 #1139)
  • [18] J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $ \theta (x)$ and $ \psi (x)$, Math. Comp. 29 (1975), 243-269. MR 0457373 (56 #15581a)
  • [19] Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $ \theta (x)$ and $ \psi (x)$. II, Math. Comp. 30 (1976), no. 134, 337-360. MR 0457374 (56 #15581b)
  • [20] Terence Tao, Every odd number greater than $ 1$ is the sum of at most five primes, Math. Comp. 83 (2014), no. 286, 997-1038. MR 3143702, https://doi.org/10.1090/S0025-5718-2013-02733-0
  • [21] Timothy S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, J. Number Theory 134 (2014), 280-292. MR 3111568, https://doi.org/10.1016/j.jnt.2013.07.017
  • [22] S. Wedeniwski,
    Zetagrid.
    In Peer-to-Peer: Ökonomische, technische und juristische Perspektiven, pages 173-188. 2002.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11N56, 11A25, 11N05

Retrieve articles in all journals with MSC (2010): 11N56, 11A25, 11N05


Additional Information

Pierre Dusart
Affiliation: XLIM - UMR CNRS $n^{∘}$7252, Université de Limoges, France
Address at time of publication: Département de Mathématiques, 123 avenue Albert THOMAS, 87060 Limoges Cedex, France
Email: pierre.dusart@unilim.fr

DOI: https://doi.org/10.1090/mcom/3005
Keywords: Number theory, arithmetic functions
Received by editor(s): March 17, 2014
Received by editor(s) in revised form: October 4, 2014
Published electronically: July 20, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society