Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

An alternative to Riemann-Siegel type formulas


Author: Ghaith A. Hiary
Journal: Math. Comp. 85 (2016), 1017-1032
MSC (2010): Primary 11M06, 11Y16; Secondary 68Q25
DOI: https://doi.org/10.1090/mcom/3019
Published electronically: October 15, 2015
MathSciNet review: 3434892
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Simple unsmoothed formulas to compute the Riemann zeta function, and Dirichlet $ L$-functions to a powerfull modulus, are derived by elementary means (Taylor expansions and the geometric series). The formulas enable the square-root of the analytic conductor complexity, up to logarithmic loss, and have an explicit remainder term that is easy to control. The formula for zeta yields a convexity bound of the same strength as that from the Riemann-Siegel formula, up to a constant factor. Practical parameter choices are discussed.


References [Enhancements On Off] (What's this?)

  • [1] J. Arias de Reyna, High precision computation of Riemann's zeta function by the Riemann-Siegel formula, I, Math. Comp. 80 (2011), no. 274, 995-1009. MR 2772105 (2012c:11171), https://doi.org/10.1090/S0025-5718-2010-02426-3
  • [2] M. V. Berry, The Riemann-Siegel expansion for the zeta function: high orders and remainders, Proc. Roy. Soc. London Ser. A 450 (1995), no. 1939, 439-462. MR 1349513 (96f:11105), https://doi.org/10.1098/rspa.1995.0093
  • [3] M. V. Berry and J. P. Keating, A new asymptotic representation for $ \zeta (\frac 12+it)$ and quantum spectral determinants, Proc. Roy. Soc. London Ser. A 437 (1992), no. 1899, 151-173. MR 1177749 (93j:11057), https://doi.org/10.1098/rspa.1992.0053
  • [4] D. Davies, An approximate functional equation for Dirichlet $ L$-functions, Proc. Roy. Soc. Ser. A 284 (1965), 224-236. MR 0173352 (30 #3565)
  • [5] Max Deuring, Asymptotische Entwicklungen der Dirichletschen $ L$-Reihen, Math. Ann. 168 (1967), 1-30 (German). MR 0213309 (35 #4173)
  • [6] H. M. Edwards, Riemann's Zeta Function, Dover Publications Inc., Mineola, NY, 2001, Reprint of the 1974 original [Academic Press, New York; [MR0466039 (57:5922)]. MR 1854455 (2002g:11129)
  • [7] W. Gabcke, Neue herleitung und explicite restabschätzung der riemann-siegel-formel., Ph.D. thesis, Göttingen, 1979.
  • [8] Ghaith A. Hiary, Computing Dirichlet character sums to a power-full modulus, J. Number Theory 140 (2014), 122-146. MR 3181649, https://doi.org/10.1016/j.jnt.2013.12.005
  • [9] Ghaith Ayesh Hiary, Fast methods to compute the Riemann zeta function, Ann. of Math. (2) 174 (2011), no. 2, 891-946. MR 2831110 (2012g:11154), https://doi.org/10.4007/annals.2011.174.2.4
  • [10] H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of $ L$-functions, Geom. Funct. Anal. Special Volume (2000), 705-741. GAFA 2000 (Tel Aviv, 1999). MR 1826269 (2002b:11117), https://doi.org/10.1007/978-3-0346-0425-3_6
  • [11] Henryk Iwaniec and Emmanuel Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214 (2005h:11005)
  • [12] A. F. Lavrik, The approximate functional equation for Dirichlet $ L$-functions, Trudy Moskov. Mat. Obšč. 18 (1968), 91-104 (Russian). MR 0236126 (38 #4424)
  • [13] A. M. Odlyzko and A. Schönhage, Fast algorithms for multiple evaluations of the Riemann zeta function, Trans. Amer. Math. Soc. 309 (1988), no. 2, 797-809. MR 961614 (89j:11083), https://doi.org/10.2307/2000939
  • [14] Michael Rubinstein, Computational methods and experiments in analytic number theory, Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., vol. 322, Cambridge Univ. Press, Cambridge, 2005, pp. 425-506. MR 2166470 (2006d:11153), https://doi.org/10.1017/CBO9780511550492.015
  • [15] Robert Rumely, Numerical computations concerning the ERH, Math. Comp. 61 (1993), no. 203, 415-440, S17-S23. MR 1195435 (94b:11085), https://doi.org/10.2307/2152965
  • [16] Carl Ludwig Siegel, Contributions to the theory of the Dirichlet $ L$-series and the Epstein zeta-functions, Ann. of Math. (2) 44 (1943), 143-172. MR 0007760 (4,189c)
  • [17] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550 (88c:11049)
  • [18] A. M. Turing, A method for the calculation of the zeta-function, Proc. London Math. Soc. (2) 48 (1943), 180-197. MR 0009612 (5,173a)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11M06, 11Y16, 68Q25

Retrieve articles in all journals with MSC (2010): 11M06, 11Y16, 68Q25


Additional Information

Ghaith A. Hiary
Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210

DOI: https://doi.org/10.1090/mcom/3019
Keywords: Riemann zeta function, Dirichlet $L$-functions, algorithms
Received by editor(s): March 20, 2014
Received by editor(s) in revised form: July 31, 2014
Published electronically: October 15, 2015
Additional Notes: Preparation of this material was partially supported by the National Science Foundation under agreement No. DMS-0932078 (while at MSRI) and DMS-1406190, and by the Leverhulme Trust (while at the University of Bristol).
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society