Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

A $ p$-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties


Authors: Jennifer S. Balakrishnan, J. Steffen Müller and William A. Stein
Journal: Math. Comp. 85 (2016), 983-1016
MSC (2010): Primary 11G40, 11G50, 11G10, 11G18
DOI: https://doi.org/10.1090/mcom/3029
Published electronically: August 12, 2015
MathSciNet review: 3434891
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Mazur, Tate, and Teitelbaum gave a $ p$-adic analogue of the Birch and Swinnerton-Dyer conjecture for elliptic curves. We provide a generalization of their conjecture in the good ordinary case to higher dimensional modular abelian varieties over the rationals by constructing the $ p$-adic $ L$-function of a modular abelian variety and showing that it satisfies the appropriate interpolation property. This relies on a careful normalization of the $ p$-adic $ L$-function, which we achieve by a comparison of periods. Our generalization agrees with the conjecture of Mazur, Tate, and Teitelbaum in dimension 1 and the classical Birch and Swinnerton-Dyer conjecture formulated by Tate in rank 0. We describe the theoretical techniques used to formulate the conjecture and give numerical evidence supporting the conjecture in the case when the modular abelian variety is of dimension 2.


References [Enhancements On Off] (What's this?)

  • [1] Amod Agashe, Kenneth Ribet, and William A. Stein, The Manin constant, Pure Appl. Math. Q. 2 (2006), no. 2, 617-636. MR 2251484 (2007c:11076), https://doi.org/10.4310/PAMQ.2006.v2.n2.a11
  • [2] Amod Agashe and William Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), no. 249, 455-484. With an appendix by J. Cremona and B. Mazur. MR 2085902 (2005g:11119), https://doi.org/10.1090/S0025-5718-04-01644-8
  • [3] Jennifer S. Balakrishnan and Amnon Besser, Computing local $ p$-adic height pairings on hyperelliptic curves, Int. Math. Res. Not. IMRN 11 (2012), 2405-2444. MR 2926986, https://doi.org/10.1093/imrn/rnr111
  • [4] Jennifer S. Balakrishnan, Robert W. Bradshaw, and Kiran S. Kedlaya, Explicit Coleman integration for hyperelliptic curves, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 16-31. MR 2721410 (2012b:14048), https://doi.org/10.1007/978-3-642-14518-6_6
  • [5] Dominique Bernardi and Bernadette Perrin-Riou, Variante $ p$-adique de la conjecture de Birch et Swinnerton-Dyer (le cas supersingulier), C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 3, 227-232. MR 1233417 (94k:11071)
  • [6] Amnon Besser, The $ p$-adic height pairings of Coleman-Gross and of Nekovář, Number Theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 13-25. MR 2076563 (2005f:11130)
  • [7] Siegfried Bosch and Qing Liu, Rational points of the group of components of a Néron model, Manuscripta Math. 98 (1999), no. 3, 275-293. MR 1717533 (2000i:11094), https://doi.org/10.1007/s002290050140
  • [8] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
  • [9] Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic $ L$-functions and their derivatives, Ann. of Math. (2) 131 (1990), no. 1, 53-127. MR 1038358 (92e:11053), https://doi.org/10.2307/1971508
  • [10] John Coates, On $ p$-adic $ L$-functions, Astérisque 177-178 (1989), Exp. No. 701, 33-59. Séminaire Bourbaki, Vol. 1988/89. MR 1040567 (91e:11069)
  • [11] Robert F. Coleman, The universal vectorial bi-extension and $ p$-adic heights, Invent. Math. 103 (1991), no. 3, 631-650. MR 1091621 (92k:14021), https://doi.org/10.1007/BF01239529
  • [12] Robert F. Coleman and Benedict H. Gross, $ p$-adic heights on curves, Algebraic Number Theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 73-81. MR 1097610 (92d:11057)
  • [13] E. Victor Flynn, Franck Leprévost, Edward F. Schaefer, William A. Stein, Michael Stoll, and Joseph L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675-1697. MR 1836926 (2002d:11072), https://doi.org/10.1090/S0025-5718-01-01320-5
  • [14] S. D. Galbraith,
    Equations for modular curves,
    Oxford Ph.D. thesis, 1996.
  • [15] Grigor Grigorov, Andrei Jorza, Stefan Patrikis, William A. Stein, and Corina Tarniţa, Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves, Math. Comp. 78 (2009), no. 268, 2397-2425. MR 2521294 (2010g:11106), https://doi.org/10.1090/S0025-5718-09-02253-4
  • [16] Marc Hindry and Joseph H. Silverman, Diophantine Geometry: An introduction, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. MR 1745599 (2001e:11058)
  • [17] Paul Hriljac, Heights and Arakelov's intersection theory, Amer. J. Math. 107 (1985), no. 1, 23-38. MR 778087 (86c:14024), https://doi.org/10.2307/2374455
  • [18] Kazuya Kato, $ p$-adic Hodge theory and values of zeta functions of modular forms: Cohomologies $ p$-adiques et applications arithmétiques. III, Astérisque 295 (2004), ix, 117-290. MR 2104361 (2006b:11051)
  • [19] Qing Liu, Conducteur et discriminant minimal de courbes de genre $ 2$, Compositio Math. 94 (1994), no. 1, 51-79 (French). MR 1302311 (96b:14038)
  • [20] Qing Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4577-4610. MR 1363944 (97h:11062), https://doi.org/10.1090/S0002-9947-96-01684-4
  • [21] Qing Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. MR 1917232 (2003g:14001)
  • [22] Barry Mazur, William Stein, and John Tate, Computation of $ p$-adic heights and log convergence, Doc. Math. Extra Vol. (2006), 577-614. MR 2290599 (2007i:11089)
  • [23] B. Mazur and J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 195-237. MR 717595 (85j:14081)
  • [24] B. Mazur, J. Tate, and J. Teitelbaum, On $ p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1-48. MR 830037 (87e:11076), https://doi.org/10.1007/BF01388731
  • [25] Robert L. Miller, Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one, LMS J. Comput. Math. 14 (2011), 327-350. MR 2861691 (2012k:11089), https://doi.org/10.1112/S1461157011000180
  • [26] Jan Steffen Müller, Computing canonical heights using arithmetic intersection theory, Math. Comp. 83 (2014), no. 285, 311-336. MR 3120591, https://doi.org/10.1090/S0025-5718-2013-02719-6
  • [27] David Mumford, Tata Lectures on Theta. I, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. Reprint of the 1983 edition. MR 2352717 (2008h:14042)
  • [28] Yukihiko Namikawa and Kenji Ueno, The complete classification of fibres in pencils of curves of genus two, Manuscripta Math. 9 (1973), 143-186. MR 0369362 (51 #5595)
  • [29] Jan Nekovář, On $ p$-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990-91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127-202. MR 1263527 (95j:11050)
  • [30] Vivek Pal, Periods of quadratic twists of elliptic curves, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1513-1525. With an appendix by Amod Agashe. MR 2869136, https://doi.org/10.1090/S0002-9939-2011-11014-1
  • [31] Bernadette Perrin-Riou, Arithmétique des courbes elliptiques et théorie d'Iwasawa, Mém. Soc. Math. France (N.S.) 17 (1984), 130. MR 799673 (87h:11058)
  • [32] Bernadette Perrin-Riou, Fonctions $ L$ $ p$-adiques, théorie d'Iwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), no. 4, 399-456. MR 928018 (89d:11094)
  • [33] Robert Pollack, On the $ p$-adic $ L$-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523-558. MR 1983040 (2004e:11050), https://doi.org/10.1215/S0012-7094-03-11835-9
  • [34] Robert Pollack and Glenn Stevens, Overconvergent modular symbols and $ p$-adic $ L$-functions, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 1, 1-42. MR 2760194 (2012m:11074)
  • [35] Karl Rubin, The ``main conjectures'' of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25-68. MR 1079839 (92f:11151), https://doi.org/10.1007/BF01239508
  • [36] Peter Schneider, $ p$-adic height pairings. I, Invent. Math. 69 (1982), no. 3, 401-409. MR 679765 (84e:14034), https://doi.org/10.1007/BF01389362
  • [37] Peter Schneider, $ p$-adic height pairings. II, Invent. Math. 79 (1985), no. 2, 329-374. MR 778132 (86j:11063), https://doi.org/10.1007/BF01388978
  • [38] Goro Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523-544. MR 0318162 (47 #6709)
  • [39] Goro Shimura, On the periods of modular forms, Math. Ann. 229 (1977), no. 3, 211-221. MR 0463119 (57 #3080)
  • [40] Christopher Skinner and Eric Urban, The Iwasawa main conjectures for $ \rm GL_2$, Invent. Math. 195 (2014), no. 1, 1-277. MR 3148103, https://doi.org/10.1007/s00222-013-0448-1
  • [41] William Stein, Modular Forms, a Computational Approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048 (2008d:11037)
  • [42] W. A. Stein et al,
    Sage Mathematics Software (Version 6.2).
    The Sage Development Team, 2014.
    http://www.sagemath.org.
  • [43] William Stein and Christian Wuthrich, Algorithms for the arithmetic of elliptic curves using Iwasawa theory, Math. Comp. 82 (2013), no. 283, 1757-1792. MR 3042584, https://doi.org/10.1090/S0025-5718-2012-02649-4
  • [44] Michael Stoll, On the height constant for curves of genus two. II, Acta Arith. 104 (2002), no. 2, 165-182. MR 1914251 (2003f:11093), https://doi.org/10.4064/aa104-2-6
  • [45] John Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 306, 415-440. MR 1610977
  • [46] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. 98 (1999), no. 2, 397-419. MR 1695203 (2000g:11032), https://doi.org/10.1215/S0012-7094-99-09811-3

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11G40, 11G50, 11G10, 11G18

Retrieve articles in all journals with MSC (2010): 11G40, 11G50, 11G10, 11G18


Additional Information

Jennifer S. Balakrishnan
Affiliation: Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, United Kingdom
Email: balakrishnan@maths.ox.ac.uk

J. Steffen Müller
Affiliation: Institut für Mathematik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
Email: jan.steffen.mueller@uni-oldenburg.de

William A. Stein
Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195
Email: wstein@uw.edu

DOI: https://doi.org/10.1090/mcom/3029
Received by editor(s): September 19, 2014
Published electronically: August 12, 2015
Additional Notes: The first author was supported by NSF grant DMS-1103831.
The second author was supported by DFG grants STO 299/5-1 and KU 2359/2-1.
The third author was supported by NSF Grants DMS-1161226 and DMS-1147802.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society