Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 


Error Estimates for well-balanced and time-split schemes on a locally damped wave equation

Authors: Debora Amadori and Laurent Gosse
Journal: Math. Comp. 85 (2016), 601-633
MSC (2010): Primary 35L71, 65M15, 74J20
Published electronically: October 16, 2015
MathSciNet review: 3434873
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A posteriori $ L^1$ error estimates are derived for both well-balanced (WB) and fractional-step (FS) numerical approximations of the unique weak solution of the Cauchy problem for the 1D semilinear damped wave equation. For setting up the WB algorithm, we proceed by rewriting it under the form of an elementary $ 3 \times 3$ system which linear convective structure allows to reduce the Godunov scheme with optimal Courant number (corresponding to $ \Delta t=\Delta x $) to a wavefront-tracking algorithm free from any step of projection onto piecewise constant functions. A fundamental difference in the total variation estimates is proved, which partly explains the discrepancy of the FS method when the dissipative (sink) term displays an explicit dependence in the space variable. Numerical tests are performed by means of stationary exact solutions of the linear damped wave equation.

References [Enhancements On Off] (What's this?)

  • [1] Saul Abarbanel, Adi Ditkowski, and Bertil Gustafsson, On error bounds of finite difference approximations to partial differential equations--temporal behavior and rate of convergence, J. Sci. Comput. 15 (2000), no. 1, 79-116. MR 1829556 (2002c:65127),
  • [2] Fatiha Alabau-Boussouira, On some recent advances on stabilization for hyperbolic equations, Control of Partial Differential Equations, Lecture Notes in Math., vol. 2048, Springer, Heidelberg, 2012, pp. 1-100. MR 3220858,
  • [3] D. Amadori, A. Corli,
    Glimm estimates for a model of multiphase flow,
  • [4] Debora Amadori and Laurent Gosse, Transient $ L^1$ error estimates for well-balanced schemes on non-resonant scalar balance laws, J. Differential Equations 255 (2013), no. 3, 469-502. MR 3053474,
  • [5] Debora Amadori and Graziano Guerra, Global BV solutions and relaxation limit for a system of conservation laws, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 1, 1-26. MR 1820292 (2002a:35135),
  • [6] Debora Amadori and Graziano Guerra, Uniqueness and continuous dependence for systems of balance laws with dissipation, Nonlinear Anal. 49 (2002), no. 7, Ser. A: Theory Methods, 987-1014. MR 1895539 (2002m:35136),
  • [7] Denise Aregba-Driollet, Maya Briani, and Roberto Natalini, Asymptotic high-order schemes for $ 2\times 2$ dissipative hyperbolic systems, SIAM J. Numer. Anal. 46 (2008), no. 2, 869-894. MR 2383214 (2008k:65181),
  • [8] Christos Arvanitis, Theodoros Katsaounis, and Charalambos Makridakis, Adaptive finite element relaxation schemes for hyperbolic conservation laws, M2AN Math. Model. Numer. Anal. 35 (2001), no. 1, 17-33. MR 1811979 (2002g:65119),
  • [9] Christos Arvanitis, Charalambos Makridakis, and Athanasios E. Tzavaras, Stability and convergence of a class of finite element schemes for hyperbolic systems of conservation laws, SIAM J. Numer. Anal. 42 (2004), no. 4, 1357-1393. MR 2114282 (2005m:65204),
  • [10] M. Asadzadeh, D. Rostamy, and F. Zabihi, A posteriori error estimates for a coupled wave system with a local damping, J. Math. Sci. (N. Y.) 175 (2011), no. 3, 228-248. Problems in mathematical analysis. No. 56. MR 2839040 (2012j:65310),
  • [11] Stefano Bianchini, Bernard Hanouzet, and Roberto Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math. 60 (2007), no. 11, 1559-1622. MR 2349349 (2010i:35227),
  • [12] Alberto Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, vol. 20, Oxford University Press, Oxford, 2000. MR 1816648 (2002d:35002)
  • [13] Alberto Bressan, Tai-Ping Liu, and Tong Yang, $ L^1$ stability estimates for $ n\times n$ conservation laws, Arch. Ration. Mech. Anal. 149 (1999), no. 1, 1-22. MR 1723032 (2000g:35139),
  • [14] Marcelo M. Cavalcanti, Flávio R. Dias Silva, and Valéria N. Domingos Cavalcanti, Uniform decay rates for the wave equation with nonlinear damping locally distributed in unbounded domains with finite measure, SIAM J. Control Optim. 52 (2014), no. 1, 545-580. MR 3164554,
  • [15] Bernardo Cockburn and Huiing Gau, A posteriori error estimates for general numerical methods for scalar conservation laws, Mat. Apl. Comput. 14 (1995), no. 1, 37-47. MR 1339916
  • [16] Frédéric Coquel, Shi Jin, Jian-Guo Liu, and Li Wang, Well-posedness and singular limit of a semilinear hyperbolic relaxation system with a two-scale discontinuous relaxation rate, Arch. Ration. Mech. Anal. 214 (2014), no. 3, 1051-1084. MR 3269642,
  • [17] Rinaldo M. Colombo and Graziano Guerra, Differential equations in metric spaces with applications, Discrete Contin. Dyn. Syst. 23 (2009), no. 3, 733-753. MR 2461824 (2009j:34134),
  • [18] Michael Crandall and Andrew Majda, The method of fractional steps for conservation laws, Numer. Math. 34 (1980), no. 3, 285-314. MR 571291 (81j:65101),
  • [19] J. Glimm and D. H. Sharp, An $ S$ matrix theory for classical nonlinear physics, Found. Phys. 16 (1986), no. 2, 125-141. MR 836850 (88c:35141),
  • [20] Laurent Gosse, Computing Qualitatively Correct Approximations of Balance Laws: Exponential-fit, well-balanced and asymptotic-preserving, SIMAI Springer Series, vol. 2, Springer, Milan, 2013. MR 3053000
  • [21] Laurent Gosse and Charalambos Makridakis, Two a posteriori error estimates for one-dimensional scalar conservation laws, SIAM J. Numer. Anal. 38 (2000), no. 3, 964-988. MR 1781211 (2002e:65129),
  • [22] Laurent Gosse and Giuseppe Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, C. R. Math. Acad. Sci. Paris 334 (2002), no. 4, 337-342. MR 1891014 (2003b:65087),
  • [23] Mark Kac, A stochastic model related to the telegrapher's equation, Rocky Mountain J. Math. 4 (1974), 497-509. Reprinting of an article published in 1956; Papers arising from a Conference on Stochastic Differential Equations (Univ. Alberta, Edmonton, Alta., 1972). MR 0510166 (58 #23185)
  • [24] D. Kaya, An application of the decomposition method for second order wave equations, Int. J. Comput. Math. 75 (2000), no. 2, 235-245. MR 1787281 (2001d:65134),
  • [25] H. Kim, M. Laforest, and D. Yoon, An adaptive version of Glimm's scheme, Acta Math. Sci. Ser. B Engl. Ed. 30 (2010), no. 2, 428-446. MR 2656549 (2011f:65158),
  • [26] M. Laforest, A posteriori error estimate for front-tracking: systems of conservation laws, SIAM J. Math. Anal. 35 (2004), no. 5, 1347-1370. MR 2050203 (2005k:65188),
  • [27] Wei-Jiu Liu and Enrique Zuazua, Decay rates for dissipative wave equations, Ricerche Mat. 48 (1999), no. suppl., 61-75. Papers in memory of Ennio De Giorgi (Italian). MR 1765677 (2001g:35173)
  • [28] Brian J. McCartin, Exponential fitting of the damped wave equation, Appl. Math. Sci. (Ruse) 4 (2010), no. 37-40, 1899-1930. MR 2670064
  • [29] Pierangelo Marcati and Kenji Nishihara, The $ L^p$-$ L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differential Equations 191 (2003), no. 2, 445-469. MR 1978385 (2004c:35247),
  • [30] Arnaud Münch and Ademir Fernando Pazoto, Uniform stabilization of a viscous numerical approximation for a locally damped wave equation, ESAIM Control Optim. Calc. Var. 13 (2007), no. 2, 265-293 (electronic). MR 2306636 (2008h:35217),
  • [31] Mario Ohlberger, A review of a posteriori error control and adaptivity for approximations of non-linear conservation laws, Internat. J. Numer. Methods Fluids 59 (2009), no. 3, 333-354. MR 2484271 (2009m:65165),
  • [32] Gabriella Puppo and Matteo Semplice, Numerical entropy and adaptivity for finite volume schemes, Commun. Comput. Phys. 10 (2011), no. 5, 1132-1160. MR 2830842 (2012j:65288),
  • [33] Jeffrey Rauch and Michael Reed, Jump discontinuities of semilinear, strictly hyperbolic systems in two variables: creation and propagation, Comm. Math. Phys. 81 (1981), no. 2, 203-227. MR 632757 (82m:35104)
  • [34] Louis Roder Tcheugoué Tébou and Enrique Zuazua, Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity, Numer. Math. 95 (2003), no. 3, 563-598. MR 2012934 (2004m:65133),
  • [35] Judith Vancostenoble, Optimalité d'estimations d'énergie pour une équation des ondes amortie, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 9, 777-782 (French, with English and French summaries). MR 1694086 (2000c:35161),
  • [36] T. Vejchodsky,
    On A-Posteriori error estimation strategies for elliptic problems,
    in J. Privratska, J. Prihonska, D. Andrejsova (Eds.), Proceedings of International Conference ICPM'05, Liberec, Czech Republic (2005), 373-386.
  • [37] R. Verfurth,
    A review of a posteriori error estimation and adaptive mesh refinement techniques,
    Teubner-Wiley (1996)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35L71, 65M15, 74J20

Retrieve articles in all journals with MSC (2010): 35L71, 65M15, 74J20

Additional Information

Debora Amadori
Affiliation: DISIM, Università degli Studi dell’Aquila, 67100 L’Aquila, Italy

Laurent Gosse
Affiliation: IAC–CNR “Mauro Picone” (sezione di Roma) - Via dei Taurini, 19 - 00185 Rome, Italy

Received by editor(s): August 25, 2013
Received by editor(s) in revised form: September 1, 2013, March 16, 2014, and September 30, 2014
Published electronically: October 16, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society