Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the first sign change of $ \theta(x) -x$


Authors: D. J. Platt and T. S. Trudgian
Journal: Math. Comp. 85 (2016), 1539-1547
MSC (2010): Primary 11M26, 11Y35
DOI: https://doi.org/10.1090/mcom/3021
Published electronically: August 21, 2015
MathSciNet review: 3454375
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \theta (x) = \sum _{p\leq x} \log p$. We show that $ \theta (x)<x$ for $ 2<x< 1.39\cdot 10^{17}$. We also show that there is an $ x<\exp (727.951332668)$ for which $ \theta (x) >x.$


References [Enhancements On Off] (What's this?)

  • [1] ACRC, Bluecrystal phase 3 user guide, 2014.
  • [2] Carter Bays and Richard H. Hudson, A new bound for the smallest $ x$ with $ \pi (x)>{\rm li}(x)$, Math. Comp. 69 (2000), no. 231, 1285-1296. MR 1752093 (2001c:11138), https://doi.org/10.1090/S0025-5718-99-01104-7
  • [3] J. Bober,
    Database of zeros of the zeta function, 2012.
    http://sage.math.washington.edu/home/bober/www/data/platt_zeros/zeros.
  • [4] Adrian W. Dudek and David J. Platt, On solving a curious inequality of Ramanujan, Exp. Math. 24 (2015), no. 3, 289-294. MR 3359216, https://doi.org/10.1080/10586458.2014.990118
  • [5] P. Dusart,
    Estimates of some functions over primes without R.H.,
    arXiv:1002.0442v1, 2010.
  • [6] Laura Faber and Habiba Kadiri, New bounds for $ \psi (x)$, Math. Comp. 84 (2015), no. 293, 1339-1357. MR 3315511, https://doi.org/10.1090/S0025-5718-2014-02886-X
  • [7] A. E. Ingham, The Distribution of Prime Numbers, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR 1074573 (91f:11064)
  • [8] Tadej Kotnik, The prime-counting function and its analytic approximations: $ \pi (x)$ and its approximations, Adv. Comput. Math. 29 (2008), no. 1, 55-70. MR 2420864 (2009c:11209), https://doi.org/10.1007/s10444-007-9039-2
  • [9] R. Sherman Lehman, On the difference $ \pi (x)-{\rm li}(x)$, Acta Arith. 11 (1966), 397-410. MR 0202686 (34 #2546)
  • [10] J. E. Littlewood,
    Sur la distribution des nombres premiers,
    Comptes Rendus, 158 (1914), 1869-1872.
  • [11] Hugh L. Montgomery and Ulrike M. A. Vorhauer, Changes of sign of the error term in the prime number theorem, Funct. Approx. Comment. Math. 35 (2006), 235-247. MR 2271616 (2008c:11123), https://doi.org/10.7169/facm/1229442626
  • [12] T. Oliveira e Silva,
    Tables of values of pi(x) and pi2(x), 2012,
    http://www.ieeta.pt/~tos/primes.html.
  • [13] D. J. Platt.
    Computing Degree 1 $ L$-functions Rigorously.
    PhD thesis, Bristol University, 2011.
  • [14] Nathalie Revol and Fabrice Rouillier, Motivations for an arbitrary precision interval arithmetic and the MPFI library, Reliab. Comput. 11 (2005), no. 4, 275-290. MR 2158338 (2006e:65078), https://doi.org/10.1007/s11155-005-6891-y
  • [15] Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211-232. MR 0003018 (2,150e)
  • [16] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR 0137689 (25 #1139)
  • [17] Yannick Saouter, Timothy Trudgian, and Patrick Demichel, A still sharper region where $ \pi (x)-$$ \text {li}(x)$ is positive, Math. Comp. 84 (2015), no. 295, 2433-2446. MR 3356033, https://doi.org/10.1090/S0025-5718-2015-02930-5
  • [18] Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $ \theta (x)$ and $ \psi (x)$. II, Math. Comp. 30 (1976), no. 134, 337-360. MR 0457374 (56 #15581b)
  • [19] S. Skewes, On the difference $ \pi (x)-{\rm li}\,x$. II, Proc. London Math. Soc. (3) 5 (1955), 48-70. MR 0067145 (16,676c)
  • [20] T. S. Trudgian,
    Updating the error term in the prime number theorem,
    Ramanujan J, 2014.
    To appear. Preprint available at arXiv:1401.2689v1.
  • [21] K. Walisch,
    Primesieve, 2012.
    http://code.google.com/p/primesieve/.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11M26, 11Y35

Retrieve articles in all journals with MSC (2010): 11M26, 11Y35


Additional Information

D. J. Platt
Affiliation: Heilbronn Institute for Mathematical Research University of Bristol, Bristol, United Kingdom
Email: dave.platt@bris.ac.uk

T. S. Trudgian
Affiliation: Mathematical Sciences Institute, The Australian National University, ACT 0200, Australia
Email: timothy.trudgian@anu.edu.au

DOI: https://doi.org/10.1090/mcom/3021
Keywords: Sign changes of arithmetical functions, oscillation theorems
Received by editor(s): July 7, 2014
Received by editor(s) in revised form: November 19, 2014
Published electronically: August 21, 2015
Additional Notes: The second author was supported by Australian Research Council DECRA Grant DE120100173
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society