Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Error estimates for the standard Galerkin-finite element method for the shallow water equations


Authors: D. C. Antonopoulos and V. A. Dougalis
Journal: Math. Comp. 85 (2016), 1143-1182
MSC (2010): Primary 65M60, 35L60
DOI: https://doi.org/10.1090/mcom3040
Published electronically: September 21, 2015
MathSciNet review: 3454361
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a simple initial-boundary-value problem for the shallow water equations in one space dimension and also the analogous problem for a symmetric variant of the system. Assuming smoothness of solutions, we discretize these problems in space using standard Galerkin-finite element methods and prove $ L^{2}$-error estimates for the semidiscrete problems for quasiuniform and uniform meshes. In particular we show that in the case of spatial discretizations with piecewise linear continuous functions on a uniform mesh, suitable compatibility conditions at the boundary and superaccuracy properties of the $ L^{2}$ projection on the finite element subspaces lead to an optimal-order $ O(h^{2})$ $ L^{2}$-error estimate. We also examine the temporal discretization of the semidiscrete problems by a third-order explicit Runge-Kutta method due to Shu and Osher and prove $ L^{2}$-error estimates of optimal order in the temporal variable under a Courant-number stability condition. In a final section of remarks we prove optimal-order $ L^{2}$-error estimates for smooth spline spatial discretizations of the periodic initial-value problem for the systems. We also prove that small-amplitude, appropriately transformed solutions of the symmetric system are close to the corresponding solutions of the usual system while they are both smooth, thus providing a justification of the symmetric system.


References [Enhancements On Off] (What's this?)

  • [1] D. C. Antonopoulos and V. A. Dougalis, Error estimates for Galerkin approximations of the ``classical'' Boussinesq system, Math. Comp. 82 (2013), no. 282, 689-717. MR 3008835, https://doi.org/10.1090/S0025-5718-2012-02663-9
  • [2] D. C. Antonopoulos and V. A. Dougalis, Notes on error estimates for Galerkin approximations of the `classical' Boussinesq system and related hyperbolic problems, arXiv:1008.4248, 2010.
  • [3] D. C. Antonopoulos and V. A. Dougalis, Notes on error estimates for the standard Galerkin-finite element method for the shallow water equations, arXiv:1403.5699, 2014.
  • [4] D. C. Antonopoulos, V. A. Dougalis and D. E. Mitsotakis, Galerkin approximations of periodic solutions of Boussinesq systems, Bull. Greek Math. Soc. 57(2010), 13-30.
  • [5] J. L. Bona, M. Chen, and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory, J. Nonlinear Sci. 12 (2002), no. 4, 283-318. MR 1915939 (2003k:35193), https://doi.org/10.1007/s00332-002-0466-4
  • [6] Jerry L. Bona, Thierry Colin, and David Lannes, Long wave approximations for water waves, Arch. Ration. Mech. Anal. 178 (2005), no. 3, 373-410. MR 2196497 (2007a:76012), https://doi.org/10.1007/s00205-005-0378-1
  • [7] Erik Burman, Alexandre Ern, and Miguel A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems, SIAM J. Numer. Anal. 48 (2010), no. 6, 2019-2042. MR 2740540 (2012a:65231), https://doi.org/10.1137/090757940
  • [8] Jim Douglas Jr., Todd Dupont, and Lars Wahlbin, Optimal $ L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems, Math. Comp. 29 (1975), 475-483. MR 0371077 (51 #7298)
  • [9] Todd Dupont, Galerkin methods for modeling gas pipelines, Constructive and computational methods for differential and integral equations (Sympos., Indiana Univ., Bloomington, Ind., 1974) Lecture Notes in Math., Vol. 430, Springer, Berlin, 1974, pp. 112-130. MR 0502035 (58 #19223)
  • [10] Todd Dupont, Galerkin methods for first order hyperbolics: an example, SIAM J. Numer. Anal. 10 (1973), 890-899. MR 0349046 (50 #1540)
  • [11] Qun Lin, Full convergence for hyperbolic finite elements, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 167-177. MR 1842172 (2002d:65102), https://doi.org/10.1007/978-3-642-59721-3_12
  • [12] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308 (85e:35077)
  • [13] D. H. Peregrine, Equations for water waves and the approximation behind them, in Waves on Beaches and Resulting Sediment Transport, R. E. Meyer, ed., Academic Press, New York, 1972, pp. 95-121.
  • [14] Madalina Petcu and Roger Temam, The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity, Discrete Contin. Dyn. Syst. Ser. S 4 (2011), no. 1, 209-222. MR 2746402 (2012b:35194), https://doi.org/10.3934/dcdss.2011.4.209
  • [15] J. M. Rakotoson, R. Temam, and J. Tribbia, Remarks on the nonviscous shallow water equations, Indiana Univ. Math. J. 57 (2008), no. 6, 2969-2998. MR 2483008 (2010b:35412), https://doi.org/10.1512/iumj.2008.57.3699
  • [16] Robert Schreiber, Finite element methods of high-order accuracy for singular two-point boundary value problems with nonsmooth solutions, SIAM J. Numer. Anal. 17 (1980), no. 4, 547-566. MR 584730 (82b:65139), https://doi.org/10.1137/0717047
  • [17] Chi-Wang Shu and Stanley Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988), no. 2, 439-471. MR 954915 (89g:65113), https://doi.org/10.1016/0021-9991(88)90177-5
  • [18] Michael E. Taylor, Partial Differential Equations III. Nonlinear Equations, 2nd ed., Applied Mathematical Sciences, vol. 117, Springer, New York, 2011. MR 2744149 (2011m:35003)
  • [19] Vidar Thomée and Lars B. Wahlbin, Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable, Numer. Math. 41 (1983), no. 3, 345-371. MR 712117 (85f:65099), https://doi.org/10.1007/BF01418330
  • [20] Vidar Thomée and Burton Wendroff, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal. 11 (1974), 1059-1068. MR 0371088 (51 #7309)
  • [21] G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0483954 (58 #3905)
  • [22] Long'an Ying, A second order explicit finite element scheme to multi-dimensional conservation laws and its convergence, Sci. China Ser. A 43 (2000), no. 9, 945-957. MR 1804046 (2001k:65154), https://doi.org/10.1007/BF02879800
  • [23] Ai Hui Zhou and Qun Lin, Optimal and superconvergence estimates of the finite element method for a scalar hyperbolic equation, Acta Math. Sci. (English Ed.) 14 (1994), no. 1, 90-94. MR 1280088 (95c:65161)
  • [24] Qiang Zhang and Chi-Wang Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal. 42 (2004), no. 2, 641-666 (electronic). MR 2084230 (2005h:65149), https://doi.org/10.1137/S0036142902404182
  • [25] Qiang Zhang and Chi-Wang Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws, SIAM J. Numer. Anal. 44 (2006), no. 4, 1703-1720 (electronic). MR 2257123 (2008f:65162), https://doi.org/10.1137/040620382
  • [26] Qiang Zhang and Chi-Wang Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal. 48 (2010), no. 3, 1038-1063. MR 2669400 (2011g:65205), https://doi.org/10.1137/090771363

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M60, 35L60

Retrieve articles in all journals with MSC (2010): 65M60, 35L60


Additional Information

D. C. Antonopoulos
Affiliation: Department of Mathematics, University of Athens, 15784 Zographou, Greece — and — Institute of Applied and Computational Mathematics, FORTH, 70013 Heraklion, Greece
Email: antonod@math.uoa.gr

V. A. Dougalis
Affiliation: Department of Mathematics, University of Athens, 15784 Zographou, Greece — and — Institute of Applied and Computational Mathematics, FORTH, 70013 Heraklion, Greece
Email: doug@math.uoa.gr

DOI: https://doi.org/10.1090/mcom3040
Keywords: Shallow water equations, first-order quasilinear hyperbolic systems, standard Galerkin method, Shu-Osher scheme.
Received by editor(s): March 25, 2014
Received by editor(s) in revised form: November 23, 2014
Published electronically: September 21, 2015
Additional Notes: At http://arxiv.org/abs/1403.5699 interested readers may find an extended version of the present paper (\cite{ad2arxiv}), including additional results as well as details of proofs omitted herein.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society