Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

   
 
 

 

A blob method for the aggregation equation


Authors: Katy Craig and Andrea L. Bertozzi
Journal: Math. Comp. 85 (2016), 1681-1717
MSC (2010): Primary 35Q35, 35Q82, 65M15, 82C22
DOI: https://doi.org/10.1090/mcom3033
Published electronically: December 4, 2015
MathSciNet review: 3471104
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by classical vortex blob methods for the Euler equations, we develop a numerical blob method for the aggregation equation. This provides a counterpoint to existing literature on particle methods. By regularizing the velocity field with a mollifier or ``blob function'', the blob method has a faster rate of convergence and allows a wider range of admissible kernels. In fact, we prove arbitrarily high polynomial rates of convergence to classical solutions, depending on the choice of mollifier. The blob method conserves mass and the corresponding particle system is energy decreasing for a regularized free energy functional and preserves the Wasserstein gradient flow structure. We consider numerical examples that validate our predicted rate of convergence and illustrate qualitative properties of the method.


References [Enhancements On Off] (What's this?)

  • [1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. MR 2401600 (2009h:49002)
  • [2] Luigi Ambrosio and Sylvia Serfaty, A gradient flow approach to an evolution problem arising in superconductivity, Comm. Pure Appl. Math. 61 (2008), no. 11, 1495-1539. MR 2444374 (2010b:35196), https://doi.org/10.1002/cpa.20223
  • [3] Christopher Anderson and Claude Greengard, On vortex methods, SIAM J. Numer. Anal. 22 (1985), no. 3, 413-440. MR 787568 (86j:76016), https://doi.org/10.1137/0722025
  • [4] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul, Dimensionality of local minimizers of the interaction energy, Arch. Ration. Mech. Anal. 209 (2013), no. 3, 1055-1088. MR 3067832, https://doi.org/10.1007/s00205-013-0644-6
  • [5] D. Balagué, J. A. Carrillo, T. Laurent, and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: radial ins/stability, Phys. D 260 (2013), 5-25. MR 3143991, https://doi.org/10.1016/j.physd.2012.10.002
  • [6] Daniel Balagué, José A. Carrillo, and Yao Yao, Confinement for repulsive-attractive kernels, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), no. 5, 1227-1248. MR 3199778, https://doi.org/10.3934/dcdsb.2014.19.1227
  • [7] J. Thomas Beale, A convergent $ 3$-D vortex method with grid-free stretching, Math. Comp. 46 (1986), no. 174, 401-424, S15-S20. MR 829616 (87e:76037), https://doi.org/10.2307/2007984
  • [8] J. Thomas Beale and Andrew Majda, Vortex methods. I. Convergence in three dimensions, Math. Comp. 39 (1982), no. 159, 1-27. MR 658212 (83i:65069a), https://doi.org/10.2307/2007617
  • [9] J. Thomas Beale and Andrew Majda, Vortex methods. II. Higher order accuracy in two and three dimensions, Math. Comp. 39 (1982), no. 159, 29-52. MR 658213 (83i:65069b), https://doi.org/10.2307/2007618
  • [10] Andrea L. Bertozzi and Jeremy Brandman, Finite-time blow-up of $ L^\infty $-weak solutions of an aggregation equation, Commun. Math. Sci. 8 (2010), no. 1, 45-65. MR 2655900 (2011d:35076)
  • [11] Andrea L. Bertozzi, José A. Carrillo, and Thomas Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity 22 (2009), no. 3, 683-710. MR 2480108 (2010b:35035), https://doi.org/10.1088/0951-7715/22/3/009
  • [12] Andrea L. Bertozzi, John B. Garnett, and Thomas Laurent, Characterization of radially symmetric finite time blowup in multidimensional aggregation equations, SIAM J. Math. Anal. 44 (2012), no. 2, 651-681. MR 2914245, https://doi.org/10.1137/11081986X
  • [13] Andrea L. Bertozzi, Thomas Laurent, and Flavien Léger, Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions, Math. Models Methods Appl. Sci. 22 (2012), no. suppl. 1, 1140005, 39. MR 2974185, https://doi.org/10.1142/S0218202511400057
  • [14] Andrea L. Bertozzi, Theodore Kolokolnikov, Hui Sun, David Uminsky, and James von Brecht, Ring patterns and their bifurcations in a nonlocal model of biological swarms, Commun. Math. Sci. 13 (2015), no. 4, 955-985. MR 3325085, https://doi.org/10.4310/CMS.2015.v13.n4.a6
  • [15] H. S. Bhat and R. C. Fetecau, A Hamiltonian regularization of the Burgers equation, J. Nonlinear Sci. 16 (2006), no. 6, 615-638. MR 2271428 (2008f:35334), https://doi.org/10.1007/s00332-005-0712-7
  • [16] H. S. Bhat and R. C. Fetecau, Stability of fronts for a regularization of the Burgers equation, Quart. Appl. Math. 66 (2008), no. 3, 473-496. MR 2445524 (2009m:35412)
  • [17] H. S. Bhat and R. C. Fetecau, The Riemann problem for the Leray-Burgers equation, J. Differential Equations 246 (2009), no. 10, 3957-3979. MR 2514732 (2010g:35196), https://doi.org/10.1016/j.jde.2009.01.006
  • [18] Giovanni A. Bonaschi, José A. Carrillo, Marco Di Francesco, and Mark A. Peletier, Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D, ESAIM Control Optim. Calc. Var. 21 (2015), no. 2, 414-441. MR 3348406, https://doi.org/10.1051/cocv/2014032
  • [19] Peter N. Brown, Alan C. Hindmarsh, and George D. Byrne, DVODE: Variable-coefficient ordinary differential equation solver, 1975.
  • [20] J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J. 156 (2011), no. 2, 229-271. MR 2769217 (2012c:35447), https://doi.org/10.1215/00127094-2010-211
  • [21] J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev, Confinement in nonlocal interaction equations, Nonlinear Anal. 75 (2012), no. 2, 550-558. MR 2847439 (2012i:35182), https://doi.org/10.1016/j.na.2011.08.057
  • [22] José A. Carrillo, Alina Chertock, and Yanghong Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys. 17 (2015), no. 1, 233-258. MR 3372289, https://doi.org/10.4208/cicp.160214.010814a
  • [23] José Antonio Carrillo, Michel Chipot, and Yanghong Huang, On global minimizers of repulsive-attractive power-law interaction energies, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 (2014), no. 2028, 20130399, 13. MR 3268056, https://doi.org/10.1098/rsta.2013.0399
  • [24] J. A. Carrillo, Y.-P. Choi, and M. Hauray, The derivation of swarming models: mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation Series, CISM International Centre for Mechanical Sciences 553 (2014), 1-46.
  • [25] Rustum Choksi, Razvan C. Fetecau, and Ihsan Topaloglu, On minimizers of interaction functionals with competing attractive and repulsive potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 6, 1283-1305. MR 3425263, https://doi.org/10.1016/j.anihpc.2014.09.004
  • [26] Alexandre Joel Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57 (1973), no. 4, 785-796. MR 0395483 (52 #16280)
  • [27] Y.-L. Chuang, Y. R. Huang, M. R. D'Orsogna, and A. L. Bertozzi, Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials, IEEE International Conference on Robotics and Automation (2007), 2292-2299. MR 2747655 (2012e:47190)
  • [28] G.-H. Cottet and P.-A. Raviart, Particle methods for the one-dimensional Vlasov-Poisson equations, SIAM J. Numer. Anal. 21 (1984), no. 1, 52-76. MR 731212 (85c:82048), https://doi.org/10.1137/0721003
  • [29] Hongjie Dong, The aggregation equation with power-law kernels: ill-posedness, mass concentration and similarity solutions, Comm. Math. Phys. 304 (2011), no. 3, 649-664. MR 2794542 (2012d:35143), https://doi.org/10.1007/s00220-011-1237-6
  • [30] J. P. K. Doye, D. J. Wales, and R. S. Berry, The effect of the range of the potential on the structures of clusters, J. Chem. Phys. 103 (1995), 4234-4249.
  • [31] Qiang Du and Ping Zhang, Existence of weak solutions to some vortex density models, SIAM J. Math. Anal. 34 (2003), no. 6, 1279-1299 (electronic). MR 2000970 (2005g:35240), https://doi.org/10.1137/S0036141002408009
  • [32] Yong Duan and Jian-Guo Liu, Convergence analysis of the vortex blob method for the $ b$-equation, Discrete Contin. Dyn. Syst. 34 (2014), no. 5, 1995-2011. MR 3124723, https://doi.org/10.3934/dcds.2014.34.1995
  • [33] Jeff D. Eldredge, Tim Colonius, and Anthony Leonard, A vortex particle method for two-dimensional compressible flow, J. Comput. Phys. 179 (2002), no. 2, 371-399. MR 1911371 (2003g:76084), https://doi.org/10.1006/jcph.2002.7060
  • [34] Klemens Fellner and Gaël Raoul, Stable stationary states of non-local interaction equations, Math. Models Methods Appl. Sci. 20 (2010), no. 12, 2267-2291. MR 2755500 (2012e:35123), https://doi.org/10.1142/S0218202510004921
  • [35] Klemens Fellner and Gaël Raoul, Stability of stationary states of non-local equations with singular interaction potentials, Math. Comput. Modelling 53 (2011), no. 7-8, 1436-1450. MR 2782822, https://doi.org/10.1016/j.mcm.2010.03.021
  • [36] R. C. Fetecau and Y. Huang, Equilibria of biological aggregations with nonlocal repulsive-attractive interactions, Phys. D 260 (2013), 49-64. MR 3143993, https://doi.org/10.1016/j.physd.2012.11.004
  • [37] R. C. Fetecau, Y. Huang, and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity 24 (2011), no. 10, 2681-2716. MR 2834242 (2012m:92096), https://doi.org/10.1088/0951-7715/24/10/002
  • [38] Gerald B. Folland, Real Analysis, Modern Techniques and Their Applications, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. A Wiley-Interscience Publication. MR 1681462 (2000c:00001)
  • [39] Jonathan Goodman, Convergence of the random vortex method, Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn., 1986) IMA Vol. Math. Appl., vol. 9, Springer, New York, 1987, pp. 99-106. MR 914987, https://doi.org/10.1007/978-1-4684-6347-7_7
  • [40] Jonathan Goodman, Thomas Y. Hou, and John Lowengrub, Convergence of the point vortex method for the $ 2$-D Euler equations, Comm. Pure Appl. Math. 43 (1990), no. 3, 415-430. MR 1040146 (91d:65152), https://doi.org/10.1002/cpa.3160430305
  • [41] Ole Hald and Vincenza Mauceri del Prete, Convergence of vortex methods for Euler's equations, Math. Comp. 32 (1978), no. 143, 791-809. MR 492039 (81b:76015a), https://doi.org/10.2307/2006486
  • [42] Ole H. Hald, Convergence of vortex methods for Euler's equations. II, SIAM J. Numer. Anal. 16 (1979), no. 5, 726-755. MR 543965 (81b:76015b), https://doi.org/10.1137/0716055
  • [43] Thomas Y. Hou and John Lowengrub, Convergence of the point vortex method for the $ 3$-D Euler equations, Comm. Pure Appl. Math. 43 (1990), no. 8, 965-981. MR 1075074 (91k:76026), https://doi.org/10.1002/cpa.3160430803
  • [44] Y. Huang, T. P. Witelski, and A. L. Bertozzi, Anomalous exponents of self-similar blow-up solutions to an aggregation equation in odd dimensions, Appl. Math. Lett. 25 (2012), no. 12, 2317-2321. MR 2967836, https://doi.org/10.1016/j.aml.2012.06.023
  • [45] Yanghong Huang and Andrea Bertozzi, Asymptotics of blowup solutions for the aggregation equation, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), no. 4, 1309-1331. MR 2899948, https://doi.org/10.3934/dcdsb.2012.17.1309
  • [46] Yanghong Huang and Andrea L. Bertozzi, Self-similar blowup solutions to an aggregation equation in $ \mathbf {R}^n$, SIAM J. Appl. Math. 70 (2010), no. 7, 2582-2603. MR 2678052 (2011h:35119), https://doi.org/10.1137/090774495
  • [47] John D. Hunter, Matplotlib: a 2D graphics environment, Computing in Science and Engineering 9 (2007), 90-95.
  • [48] F. James and N. Vauchelet, Numerical methods for one-dimensional aggregation equations, SIAM J. Numer. Anal. 53 (2015), no. 2, 895-916. MR 3327358, https://doi.org/10.1137/140959997
  • [49] E. Jones, T. Oliphant, Pearu Peterson, et al., SciPy: Open source scientific tools for Python, 2001-.
  • [50] T. Kolokolnikov, H. Sun, D. Uminsky, and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E 84 (2011), no. 1.
  • [51] Fanghua Lin and Ping Zhang, On the hydrodynamic limit of Ginzburg-Landau vortices, Discrete Contin. Dynam. Systems 6 (2000), no. 1, 121-142. MR 1739596 (2001b:35272), https://doi.org/10.3934/dcds.2000.6.121
  • [52] Ding-Gwo Long, Convergence of the random vortex method in two dimensions, J. Amer. Math. Soc. 1 (1988), no. 4, 779-804. MR 958446 (90a:65202), https://doi.org/10.2307/1990992
  • [53] Andrew J. Majda and Andrea L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002. MR 1867882 (2003a:76002)
  • [54] C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys. 84 (1982), no. 4, 483-503. MR 667756 (84e:35126)
  • [55] Nader Masmoudi and Ping Zhang, Global solutions to vortex density equations arising from sup-conductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 4, 441-458. MR 2145721 (2006a:35252), https://doi.org/10.1016/j.anihpc.2004.07.002
  • [56] A. Mogilner, L. Edelstein-Keshet, L. Bent, and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol. 47 (2003), no. 4, 353-389. MR 2024502 (2004j:92106), https://doi.org/10.1007/s00285-003-0209-7
  • [57] Alexander Mogilner and Leah Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol. 38 (1999), no. 6, 534-570. MR 1698215 (2000e:92058), https://doi.org/10.1007/s002850050158
  • [58] Greg Norgard and Kamran Mohseni, A regularization of the Burgers equation using a filtered convective velocity, J. Phys. A 41 (2008), no. 34, 344016, 21. MR 2456353 (2009j:76069), https://doi.org/10.1088/1751-8113/41/34/344016
  • [59] Greg Norgard and Kamran Mohseni, On the convergence of the convectively filtered Burgers equation to the entropy solution of the inviscid Burgers equation, Multiscale Model. Simul. 7 (2009), no. 4, 1811-1837. MR 2539200 (2011a:35469), https://doi.org/10.1137/080735485
  • [60] L. Perea, G. Gómez, and P. Elosegui, Extension of the Cucker-Smale control law to space flight formations, AIAA J. of Guidance, Control, and Dynamics 32 (2009), 527-537.
  • [61] Frédéric Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation, Methods Appl. Anal. 9 (2002), no. 4, 533-561. MR 2006604 (2004i:35259), https://doi.org/10.4310/MAA.2002.v9.n4.a4
  • [62] Gaël Raoul, Nonlocal interaction equations: stationary states and stability analysis, Differential Integral Equations 25 (2012), no. 5-6, 417-440. MR 2951735
  • [63] M. C. Rechtsman, F. H. Stillinger, and S. Torquato, Optimized interactions for targeted self- assembly: application to a honeycomb lattice, Phys. Rev. Lett. 95 (2005), no. 22.
  • [64] Louis F. Rossi, Resurrecting core spreading vortex methods: a new scheme that is both deterministic and convergent, SIAM J. Sci. Comput. 17 (1996), no. 2, 370-397. MR 1374286 (97e:76065), https://doi.org/10.1137/S1064827593254397
  • [65] Hui Sun, David Uminsky, and Andrea L. Bertozzi, A generalized Birkhoff-Rott equation for two-dimensional active scalar problems, SIAM J. Appl. Math. 72 (2012), no. 1, 382-404. MR 2888349, https://doi.org/10.1137/110819883
  • [66] Hui Sun, David Uminsky, and Andrea L. Bertozzi, Stability and clustering of self-similar solutions of aggregation equations, J. Math. Phys. 53 (2012), no. 11, 115610, 18. MR 3026555, https://doi.org/10.1063/1.4745180
  • [67] Chad M. Topaz and Andrea L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math. 65 (2004), no. 1, 152-174. MR 2111591 (2005h:92031), https://doi.org/10.1137/S0036139903437424
  • [68] Chad M. Topaz, Andrea L. Bertozzi, and Mark A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Biol. 68 (2006), no. 7, 1601-1623. MR 2257718 (2007e:92077), https://doi.org/10.1007/s11538-006-9088-6
  • [69] S. van der Walt, S. C. Colbert, and G. Varoquaux, The NumPy array: A structure for efficient numerical computation, Computing in Science and Engineering 13 (2011), 23-30.
  • [70] D. J. Wales, Energy landscapes of clusters bound by short-ranged potentials, Chem. Eur. J. Chem. Phys. 11 (2010), 2491-2494.
  • [71] Weinan E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D 77 (1994), no. 4, 383-404. MR 1297726 (95g:82097), https://doi.org/10.1016/0167-2789(94)90298-4
  • [72] Yao Yao and Andrea L. Bertozzi, Blow-up dynamics for the aggregation equation with degenerate diffusion, Phys. D 260 (2013), 77-89. MR 3143995, https://doi.org/10.1016/j.physd.2013.01.009
  • [73] Lung-an Ying and Pingwen Zhang, Vortex methods, Mathematics and Its Applications, vol. 381, Kluwer Academic Publishers, Dordrecht; Science Press Beijing, Beijing, 1997. MR 1705273 (2000f:76093)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35Q35, 35Q82, 65M15, 82C22

Retrieve articles in all journals with MSC (2010): 35Q35, 35Q82, 65M15, 82C22


Additional Information

Katy Craig
Affiliation: Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, California 90095-1555
Email: kcraig@math.ucla.edu

Andrea L. Bertozzi
Affiliation: Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, California 90095-1555
Email: bertozzi@math.ucla.edu

DOI: https://doi.org/10.1090/mcom3033
Keywords: Aggregation equation, vortex blob method, particle method
Received by editor(s): May 29, 2014
Received by editor(s) in revised form: December 13, 2014, and January 7, 2015
Published electronically: December 4, 2015
Additional Notes: This work was supported by NSF grants CMMI-1435709, DMS-0907931, DMS-1401867, and EFRI-1024765, as well as NSF grant 0932078 000, which supported Craig’s visit and Bertozzi’s residence at the Mathematical Sciences Research Institute during Fall 2013.
Article copyright: © Copyright 2015 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

American Mathematical Society