Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Lattices with many Borcherds products
HTML articles powered by AMS MathViewer

by Jan Hendrik Bruinier, Stephan Ehlen and Eberhard Freitag PDF
Math. Comp. 85 (2016), 1953-1981 Request permission

Abstract:

We prove that there are only finitely many isometry classes of even lattices $L$ of signature $(2,n)$ for which the space of cusp forms of weight $1+n/2$ for the Weil representation of the discriminant group of $L$ is trivial. We compute the list of these lattices. They have the property that every Heegner divisor for the orthogonal group of $L$ can be realized as the divisor of a Borcherds product. We obtain similar classification results in greater generality for finite quadratic modules.
References
  • Irene A. Stegun (ed.), Pocketbook of mathematical functions, Verlag Harri Deutsch, Thun, 1984. Abridged edition of Handbook of mathematical functions edited by Milton Abramowitz and Irene A. Stegun; Material selected by Michael Danos and Johann Rafelski. MR 768931
  • Richard E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491–562. MR 1625724, DOI 10.1007/s002220050232
  • Richard E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math. J. 97 (1999), no. 2, 219–233. MR 1682249, DOI 10.1215/S0012-7094-99-09710-7
  • Richard E. Borcherds, Reflection groups of Lorentzian lattices, Duke Math. J. 104 (2000), no. 2, 319–366. MR 1773561, DOI 10.1215/S0012-7094-00-10424-3
  • Jan H. Bruinier, Borcherds products on O(2, $l$) and Chern classes of Heegner divisors, Lecture Notes in Mathematics, vol. 1780, Springer-Verlag, Berlin, 2002. MR 1903920, DOI 10.1007/b83278
  • Jan Hendrik Bruinier, On the rank of Picard groups of modular varieties attached to orthogonal groups, Compositio Math. 133 (2002), no. 1, 49–63. MR 1918289, DOI 10.1023/A:1016357029843
  • Jan Hendrik Bruinier and Michael Kuss, Eisenstein series attached to lattices and modular forms on orthogonal groups, Manuscripta Math. 106 (2001), no. 4, 443–459. MR 1875342, DOI 10.1007/s229-001-8027-1
  • M. Bunschuh, Über die Endlichkeit der Klassenzahl gerader Gitter der Signatur $(2,n)$ mit einfachem Kontrollraum, Dissertation universität Heidelberg (2002).
  • J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
  • A. G. Earnest and J. S. Hsia, Spinor norms of local integral rotations. II, Pacific J. Math. 61 (1975), no. 1, 71–86. MR 404142
  • S. Ehlen, Finite quadratic modules and simple lattices, Source code and resources (2014). http://www.github.com/sehlen/sfqm.
  • Jürgen Fischer, An approach to the Selberg trace formula via the Selberg zeta-function, Lecture Notes in Mathematics, vol. 1253, Springer-Verlag, Berlin, 1987. MR 892317, DOI 10.1007/BFb0077696
  • E. Freitag, Riemann surfaces, CreateSpace Independent Publishing Platform (2014).
  • Gerard van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 16, Springer-Verlag, Berlin, 1988. MR 930101, DOI 10.1007/978-3-642-61553-5
  • H. Hagemeier, Automorphe Produkte singulären Gewichts, Dissertation, Technische Universität Darmstadt (2010).
  • Yoshiyuki Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, vol. 106, Cambridge University Press, Cambridge, 1993. MR 1245266, DOI 10.1017/CBO9780511666155
  • Stephen S. Kudla and TongHai Yang, Eisenstein series for SL(2), Sci. China Math. 53 (2010), no. 9, 2275–2316. MR 2718827, DOI 10.1007/s11425-010-4097-1
  • V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
  • Alexandre Nobs, Die irreduziblen Darstellungen der Gruppen $SL_{2}(Z_{p})$, insbesondere $SL_{2}(Z_{2})$. I, Comment. Math. Helv. 51 (1976), no. 4, 465–489 (German). MR 444787, DOI 10.1007/BF02568170
  • Nils R. Scheithauer, On the classification of automorphic products and generalized Kac-Moody algebras, Invent. Math. 164 (2006), no. 3, 641–678. MR 2221135, DOI 10.1007/s00222-006-0500-5
  • N. Scheithauer, Some constructions of modular forms for the Weil representation of $\operatorname {SL}_2(\mathbb {Z})$, Nagoya Math. J. 220 (2015), 1-43, DOI: 10.1215/00277630-3335405.
  • Nils-Peter Skoruppa, Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 159, Universität Bonn, Mathematisches Institut, Bonn, 1985 (German). Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1984. MR 806354
  • Nils-Peter Skoruppa, Jacobi forms of critical weight and Weil representations, Modular forms on Schiermonnikoog, Cambridge Univ. Press, Cambridge, 2008, pp. 239–266. MR 2512363, DOI 10.1017/CBO9780511543371.013
  • N.-P. Skoruppa, Finite Quadratic Modules and Weil representations, in preparation.
  • W. A. Stein et al. Sage Mathematics Software (Version 6.2). The Sage Development Team, 2014. http://www.sagemath.org.
  • Fredrik Strömberg, Weil representations associated with finite quadratic modules, Math. Z. 275 (2013), no. 1-2, 509–527. MR 3101818, DOI 10.1007/s00209-013-1145-x
  • G. L. Watson, Integral quadratic forms, Cambridge Tracts in Mathematics and Mathematical Physics, No. 51, Cambridge University Press, New York, 1960. MR 0118704
  • D. B. Zagier, Zetafunktionen und quadratische Körper, Hochschultext [University Textbooks], Springer-Verlag, Berlin-New York, 1981 (German). Eine Einführung in die höhere Zahlentheorie. [An introduction to higher number theory]. MR 631688
Similar Articles
Additional Information
  • Jan Hendrik Bruinier
  • Affiliation: Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, D–64289 Darmstadt, Germany
  • MR Author ID: 641446
  • Email: bruinier@mathematik.tu-darmstadt.de
  • Stephan Ehlen
  • Affiliation: Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, D–64289 Darmstadt, Germany
  • MR Author ID: 918800
  • Email: ehlen@mathematik.tu-darmstadt.de
  • Eberhard Freitag
  • Affiliation: Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, D–69120 Heidelberg, Germany
  • MR Author ID: 69160
  • Email: freitag@mathi.uni-heidelberg.de
  • Received by editor(s): August 21, 2014
  • Received by editor(s) in revised form: February 6, 2015
  • Published electronically: November 9, 2015
  • Additional Notes: The first and the second authors were partially supported by DFG grant BR-2163/4-1.
  • © Copyright 2015 American Mathematical Society
  • Journal: Math. Comp. 85 (2016), 1953-1981
  • MSC (2010): Primary 11F12, 11E20, 11--04, 14C22
  • DOI: https://doi.org/10.1090/mcom/3059
  • MathSciNet review: 3471115