Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 


On Gauss sums and the evaluation of Stechkin's constant

Authors: William D. Banks and Igor E. Shparlinski
Journal: Math. Comp. 85 (2016), 2569-2581
MSC (2010): Primary 11-XX
Published electronically: November 20, 2015
MathSciNet review: 3511293
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the Gauss sums which are defined by

$\displaystyle S_n(a,q):=\sum _{x\bmod q}\mathbf {e}(ax^n/q), $

Stechkin (1975) conjectured that the quantity

$\displaystyle A:=\sup _{n,q\ge 2}~\max _{\gcd (a,q)=1}\frac {\bigl \vert S_n(a,q)\bigr \vert}{q^{1-1/n}} $

is finite. Shparlinski  (1991) proved that $ A$ is finite, but in the absence of effective bounds on the sums $ S_n(a,q)$ the precise determination of $ A$ has remained intractable for many years. Using recent work of Cochrane and Pinner (2011) on Gauss sums with prime moduli, in this paper we show that with the constant given by

$\displaystyle A=\bigl \vert S_6(\hat a,\hat q)\bigr \vert/\hat q^{1-1/6}=4.709236\ldots , $

where $ \hat a:=4787$ and $ \hat q:=4606056=2^3{\cdot }3^2{\cdot }7{\cdot }13{\cdot }19{\cdot }37$, one has the sharp inequality

$\displaystyle \bigl \vert S_n(a,q)\bigr \vert\le A\,q^{1-1/n} $

for all $ n,q\ge 2$ and all $ a\in \mathbb{Z}$ with $ \gcd (a,q)=1$. One interesting aspect of our method is that we apply effective lower bounds for the center density in the sphere packing problem due to Cohn and Elkies (2003) to derive new effective bounds on the sums $ S_n(a,q)$ in order to make the task computationally feasible.

References [Enhancements On Off] (What's this?)

  • [1] Todd Cochrane and Christopher Pinner, Explicit bounds on monomial and binomial exponential sums, Q. J. Math. 62 (2011), no. 2, 323-349. MR 2805207 (2012d:11171),
  • [2] Todd Cochrane and Zhiyong Zheng, Pure and mixed exponential sums, Acta Arith. 91 (1999), no. 3, 249-278. MR 1735676 (2000k:11093)
  • [3] Henry Cohn and Noam Elkies, New upper bounds on sphere packings. I, Ann. of Math. (2) 157 (2003), no. 2, 689-714. MR 1973059 (2004b:11096),
  • [4] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed., with additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. MR 1662447 (2000b:11077)
  • [5] D. R. Heath-Brown and S. Konyagin, New bounds for Gauss sums derived from $ k{\rm th}$ powers, and for Heilbronn's exponential sum, Q. J. Math. 51 (2000), no. 2, 221-235. MR 1765792 (2001h:11106),
  • [6] Edmund Hlawka, Zur Geometrie der Zahlen, Math. Z. 49 (1943), 285-312 (German). MR 0009782 (5,201c)
  • [7] Sergei V. Konyagin and Igor E. Shparlinski, Character Sums with Exponential Functions and Their Applications, Cambridge Tracts in Mathematics, vol. 136, Cambridge University Press, Cambridge, 1999. MR 1725241 (2000h:11089)
  • [8] Rudolf Lidl and Harald Niederreiter, Finite Fields, with a foreword by P. M. Cohn, Encyclopedia of Mathematics and its Applications, vol. 20, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. MR 746963 (86c:11106)
  • [9] J.-L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs de $ N$, Canad. Math. Bull. 26 (1983), no. 4, 485-492 (French, with English summary). MR 716590 (85e:11006),
  • [10] I. E. Shparlinskiĭ, Estimates for Gauss sums, Mat. Zametki 50 (1991), no. 1, 122-130 (Russian); English transl., Math. Notes 50 (1991), no. 1-2, 740-746 (1992). MR 1140360 (92m:11082),
  • [11] S. B. Stečkin, An estimate for Gaussian sums, Mat. Zametki 17 (1975), no. 4, 579-588 (Russian). MR 0396430 (53 #295)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11-XX

Retrieve articles in all journals with MSC (2010): 11-XX

Additional Information

William D. Banks
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211

Igor E. Shparlinski
Affiliation: Department of Pure Mathematics, University of New South Wales, Sydney, NSW 2052, Australia

Received by editor(s): August 13, 2014
Received by editor(s) in revised form: March 7, 2015
Published electronically: November 20, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society