Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Presentations of groups acting discontinuously on direct products of hyperbolic spaces


Authors: E. Jespers, A. Kiefer and Á. del Río
Journal: Math. Comp. 85 (2016), 2515-2552
MSC (2010): Primary 20G20, 22E40, 16S34, 16U60
DOI: https://doi.org/10.1090/mcom/3071
Published electronically: December 31, 2015
MathSciNet review: 3511291
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of describing the group of units $ \mathcal {U}(\mathbb{Z} G)$ of the integral group ring $ \mathbb{Z} G$ of a finite group $ G$ has attracted a lot of attention and providing presentations for such groups is a fundamental problem. Within the context of orders, a central problem is to describe a presentation of the unit group of an order $ \mathcal {O}$ in the simple epimorphic images $ A$ of the rational group algebra $ \mathbb{Q} G$. Making use of the presentation part of Poincaré's polyhedron theorem, Pita, del Río and Ruiz proposed such a method for a large family of finite groups $ G$ and consequently Jespers, Pita, del Río, Ruiz and Zalesskii described the structure of $ \mathcal {U}(\mathbb{Z} G)$ for a large family of finite groups $ G$. In order to handle many more groups, one would like to extend Poincaré's method to discontinuous subgroups of the group of isometries of a direct product of hyperbolic spaces. If the algebra $ A$ has degree 2 then via the Galois embeddings of the centre of the algebra $ A$ one considers the group of reduced norm one elements of the order $ \mathcal {O}$ as such a group and thus one would obtain a solution to the mentioned problem. This would provide presentations of the unit group of orders in the simple components of degree 2 of $ \mathbb{Q} G$ and in particular describe the unit group of $ \mathbb{Z} G$ for every group $ G$ with irreducible character degrees less than or equal to 2. The aim of this paper is to initiate this approach by executing this method on the Hilbert modular group, i.e., the projective linear group of degree two over the ring of integers in a real quadratic extension of the rationals. This group acts discontinuously on a direct product of two hyperbolic spaces of dimension two. The fundamental domain constructed is an analogue of the Ford domain of a Fuchsian or a Kleinian group.


References [Enhancements On Off] (What's this?)

  • [Ami61] S. A. Amitsur, Groups with representations of bounded degree. II, Illinois J. Math. 5 (1961), 198-205. MR 0122893 (23 #A225)
  • [BCR98] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509 (2000a:14067)
  • [Bea95] Alan F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR 1393195 (97d:22011)
  • [BS66] A. I. Borevich and I. R. Shafarevich, Number Theory, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR 0195803 (33 #4001)
  • [CJLdR04] Capi Corrales, Eric Jespers, Guilherme Leal, and Angel del Río, Presentations of the unit group of an order in a non-split quaternion algebra, Adv. Math. 186 (2004), no. 2, 498-524. MR 2073916 (2005d:16051), https://doi.org/10.1016/j.aim.2003.07.015
  • [CNBS] Oliver Braun, Renaud Coulangeon, Gabriele Nebe, and Sebastian Schönnenbeck, Computing in arithmetic groups with Voronoï's algorithm, J. Algebra 435 (2015), 263-285. MR 3343219, https://doi.org/10.1016/j.jalgebra.2015.01.022
  • [Coh65a] Harvey Cohn, A numerical survey of the floors of various Hilbert fundamental domains, Math. Comp. 19 (1965), 594-605. MR 0195818 (33 #4016)
  • [Coh65b] Harvey Cohn, On the shape of the fundamental domain of the Hilbert modular group, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 190-202.
  • [Deu10] Jesse Ira Deutsch, Conjectures on the fundamental domain of the Hilbert modular group, Comput. Math. Appl. 59 (2010), no. 2, 700-705. MR 2575559 (2011b:11062), https://doi.org/10.1016/j.camwa.2009.10.023
  • [EGM98] J. Elstrodt, F. Grunewald, and J. Mennicke, Groups Acting on Hyperbolic Space: Harmonic analysis and number theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1483315 (98g:11058)
  • [JdRVG14] Eric Jespers, Ángel del Río, and Inneke Van Gelder, Writing units of integral group rings of finite abelian groups as a product of Bass units, Math. Comp. 83 (2014), no. 285, 461-473. MR 3120600, https://doi.org/10.1090/S0025-5718-2013-02718-4
  • [JJK$^+$15] E. Jespers, S. O. Juriaans, A. Kiefer, A. de A. e Silva, and A. C. Souza Filho, From the Poincaré theorem to generators of the unit group of integral group rings of finite groups, Math. Comp. 84 (2015), no. 293, 1489-1520. MR 3315518, https://doi.org/10.1090/S0025-5718-2014-02865-2
  • [JKDR15] E. Jespers, A. Kiefer, and A. Del Río, Revisiting Poincaré's theorem on presentations of discontinuous groups via fundamental polyhedra, Expositiones Mathematicae (2015).
  • [JL93] Eric Jespers and Guilherme Leal, Generators of large subgroups of the unit group of integral group rings, Manuscripta Math. 78 (1993), no. 3, 303-315. MR 1206159 (94f:20010), https://doi.org/10.1007/BF02599315
  • [JOdRVG13] Eric Jespers, Gabriela Olteanu, Ángel del Río, and Inneke Van Gelder, Group rings of finite strongly monomial groups: central units and primitive idempotents, J. Algebra 387 (2013), 99-116. MR 3056688, https://doi.org/10.1016/j.jalgebra.2013.04.020
  • [JP93] E. Jespers and M. M. Parmenter, Units of group rings of groups of order $ 16$, Glasgow Math. J. 35 (1993), no. 3, 367-379. MR 1240380 (95e:20009), https://doi.org/10.1017/S0017089500009952
  • [JPdR$^+$07] Eric Jespers, Antonio Pita, Ángel del Río, Manuel Ruiz, and Pavel Zalesskii, Groups of units of integral group rings commensurable with direct products of free-by-free groups, Adv. Math. 212 (2007), no. 2, 692-722. MR 2329317 (2008e:16036), https://doi.org/10.1016/j.aim.2006.11.005
  • [Maa40] Hans Maass, Über Gruppen von hyperabelschen Transformationen, S.-B. Heidelberger Akad. Wiss. 1940 (1940), no. 2, 26 (German). MR 0003405 (2,213d)
  • [Mac64a] A. M. Macbeath, Groups of homeomorphisms of a simply connected space, Ann. of Math. (2) 79 (1964), 473-488. MR 0160848 (28 #4058)
  • [Mac64b] A. M. Macbeath, Groups of homeomorphisms of a simply connected space, Ann. of Math. (2) 79 (1964), 473-488. MR 0160848 (28 #4058)
  • [Mas88] Bernard Maskit, Kleinian Groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135 (90a:30132)
  • [OdR07] Gabriela Olteanu and Ángel del Río, Group algebras of Kleinian type and groups of units, J. Algebra 318 (2007), no. 2, 856-870. MR 2371975 (2008j:16078), https://doi.org/10.1016/j.jalgebra.2007.03.026
  • [PdR06] Antonio Pita and Ángel del Río, Presentation of the group of units of $ \mathbb{Z}D^-_{16}$, Groups, rings and group rings, Lect. Notes Pure Appl. Math., vol. 248, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 305-314. MR 2226206 (2007b:16071), https://doi.org/10.1201/9781420010961.ch30
  • [PdRR05] Antonio Pita, Ángel Del Río, and Manuel Ruiz, Groups of units of integral group rings of Kleinian type, Trans. Amer. Math. Soc. 357 (2005), no. 8, 3215-3237. MR 2135743 (2006a:16044), https://doi.org/10.1090/S0002-9947-04-03574-3
  • [Pet08] Kathleen L. Petersen, Counting cusps of subgroups of $ {\rm PSL}_2({\mathcal {O}}_K)$, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2387-2393. MR 2390505 (2008m:11091), https://doi.org/10.1090/S0002-9939-08-09262-9
  • [Rat94] John G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730 (95j:57011)
  • [RS89] Jürgen Ritter and Sudarshan K. Sehgal, Generators of subgroups of $ U(\mathbf {Z} G)$, Representation theory, group rings, and coding theory, Contemp. Math., vol. 93, Amer. Math. Soc., Providence, RI, 1989, pp. 331-347. MR 1003362 (90f:20006), https://doi.org/10.1090/conm/093/1003362
  • [RS91a] Jürgen Ritter and Sudarshan K. Sehgal, Construction of units in group rings of monomial and symmetric groups, J. Algebra 142 (1991), no. 2, 511-526. MR 1127078 (92i:20007), https://doi.org/10.1016/0021-8693(91)90322-Y
  • [RS91b] Jürgen Ritter and Sudarshan K. Sehgal, Construction of units in integral group rings of finite nilpotent groups, Trans. Amer. Math. Soc. 324 (1991), no. 2, 603-621. MR 987166 (91h:20008), https://doi.org/10.2307/2001734
  • [Seh93] S. K. Sehgal, Units in Integral Group Rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 69, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. With an appendix by Al Weiss. MR 1242557 (94m:16039)
  • [Sha94] Igor R. Shafarevich, Basic Algebraic Geometry. 1, Varieties in projective space, 2nd ed., Springer-Verlag, Berlin, 1994. Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833 (95m:14001)
  • [Swa71] Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1-77 (1971). MR 0284516 (44 #1741)
  • [Voi09] John Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres Bordeaux 21 (2009), no. 2, 469-491 (English, with English and French summaries). MR 2541438 (2011c:11064)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 20G20, 22E40, 16S34, 16U60

Retrieve articles in all journals with MSC (2010): 20G20, 22E40, 16S34, 16U60


Additional Information

E. Jespers
Affiliation: Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
Email: efjesper@vub.ac.be

A. Kiefer
Affiliation: Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
Email: akiefer@vub.ac.be

Á. del Río
Affiliation: Departamento de Matemáticas, Universidad de Murcia, 30100 Murcia, Spain
Email: adelrio@um.es

DOI: https://doi.org/10.1090/mcom/3071
Keywords: Hilbert modular group, discontinuous action on direct product of hyperbolic $2$-space, presentation, fundamental domain, group rings, unit group
Received by editor(s): January 7, 2015
Received by editor(s) in revised form: April 12, 2015
Published electronically: December 31, 2015
Additional Notes: The first author is supported in part by Onderzoeksraad of Vrije Universiteit Brussel and Fonds voor Wetenschappelijk Onderzoek (Flanders). The second author is supported by Fonds voor Wetenschappelijk Onderzoek (Flanders)-Belgium. The third author is partially supported by the Spanish Government under Grant MTM2012-35240 with “Fondos FEDER”.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society