Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Convergence of discontinuous Galerkin schemes for front propagation with obstacles


Authors: Olivier Bokanowski, Yingda Cheng and Chi-Wang Shu
Journal: Math. Comp. 85 (2016), 2131-2159
MSC (2010): Primary 65-XX; Secondary 65M60, 65M12
DOI: https://doi.org/10.1090/mcom/3072
Published electronically: December 29, 2015
MathSciNet review: 3511277
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study semi-Lagrangian discontinuous Galerkin (SLDG) and Runge-Kutta discontinuous Galerkin (RKDG) schemes for some front propagation problems in the presence of an obstacle term, modeled by a nonlinear Hamilton-Jacobi equation of the form $ \min (u_t + c u_x, u - g(x))=0$, in one space dimension. New convergence results and error bounds are obtained for Lipschitz regular data. These ``low regularity'' assumptions are the natural ones for the solutions of the studied equations. Numerical tests are given to illustrate the behavior of our schemes.


References [Enhancements On Off] (What's this?)

  • [1] R. Abgrall, Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes, Comm. Pure Appl. Math. 49 (1996), no. 12, 1339-1373. MR 1414589 (98d:65121), https://doi.org/10.1002/(SICI)1097-0312(199612)49:12$ \langle $1339::AID-CPA5$ \rangle $3.0.CO;2-B
  • [2] Yves Achdou and Olivier Pironneau, Computational Methods for Option Pricing, Frontiers in Applied Mathematics, vol. 30, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. MR 2159611 (2006h:91002)
  • [3] Olivier Bokanowski, Yingda Cheng, and Chi-Wang Shu, A discontinuous Galerkin solver for front propagation, SIAM J. Sci. Comput. 33 (2011), no. 2, 923-938. MR 2801195 (2012j:65314), https://doi.org/10.1137/090771909
  • [4] Olivier Bokanowski, Yingda Cheng, and Chi-Wang Shu, A discontinuous Galerkin scheme for front propagation with obstacles, Numer. Math. 126 (2014), no. 1, 1-31. MR 3149070, https://doi.org/10.1007/s00211-013-0555-3
  • [5] Olivier Bokanowski, Nicolas Forcadel, and Hasnaa Zidani, Reachability and minimal times for state constrained nonlinear problems without any controllability assumption, SIAM J. Control Optim. 48 (2010), no. 7, 4292-4316. MR 2665467 (2011f:49025), https://doi.org/10.1137/090762075
  • [6] Olivier Bokanowski, Jochen Garcke, Michael Griebel, and Irene Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations, J. Sci. Comput. 55 (2013), no. 3, 575-605. MR 3045704, https://doi.org/10.1007/s10915-012-9648-x
  • [7] O. Bokanowski and G. Simarmata,
    Semi-Lagrangian discontinuous Galerkin schemes for some first and second order partial differential equations.
    Preprint HAL-00743042, version 2.
  • [8] Yanlai Chen and Bernardo Cockburn, An adaptive high-order discontinuous Galerkin method with error control for the Hamilton-Jacobi equations. I. The one-dimensional steady state case, J. Comput. Phys. 226 (2007), no. 1, 1027-1058. MR 2356867 (2008k:65239), https://doi.org/10.1016/j.jcp.2007.05.003
  • [9] Yingda Cheng and Chi-Wang Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, J. Comput. Phys. 223 (2007), no. 1, 398-415. MR 2314396 (2008c:65251), https://doi.org/10.1016/j.jcp.2006.09.012
  • [10] Philippe G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174 (58 #25001)
  • [11] Bernardo Cockburn and Johnny Guzmán, Error estimates for the Runge-Kutta discontinuous Galerkin method for the transport equation with discontinuous initial data, SIAM J. Numer. Anal. 46 (2008), no. 3, 1364-1398. MR 2390998 (2009e:76101), https://doi.org/10.1137/060668936
  • [12] Bernardo Cockburn and Chi-Wang Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (2001), no. 3, 173-261. MR 1873283 (2002i:65099), https://doi.org/10.1023/A:1012873910884
  • [13] M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp. 43 (1984), no. 167, 1-19. MR 744921 (86j:65121), https://doi.org/10.2307/2007396
  • [14] Marizio Falcone and Roberto Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numer. Math. 67 (1994), no. 3, 315-344. MR 1269500 (95d:49045), https://doi.org/10.1007/s002110050031
  • [15] Maurizio Falcone and Roberto Ferretti, Convergence analysis for a class of high-order semi-Lagrangian advection schemes, SIAM J. Numer. Anal. 35 (1998), no. 3, 909-940 (electronic). MR 1619910 (99c:65164), https://doi.org/10.1137/S0036142994273513
  • [16] M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods, J. Comput. Phys. 175 (2002), no. 2, 559-575. MR 1880118 (2003f:65151), https://doi.org/10.1006/jcph.2001.6954
  • [17] Maurizio Falcone and Roberto Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014. MR 3341715
  • [18] Michael Hintermüller and Moulay Hicham Tber, An inverse problem in American options as a mathematical program with equilibrium constraints: $ C$-stationarity and an active-set-Newton solver, SIAM J. Control Optim. 48 (2010), no. 7, 4419-4452. MR 2665473 (2011g:91201), https://doi.org/10.1137/080737277
  • [19] Changqing Hu and Chi-Wang Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 21 (1999), no. 2, 666-690 (electronic). MR 1718679 (2000g:65095), https://doi.org/10.1137/S1064827598337282
  • [20] Espen Robstad Jakobsen, On the rate of convergence of approximation schemes for Bellman equations associated with optimal stopping time problems, Math. Models Methods Appl. Sci. 13 (2003), no. 5, 613-644. MR 1978929 (2004g:49054), https://doi.org/10.1142/S0218202503002660
  • [21] Guang-Shan Jiang and Danping Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 21 (2000), no. 6, 2126-2143 (electronic). MR 1762034 (2001e:65124), https://doi.org/10.1137/S106482759732455X
  • [22] Alexander Kurganov and Eitan Tadmor, New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations, J. Comput. Phys. 160 (2000), no. 2, 720-742. MR 1763829 (2001c:65102), https://doi.org/10.1006/jcph.2000.6485
  • [23] Fengyan Li and Chi-Wang Shu, Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations, Appl. Math. Lett. 18 (2005), no. 11, 1204-1209. MR 2170874 (2006g:65154), https://doi.org/10.1016/j.aml.2004.10.009
  • [24] Fengyan Li and Sergey Yakovlev, A central discontinuous Galerkin method for Hamilton-Jacobi equations, J. Sci. Comput. 45 (2010), no. 1-3, 404-428. MR 2679806 (2011i:65163), https://doi.org/10.1007/s10915-009-9340-y
  • [25] Stanley Osher and Chi-Wang Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal. 28 (1991), no. 4, 907-922. MR 1111446 (92e:65118), https://doi.org/10.1137/0728049
  • [26] Jing-Mei Qiu and Chi-Wang Shu, Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov-Poisson system, J. Comput. Phys. 230 (2011), no. 23, 8386-8409. MR 2843721 (2012j:65340), https://doi.org/10.1016/j.jcp.2011.07.018
  • [27] M. Restelli, L. Bonaventura, and R. Sacco, A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows, J. Comput. Phys. 216 (2006), no. 1, 195-215. MR 2223441 (2007b:76080), https://doi.org/10.1016/j.jcp.2005.11.030
  • [28] James A. Rossmanith and David C. Seal, A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations, J. Comput. Phys. 230 (2011), no. 16, 6203-6232. MR 2806222 (2012c:65163), https://doi.org/10.1016/j.jcp.2011.04.018
  • [29] Jue Yan and Stanley Osher, A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations, J. Comput. Phys. 230 (2011), no. 1, 232-244. MR 2734289 (2012a:65269), https://doi.org/10.1016/j.jcp.2010.09.022
  • [30] Qiang Zhang and Chi-Wang Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal. 48 (2010), no. 3, 1038-1063. MR 2669400 (2011g:65205), https://doi.org/10.1137/090771363
  • [31] Qiang Zhang and Chi-Wang Shu, Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data, Numer. Math. 126 (2014), no. 4, 703-740. MR 3175182, https://doi.org/10.1007/s00211-013-0573-1

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65-XX, 65M60, 65M12

Retrieve articles in all journals with MSC (2010): 65-XX, 65M60, 65M12


Additional Information

Olivier Bokanowski
Affiliation: Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS, F-75205 Paris, France
Email: boka@math.jussieu.fr

Yingda Cheng
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: ycheng@math.msu.edu

Chi-Wang Shu
Affiliation: Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912
Email: shu@dam.brown.edu

DOI: https://doi.org/10.1090/mcom/3072
Keywords: Hamilton-Jacobi-Bellman equations, discontinuous Galerkin methods, level sets, front propagation, obstacle problems, dynamic programming principle, convergence
Received by editor(s): June 13, 2013
Received by editor(s) in revised form: July 4, 2014, and February 21, 2015
Published electronically: December 29, 2015
Additional Notes: The research of the first author was supported by the EU under the 7th Framework Programme Marie Curie Initial Training Network “FP7-PEOPLE-2010-ITN”, SADCO project, GA number 264735-SADCO.
The research of the second author was supported by NSF grant DMS-1217563 and the start-up grant from Michigan State University.
The research of the third author was supported by ARO grant W911NF-11-1-0091 and NSF grants DMS-1112700 and DMS-1418750.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society