Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

More on stochastic and variational approach to the Lax-Friedrichs scheme


Author: Kohei Soga
Journal: Math. Comp. 85 (2016), 2161-2193
MSC (2010): Primary 65M06, 35L65, 49L25, 60G50, 37J50
DOI: https://doi.org/10.1090/mcom/3061
Published electronically: February 10, 2016
MathSciNet review: 3511278
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A stochastic and variational aspect of the Lax-Friedrichs scheme applied to hyperbolic scalar conservation laws and Hamilton-Jacobi equations generated by space-time dependent flux functions of the Tonelli type was clarified by Soga (2015). The results for the Lax-Friedrichs scheme are extended here to show its time-global stability, the large-time behavior, and error estimates. Also provided is a weak KAM-like theorem for discrete equations that is useful in the numerical analysis and simulation of the weak KAM theory. As one application, a finite difference approximation to effective Hamiltonians and KAM tori is rigorously treated. The proofs essentially rely on the calculus of variations in the Lax-Friedrichs scheme and on the theory of viscosity solutions of Hamilton-Jacobi equations.


References [Enhancements On Off] (What's this?)

  • [1] Patrick Bernard, The asymptotic behaviour of solutions of the forced Burgers equation on the circle, Nonlinearity 18 (2005), no. 1, 101-124. MR 2109469 (2005j:35191), https://doi.org/10.1088/0951-7715/18/1/006
  • [2] Ugo Bessi, Aubry-Mather theory and Hamilton-Jacobi equations, Comm. Math. Phys. 235 (2003), no. 3, 495-511. MR 1974512 (2004e:37096), https://doi.org/10.1007/s00220-002-0781-5
  • [3] Jean Bourgain, François Golse, and Bernt Wennberg, On the distribution of free path lengths for the periodic Lorentz gas, Comm. Math. Phys. 190 (1998), no. 3, 491-508. MR 1600299 (98k:82146), https://doi.org/10.1007/s002200050249
  • [4] Renato Calleja and Rafael de la Llave, A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification, Nonlinearity 23 (2010), no. 9, 2029-2058. MR 2672635 (2011i:37081), https://doi.org/10.1088/0951-7715/23/9/001
  • [5] Piermarco Cannarsa and Carlo Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2041617 (2005e:49001)
  • [6] Michael G. Crandall and Andrew Majda, Monotone difference approximations for scalar conservation laws, Math. Comp. 34 (1980), no. 149, 1-21. MR 551288 (81b:65079), https://doi.org/10.2307/2006218
  • [7] H. S. Dumas, Ergodization rates for linear flow on the torus, J. Dynam. Differential Equations 3 (1991), no. 4, 593-610. MR 1129562 (92g:58109), https://doi.org/10.1007/BF01049101
  • [8] Weinan E, Aubry-Mather theory and periodic solutions of the forced Burgers equation, Comm. Pure Appl. Math. 52 (1999), no. 7, 811-828. MR 1682812 (2000b:37068), https://doi.org/10.1002/(SICI)1097-0312(199907)52:7$ \langle $811::AID-CPA2$ \rangle $3.0.CO;2-D
  • [9] Albert Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 9, 1043-1046. MR 1451248 (98g:58151), https://doi.org/10.1016/S0764-4442(97)87883-4
  • [10] A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Cambridge Univ. Press (2011).
  • [11] Wendell H. Fleming, The Cauchy problem for a nonlinear first order partial differential equation, J. Differential Equations 5 (1969), 515-530. MR 0235269 (38 #3579)
  • [12] Renato Iturriaga, Minimizing measures for time-dependent Lagrangians, Proc. London Math. Soc. (3) 73 (1996), no. 1, 216-240. MR 1387088 (97d:58077), https://doi.org/10.1112/plms/s3-73.1.216
  • [13] H. R. Jauslin, H. O. Kreiss, and J. Moser, On the forced Burgers equation with periodic boundary conditions, Differential equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math., vol. 65, Amer. Math. Soc., Providence, RI, 1999, pp. 133-153. MR 1662751 (99m:35208), https://doi.org/10.1090/pspum/065/1662751
  • [14] N. N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comp. Math. and Math. Phys. 16 (1976), 105-119.
  • [15] John N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991), no. 2, 169-207. MR 1109661 (92m:58048), https://doi.org/10.1007/BF02571383
  • [16] Jürgen Moser, Recent developments in the theory of Hamiltonian systems, SIAM Rev. 28 (1986), no. 4, 459-485. MR 867679 (88a:58077), https://doi.org/10.1137/1028153
  • [17] Takaaki Nishida and Kohei Soga, Difference approximation to Aubry-Mather sets of the forced Burgers equation, Nonlinearity 25 (2012), no. 9, 2401-2422. MR 2967111, https://doi.org/10.1088/0951-7715/25/9/2401
  • [18] O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. (2) 26 (1963), 95-172. MR 0151737 (27 #1721)
  • [19] Florin Şabac, The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws, SIAM J. Numer. Anal. 34 (1997), no. 6, 2306-2318. MR 1480382 (98j:65064), https://doi.org/10.1137/S003614299529347X
  • [20] M. B. Sevryuk, KAM-stable Hamiltonians, J. Dynam. Control Systems 1 (1995), no. 3, 351-366. MR 1354540 (96m:58222), https://doi.org/10.1007/BF02269374
  • [21] Kohei Soga, Space-time continuous limit of random walks with hyperbolic scaling, Nonlinear Anal. 102 (2014), 264-271. MR 3182814, https://doi.org/10.1016/j.na.2014.02.012
  • [22] Kohei Soga, Stochastic and variational approach to the Lax-Friedrichs scheme, Math. Comp. 84 (2015), no. 292, 629-651. MR 3290958, https://doi.org/10.1090/S0025-5718-2014-02863-9
  • [23] K. Soga, Selection problems of $ \mathbb{Z}^2$-periodic entropy solutions and viscosity solutions, preprint ( arXiv:1501.03594).
  • [24] Eitan Tadmor, The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs scheme, Math. Comp. 43 (1984), no. 168, 353-368. MR 758188 (86g:65162), https://doi.org/10.2307/2008281

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M06, 35L65, 49L25, 60G50, 37J50

Retrieve articles in all journals with MSC (2010): 65M06, 35L65, 49L25, 60G50, 37J50


Additional Information

Kohei Soga
Affiliation: Unité de mathématiques pures et appliquées, CNRS UMR 5669 & École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France
Address at time of publication: Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
Email: soga@math.keio.ac.jp

DOI: https://doi.org/10.1090/mcom/3061
Keywords: Lax-Friedrichs scheme, scalar conservation law, Hamilton-Jacobi equation, calculus of variations, random walk, weak KAM theory
Received by editor(s): September 17, 2013
Received by editor(s) in revised form: April 21, 2014, and October 7, 2014
Published electronically: February 10, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society