Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Choice of measure source terms in interface coupling for a model problem in gas dynamics


Authors: Frédéric Coquel, Edwige Godlewski, Khalil Haddaoui, Claude Marmignon and Florent Renac
Journal: Math. Comp. 85 (2016), 2305-2339
MSC (2010): Primary 35L04, 76M12, 76N15
DOI: https://doi.org/10.1090/mcom/3063
Published electronically: February 1, 2016
MathSciNet review: 3511283
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is devoted to the mathematical and numerical analysis of a coupling procedure for one-dimensional Euler systems. The two systems have different closure laws and are coupled through a thin fixed interface. Following the work of Ambroso, Chalons, Coquel and Galié (2004), we propose to couple these systems by a bounded vector-valued Dirac measure, concentrated at the coupling interface, which in the applications may have a physical meaning. We show that the proposed framework allows the control of the coupling conditions and we propose an approximate Riemann solver based on a relaxation approach preserving equilibrium solutions of the coupled problem. Numerical experiments in constrained optimization problems are then presented to assess the performances of the present method.


References [Enhancements On Off] (What's this?)

  • [1] Rémi Abgrall and Smadar Karni, Computations of compressible multifluids, J. Comput. Phys. 169 (2001), no. 2, 594-623. MR 1836526 (2002b:76077), https://doi.org/10.1006/jcph.2000.6685
  • [2] Debora Amadori, Laurent Gosse, and Graziano Guerra, Godunov-type approximation for a general resonant balance law with large data, J. Differential Equations 198 (2004), no. 2, 233-274. MR 2038581 (2004m:65114), https://doi.org/10.1016/j.jde.2003.10.004
  • [3] Luigi Ambrosio, Alberto Bressan, Dirk Helbing, Axel Klar, and Enrique Zuazua, Modelling and optimisation of flows on networks, Lecture Notes in Mathematics, vol. 2062, Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2013. MR 3075424
  • [4] A. Ambroso, C. Chalons, F. Coquel, T. Galié, Interface model coupling via prescribed local flux balance, 18th AIAA Computational Fluid Dynamics Conference, AIAA paper 2007-3822, 2007.
  • [5] Annalisa Ambroso, Christophe Chalons, Frédéric Coquel, and Thomas Galié, Interface model coupling via prescribed local flux balance, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 3, 895-918. MR 3264339, https://doi.org/10.1051/m2an/2013125
  • [6] A. Ambroso, C. Chalons, F. Coquel, T. Galié, E. Godlewski, F. Lagoutière, P-A. Raviart, N. Seguin, Numerical coupling of two-phase flows, Recent progress in scientific computing (SCPDE, Hong Kong), 168-178, 2005.
  • [7] Annalisa Ambroso, Christophe Chalons, Frédéric Coquel, Edwige Godlewski, Frédéric Lagoutière, Pierre-Arnaud Raviart, and Nicolas Seguin, The coupling of homogeneous models for two-phase flows, Int. J. Finite Vol. 4 (2007), no. 1, 39. MR 2465468 (2009m:76058)
  • [8] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart, and N. Seguin, Coupling of general Lagrangian systems, Math. Comp. 77 (2008), no. 262, 909-941. MR 2373185 (2008k:35308), https://doi.org/10.1090/S0025-5718-07-02064-9
  • [9] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart, and N. Seguin, Relaxation methods and coupling procedures, Internat. J. Numer. Methods Fluids 56 (2008), no. 8, 1123-1129. MR 2393506, https://doi.org/10.1002/fld.1680
  • [10] A. Ambroso, C. Chalons, F. Coquel, E. Godlewski, F. Lagoutière, P-A. Raviart, N. Seguin, J-M. Hérard, Coupling of multiphase flow models, Proceedings of the Eleventh International Meeting on Nuclear Thermal-Hydraulics (NURETH), 2005.
  • [11] Boris Andreianov, Kenneth Hvistendahl Karlsen, and Nils Henrik Risebro, A theory of $ L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal. 201 (2011), no. 1, 27-86. MR 2807133, https://doi.org/10.1007/s00205-010-0389-4
  • [12] Boris Andreianov, Frédéric Lagoutière, Nicolas Seguin, and Takéo Takahashi, Small solids in an inviscid fluid, Netw. Heterog. Media 5 (2010), no. 3, 385-404. MR 2670647 (2011k:76012), https://doi.org/10.3934/nhm.2010.5.385
  • [13] Boris Andreianov and Nicolas Seguin, Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes, Discrete Contin. Dyn. Syst. 32 (2012), no. 6, 1939-1964. MR 2885792, https://doi.org/10.3934/dcds.2012.32.1939
  • [14] M. Arienti, P. Hung, E. Morano, J. E. Shepherd, A level set approach to Eulerian-Lagrangian coupling, J. Comput. Phys., 185, 213-251, 2003.
  • [15] F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys. 95 (1999), no. 1-2, 113-170. MR 1705583 (2000f:82084), https://doi.org/10.1023/A:1004525427365
  • [16] François Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004. MR 2128209 (2005m:65002)
  • [17] François Bouchut, A reduced stability condition for nonlinear relaxation to conservation laws, J. Hyperbolic Differ. Equ. 1 (2004), no. 1, 149-170. MR 2052474 (2005k:35258), https://doi.org/10.1142/S0219891604000020
  • [18] B. Boutin, Étude mathématique et numérique d'équations hyperboliques non-linéaires: couplage de modèles et chocs non classiques, PhD thesis, Université Pierre et Marie Curie-Paris VI, France, 2009.
  • [19] Carlos Castro, Francisco Palacios, and Enrique Zuazua, An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks, Math. Models Methods Appl. Sci. 18 (2008), no. 3, 369-416. MR 2397976 (2009c:35392), https://doi.org/10.1142/S0218202508002723
  • [20] C. Chalons and F. Coquel, Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes, Numer. Math. 101 (2005), no. 3, 451-478. MR 2194824 (2006m:76119), https://doi.org/10.1007/s00211-005-0612-7
  • [21] Christophe Chalons, Frédéric Coquel, Edwige Godlewski, Pierre-Arnaud Raviart, and Nicolas Seguin, Godunov-type schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction, Math. Models Methods Appl. Sci. 20 (2010), no. 11, 2109-2166. MR 2740716 (2011m:65179), https://doi.org/10.1142/S021820251000488X
  • [22] Christophe Chalons and Jean-François Coulombel, Relaxation approximation of the Euler equations, J. Math. Anal. Appl. 348 (2008), no. 2, 872-893. MR 2446042 (2010b:35349), https://doi.org/10.1016/j.jmaa.2008.07.034
  • [23] Christophe Chalons, Pierre-Arnaud Raviart, and Nicolas Seguin, The interface coupling of the gas dynamics equations, Quart. Appl. Math. 66 (2008), no. 4, 659-705. MR 2465140 (2009k:76113), https://doi.org/10.1090/S0033-569X-08-01087-X
  • [24] Gui Qiang Chen, C. David Levermore, and Tai-Ping Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), no. 6, 787-830. MR 1280989 (95h:35133), https://doi.org/10.1002/cpa.3160470602
  • [25] F. Coquel, E. Godlewski, B. Perthame, A. In, and P. Rascle, Some new Godunov and relaxation methods for two-phase flow problems, Godunov methods (Oxford, 1999) Kluwer/Plenum, New York, 2001, pp. 179-188. MR 1963591 (2004a:76093)
  • [26] Frédéric Coquel, Edwige Godlewski, and Nicolas Seguin, Relaxation of fluid systems, Math. Models Methods Appl. Sci. 22 (2012), no. 8, 1250014, 52. MR 2928102, https://doi.org/10.1142/S0218202512500145
  • [27] Frédéric Coquel and Benoît Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J. Numer. Anal. 35 (1998), no. 6, 2223-2249 (electronic). MR 1655844 (2000a:76129), https://doi.org/10.1137/S0036142997318528
  • [28] Stefan Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation, SIAM J. Appl. Math. 56 (1996), no. 2, 388-419. MR 1381652 (97a:35145), https://doi.org/10.1137/S0036139994242425
  • [29] François Dubois and Philippe LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations 71 (1988), no. 1, 93-122. MR 922200 (89c:35099), https://doi.org/10.1016/0022-0396(88)90040-X
  • [30] E. Duret, Y. Peysson, Q. H. Tran, P. Rouchon, Active bypass to eliminate severe-slugging in multiphase production, Proceedings of the 4th North American Conference on Multiphase Technology, Ban, June 2004, J. Brill, ed., Cranfield, 2004, BHR Group Limited, 205-223.
  • [31] M-P. Errera, S. Chemin, A fluid-solid thermal coupling applied to an effusion cooling system, 34th AIAA Computational Fluid Dynamics Conference, AIAA paper 2004-2140, 2004.
  • [32] M. Gad-el-Hak, Flow Control, Appl. Mech. Rev., 42, 261-293, 1989.
  • [33] M. Gad-el-Hak, D.M. Bushnell, Separation Control: Review, J. Fluids Eng., 113, 5-30, 1991.
  • [34] T. Galié, Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques, PhD thesis, Université Pierre et Marie Curie-Paris VI, France, 2009.
  • [35] Sergey Gavrilyuk and Richard Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia, J. Comput. Phys. 175 (2002), no. 1, 326-360. MR 1877822 (2002i:76110), https://doi.org/10.1006/jcph.2001.6951
  • [36] James Glimm, The interaction of nonlinear hyperbolic waves, Comm. Pure Appl. Math. 41 (1988), no. 5, 569-590. MR 948072 (89h:35198b), https://doi.org/10.1002/cpa.3160410505
  • [37] J. Glimm and D. H. Sharp, An $ S$ matrix theory for classical nonlinear physics, Found. Phys. 16 (1986), no. 2, 125-141. MR 836850 (88c:35141), https://doi.org/10.1007/BF01889377
  • [38] Paola Goatin and Philippe G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 6, 881-902. MR 2097035 (2006i:35225), https://doi.org/10.1016/j.anihpc.2004.02.002
  • [39] Edwige Godlewski, Coupling fluid models. Exploring some features of interfacial coupling, Finite volumes for complex applications V, ISTE, London, 2008, pp. 87-102. MR 2441448 (2009m:76063)
  • [40] Edwige Godlewski, Kim-Claire Le Thanh, and Pierre-Arnaud Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. II. The case of systems, M2AN Math. Model. Numer. Anal. 39 (2005), no. 4, 649-692. MR 2165674 (2006h:65133), https://doi.org/10.1051/m2an:2005029
  • [41] Edwige Godlewski and Pierre-Arnaud Raviart, Hyperbolic systems of conservation laws, Mathématiques & Applications (Paris) [Mathematics and Applications], vol. 3/4, Ellipses, Paris, 1991. MR 1304494 (95i:65146)
  • [42] Edwige Godlewski and Pierre-Arnaud Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. MR 1410987 (98d:65109)
  • [43] E. Godlewski and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case, Numer. Math. 97 (2004), no. 1, 81-130. MR 2045460 (2005e:65130), https://doi.org/10.1007/s00211-002-0438-5
  • [44] Laurent Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Math. Models Methods Appl. Sci. 11 (2001), no. 2, 339-365. MR 1820677 (2002g:65097), https://doi.org/10.1142/S021820250100088X
  • [45] Laurent Gosse, Localization effects and measure source terms in numerical schemes for balance laws, Math. Comp. 71 (2002), no. 238, 553-582. MR 1885615 (2003e:65147), https://doi.org/10.1090/S0025-5718-01-01354-0
  • [46] Laurent Gosse, Time-splitting schemes and measure source terms for a quasilinear relaxing system, Math. Models Methods Appl. Sci. 13 (2003), no. 8, 1081-1101. MR 1998816 (2005b:35175), https://doi.org/10.1142/S0218202503002829
  • [47] Laurent Gosse, Computing Qualitatively Correct Approximations of Balance Laws, SIMAI Springer Series, vol. 2, Springer, Milan, 2013. Exponential-fit, well-balanced and asymptotic-preserving. MR 3053000
  • [48] J. M. Greenberg and A. Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 1-16. MR 1377240 (97c:65144), https://doi.org/10.1137/0733001
  • [49] Graziano Guerra, Well-posedness for a scalar conservation law with singular nonconservative source, J. Differential Equations 206 (2004), no. 2, 438-469. MR 2095821 (2005i:35173), https://doi.org/10.1016/j.jde.2004.04.008
  • [50] Jean-Marc Hérard, A rough scheme to couple free and porous media, Int. J. Finite Vol. 3 (2006), no. 2, 28. MR 2465466 (2009m:76098)
  • [51] J-M. Hérard, O. Hurisse, Coupling two and one-dimensional unsteady Euler equations through a thin interface, Computers & Fluids, 36, 651-666, 2007.
  • [52] Jean-Marc Hérard and Olivier Hurisse, The numerical coupling of a two-fluid model with an homogeneous relaxation model, Finite volumes for complex applications V, ISTE, London, 2008, pp. 503-510. MR 2451446
  • [53] Shi Jin and Zhou Ping Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math. 48 (1995), no. 3, 235-276. MR 1322811 (96c:65134), https://doi.org/10.1002/cpa.3160480303
  • [54] Young-Sam Kwon and Alexis Vasseur, Strong traces for solutions to scalar conservation laws with general flux, Arch. Ration. Mech. Anal. 185 (2007), no. 3, 495-513. MR 2322819 (2008h:35234), https://doi.org/10.1007/s00205-007-0055-7
  • [55] Tai-Ping Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108 (1987), no. 1, 153-175. MR 872145 (88f:35092)
  • [56] Hélène Mathis, Clément Cancès, Edwige Godlewski, and Nicolas Seguin, Dynamic model adaptation for multiscale simulation of hyperbolic systems with relaxation, J. Sci. Comput. 63 (2015), no. 3, 820-861. MR 3342726, https://doi.org/10.1007/s10915-014-9915-0
  • [57] A.M. Mitchell, J. Delery, Research into Vortex Breakdown Control, Progress in Aerospace Sciences, 37, 385-418, 2001.
  • [58] A. Murrone, P. Villedieu, Numerical modeling of dispersed two-phase flows, Aerospace Lab, 2, 1-13, 2011.
  • [59] K. Saleh, Analyse et simulation numérique par relaxation d'écoulements diphasiques compressibles. Contribution au traitement des phases évanescentes, PhD thesis, Université Pierre et Marie Curie-Paris 6, France, 2012.
  • [60] I. Suliciu, On the thermodynamics of rate-type fluids and phase transitions. I. Rate-type fluids, Internat. J. Engrg. Sci. 36 (1998), no. 9, 921-947. MR 1636396 (99f:76009), https://doi.org/10.1016/S0020-7225(98)00005-6
  • [61] Alexis Vasseur, Well-posedness of scalar conservation laws with singular sources, Methods Appl. Anal. 9 (2002), no. 2, 291-312. MR 1957491 (2003k:35161)
  • [62] S. Tiwari and A. Klar, An adaptive domain decomposition procedure for Boltzmann and Euler equations, J. Comput. Appl. Math. 90 (1998), no. 2, 223-237. MR 1624342 (99c:76088), https://doi.org/10.1016/S0377-0427(98)00027-2

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35L04, 76M12, 76N15

Retrieve articles in all journals with MSC (2010): 35L04, 76M12, 76N15


Additional Information

Frédéric Coquel
Affiliation: CNRS and CMAP, Ecole polytechnique, 91128 Palaiseau Cedex, France
Email: frederic.coquel@cmap.polytechnique.fr

Edwige Godlewski
Affiliation: Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France — and —CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France, INRIA-Paris, EPC Ange, F-75012, Paris, France
Email: edwige.godlewski@upmc.fr

Khalil Haddaoui
Affiliation: ONERA The French Aerospace Lab, 92320 Châtillon Cedex, France — and — UPMC Université Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
Email: khalil.haddaoui.edu@gmail.com

Claude Marmignon
Affiliation: ONERA The French Aerospace Lab, 92320 Châtillon Cedex, France
Email: claude.marmignon@onera.fr

Florent Renac
Affiliation: ONERA The French Aerospace Lab, 92320 Châtillon Cedex, France
Email: florent.renac@onera.fr

DOI: https://doi.org/10.1090/mcom/3063
Keywords: Model coupling, hyperbolic systems of conservation laws, measure source term, Riemann solver, relaxation, constrained optimization
Received by editor(s): April 25, 2014
Received by editor(s) in revised form: November 21, 2014, and January 23, 2015
Published electronically: February 1, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society