Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Discontinuous Galerkin method in time combined with a stabilized finite element method in space for linear first-order PDEs


Authors: Alexandre Ern and Friedhelm Schieweck
Journal: Math. Comp. 85 (2016), 2099-2129
MSC (2010): Primary 65M12, 65M60; Secondary 65J10
DOI: https://doi.org/10.1090/mcom/3073
Published electronically: January 11, 2016
MathSciNet review: 3511276
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze the discontinuous Galerkin method in time combined with a finite element method with symmetric stabilization in space to approximate evolution problems with a linear, first-order differential operator. A unified analysis is presented for space discretization, including the discontinuous Galerkin method and $ H^1$-conforming finite elements with interior penalty on gradient jumps. Our main results are error estimates in various norms for smooth solutions. Two key ingredients are the post-processing of the fully discrete solution by lifting its jumps in time and a new time-interpolate of the exact solution. We first analyze the $ L^\infty (L^2)$ (at discrete time nodes) and $ L^2(L^2)$ errors and derive a superconvergent bound of order $ (\tau ^{k+2}+h^{r+1/2})$ for static meshes for $ k\ge 1$. Here, $ \tau $ is the time step, $ k$ the polynomial order in time, $ h$ the size of the space mesh, and $ r$ the polynomial order in space. For the case of dynamically changing meshes, we derive a novel bound on the resulting projection error. Finally, we prove new optimal bounds on static meshes for the error in the time-derivative and in the discrete graph norm.


References [Enhancements On Off] (What's this?)

  • [1] N. Ahmed, G. Matthies, L. Tobiska, and H. Xie, Discontinuous Galerkin time stepping with local projection stabilization for transient convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 21-22, 1747-1756. MR 2787534 (2012h:65203), https://doi.org/10.1016/j.cma.2011.02.003
  • [2] Randolph E. Bank and Harry Yserentant, On the $ H^1$-stability of the $ L_2$-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361-381. MR 3150226, https://doi.org/10.1007/s00211-013-0562-4
  • [3] M. Braack, E. Burman, V. John, and G. Lube, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 4-6, 853-866. MR 2278180 (2007i:76065), https://doi.org/10.1016/j.cma.2006.07.011
  • [4] Andreas Brenner, Eberhard Bänsch, and Markus Bause, A priori error analysis for finite element approximations of the Stokes problem on dynamic meshes, IMA J. Numer. Anal. 34 (2014), no. 1, 123-146. MR 3168281, https://doi.org/10.1093/imanum/drt001
  • [5] F. Brezzi, L. D. Marini, and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci. 14 (2004), no. 12, 1893-1903. MR 2108234 (2005m:65259), https://doi.org/10.1142/S0218202504003866
  • [6] Erik Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. Numer. Anal. 43 (2005), no. 5, 2012-2033 (electronic). MR 2192329 (2006j:65340), https://doi.org/10.1137/S0036142903437374
  • [7] Erik Burman and Alexandre Ern, A continuous finite element method with face penalty to approximate Friedrichs' systems, M2AN Math. Model. Numer. Anal. 41 (2007), no. 1, 55-76. MR 2323690 (2008e:65341), https://doi.org/10.1051/m2an:2007007
  • [8] Erik Burman, Alexandre Ern, and Miguel A. Fernández, Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems, SIAM J. Numer. Anal. 48 (2010), no. 6, 2019-2042. MR 2740540 (2012a:65231), https://doi.org/10.1137/090757940
  • [9] Erik Burman and Peter Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 15-16, 1437-1453. MR 2068903 (2005d:65186), https://doi.org/10.1016/j.cma.2003.12.032
  • [10] Jan Česenek and Miloslav Feistauer, Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion, SIAM J. Numer. Anal. 50 (2012), no. 3, 1181-1206. MR 2970739, https://doi.org/10.1137/110828903
  • [11] Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp. 54 (1990), no. 190, 545-581. MR 1010597 (90k:65162), https://doi.org/10.2307/2008501
  • [12] Bernardo Cockburn, San Yih Lin, and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput. Phys. 84 (1989), no. 1, 90-113. MR 1015355 (90k:65161), https://doi.org/10.1016/0021-9991(89)90183-6
  • [13] Bernardo Cockburn and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp. 52 (1989), no. 186, 411-435. MR 983311 (90k:65160), https://doi.org/10.2307/2008474
  • [14] Ramon Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. Methods Appl. Mech. Engrg. 190 (2000), no. 13-14, 1579-1599. MR 1807473 (2002j:76081), https://doi.org/10.1016/S0045-7825(00)00254-1
  • [15] Ramon Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 39-40, 4295-4321. MR 1925888 (2003h:76086), https://doi.org/10.1016/S0045-7825(02)00337-7
  • [16] Daniele Antonio Di Pietro and Alexandre Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69, Springer, Heidelberg, 2012. MR 2882148
  • [17] Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in $ L_\infty L_2$ and $ L_\infty L_\infty $, SIAM J. Numer. Anal. 32 (1995), no. 3, 706-740. MR 1335652 (96c:65162), https://doi.org/10.1137/0732033
  • [18] Alexandre Ern and Jean-Luc Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004. MR 2050138 (2005d:65002)
  • [19] A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory, SIAM J. Numer. Anal. 44 (2006), no. 2, 753-778. MR 2218968 (2007g:65107), https://doi.org/10.1137/050624133
  • [20] Miloslav Feistauer, Václav Kučera, Karel Najzar, and Jaroslava Prokopová, Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems, Numer. Math. 117 (2011), no. 2, 251-288. MR 2754851 (2012e:65207), https://doi.org/10.1007/s00211-010-0348-x
  • [21] K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418. MR 0100718 (20 #7147)
  • [22] F. D. Gaspoz, C.-J. Heine, and K. G. Siebert, Optimal grading of the Newest Vertex Bisection and H1-stability of the L2-projection, Tech. Report 2014-015, University of Stuttgart, 2014.
  • [23] Jean-Luc Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal. 33 (1999), no. 6, 1293-1316. MR 1736900 (2000m:65114), https://doi.org/10.1051/m2an:1999145
  • [24] J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear monotone operators, IMA J. Numer. Anal. 21 (2001), no. 1, 165-197. MR 1812271 (2002a:65095), https://doi.org/10.1093/imanum/21.1.165
  • [25] Marlis Hochbruck and Tomislav Pažur, Implicit Runge-Kutta methods and discontinuous Galerkin discretizations for linear Maxwell's equations, SIAM J. Numer. Anal. 53 (2015), no. 1, 485-507. MR 3313827, https://doi.org/10.1137/130944114
  • [26] S. Hussain, F. Schieweck, and S. Turek, Higher order Galerkin time discretizations and fast multigrid solvers for the heat equation, J. Numer. Math. 19 (2011), no. 1, 41-61. MR 2805871 (2012g:65196), https://doi.org/10.1515/JNUM.2011.003
  • [27] S. Hussain, F. Schieweck, and S. Turek, A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations, Open Numer. Methods J. 4 (2012), 35-45. MR 3005359, https://doi.org/10.2174/1876389801204010035
  • [28] S. Hussain, F. Schieweck, and S. Turek, An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow, Internat. J. Numer. Methods Fluids 73 (2013), no. 11, 927-952. MR 3129187, https://doi.org/10.1002/fld.3831
  • [29] J. Jaffré, C. Johnson, and A. Szepessy, Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws, Math. Models Methods Appl. Sci. 5 (1995), no. 3, 367-386. MR 1330139 (96c:65164), https://doi.org/10.1142/S021820259500022X
  • [30] C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp. 46 (1986), no. 173, 1-26. MR 815828 (88b:65109), https://doi.org/10.2307/2008211
  • [31] P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89-123. Publication No. 33. MR 0658142 (58 #31918)
  • [32] Dmitriy Leykekhman and Boris Vexler, Optimal a priori error estimates of parabolic optimal control problems with pointwise control, SIAM J. Numer. Anal. 51 (2013), no. 5, 2797-2821. MR 3116646, https://doi.org/10.1137/120885772
  • [33] G. Matthies and F. Schieweck, Higher order variational time discretizations for nonlinear systems of ordinary differential equations, Preprint 23/2011, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik, 2011, http://www-ian.math. uni-magdeburg.de/home/schieweck
  • [34] Thomas Richter, Andreas Springer, and Boris Vexler, Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems, Numer. Math. 124 (2013), no. 1, 151-182. MR 3041733, https://doi.org/10.1007/s00211-012-0511-7
  • [35] Hans-Görg Roos, Martin Stynes, and Lutz Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd ed., Convection-Diffusion-Reaction and Flow Problems, Springer Series in Computational Mathematics, vol. 24, Springer-Verlag, Berlin, 2008. MR 2454024 (2009f:65002)
  • [36] D. Schötzau and C. Schwab, An $ hp$ a priori error analysis of the DG time-stepping method for initial value problems, Calcolo 37 (2000), no. 4, 207-232. MR 1812787 (2001k:65126), https://doi.org/10.1007/s100920070002
  • [37] Andreas Springer and Boris Vexler, Third order convergent time discretization for parabolic optimal control problems with control constraints, Comput. Optim. Appl. 57 (2014), no. 1, 205-240. MR 3146505, https://doi.org/10.1007/s10589-013-9580-5
  • [38] Vidar Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024 (2007b:65003)
  • [39] J. J. W. van der Vegt and S. Rhebergen, $ hp$-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis, J. Comput. Phys. 231 (2012), no. 22, 7537-7563. MR 2972847, https://doi.org/10.1016/j.jcp.2012.05.038
  • [40] J. J. W. van der Vegt and S. Rhebergen, hp-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part II: Optimization of the Runge-Kutta smoother, J. Comput. Phys. 231 (2012), no. 22, 7564-7583. MR 2972848, https://doi.org/10.1016/j.jcp.2012.05.037
  • [41] J. J. W. van der Vegt and H. van der Ven, Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. I. General formulation, J. Comput. Phys. 182 (2002), no. 2, 546-585. MR 1941852 (2003k:76089)
  • [42] T. Werder, K. Gerdes, D. Schötzau, and C. Schwab, $ hp$-discontinuous Galerkin time stepping for parabolic problems, Comput. Methods Appl. Mech. Engrg. 190 (2001), no. 49-50, 6685-6708. MR 1863353 (2002k:65159), https://doi.org/10.1016/S0045-7825(01)00258-4
  • [43] Daoqi Yang, Improved error estimation of dynamic finite element methods for second-order parabolic equations, J. Comput. Appl. Math. 126 (2000), no. 1-2, 319-338. MR 1806763 (2002j:65102), https://doi.org/10.1016/S0377-0427(99)00362-3
  • [44] Kōsaku Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the sixth (1980) edition. MR 1336382 (96a:46001)
  • [45] Qiang Zhang and Chi-Wang Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal. 42 (2004), no. 2, 641-666 (electronic). MR 2084230 (2005h:65149), https://doi.org/10.1137/S0036142902404182
  • [46] Qiang Zhang and Chi-Wang Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal. 48 (2010), no. 3, 1038-1063. MR 2669400 (2011g:65205), https://doi.org/10.1137/090771363

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M12, 65M60, 65J10

Retrieve articles in all journals with MSC (2010): 65M12, 65M60, 65J10


Additional Information

Alexandre Ern
Affiliation: Universite Paris-Est, CERMICS (ENPC), 77455 Marne la Vallee Cedex 2, France
Email: ern@cermics.enpc.fr

Friedhelm Schieweck
Affiliation: Institut für Analysis und Numerik, Otto–von–Guericke–Universität Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany
Email: schiewec@ovgu.de

DOI: https://doi.org/10.1090/mcom/3073
Keywords: Discontinuous Galerkin in time, stabilized FEM, first-order PDEs, graph norm error estimates, superconvergence, dynamic meshes
Received by editor(s): February 18, 2014
Received by editor(s) in revised form: April 14, 2015
Published electronically: January 11, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society