Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Explicit lower bounds for linear forms


Author: Kalle Leppälä
Journal: Math. Comp. 85 (2016), 2995-3008
MSC (2010): Primary 11J25, 11J82
DOI: https://doi.org/10.1090/mcom/3078
Published electronically: January 19, 2016
MathSciNet review: 3522978
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathbb{I}$ be the field of rational numbers or an imaginary quadratic field and $ \mathbb{Z}_\mathbb{I}$ its ring of integers. We study some general lemmas that produce lower bounds

$\displaystyle \lvert B_0+B_1\theta _1+\cdots +B_r\theta _r\rvert \ge \frac {1}{\max \{\lvert B_1 \rvert ,\ldots ,\lvert B_r \rvert \}^\mu } $

for all $ B_0,\ldots ,B_r \in \mathbb{Z}_{\mathbb{I}}$, $ \max \{\lvert B_1 \rvert ,\ldots ,\lvert B_r \rvert \} \ge H_0$, given suitable simultaneous approximating sequences of the numbers $ \theta _1,\ldots ,\theta _r$. We manage to replace the lower bound with $ 1/{\max \{\lvert B_1 \rvert ^{\mu _1},\ldots ,\lvert B_r \rvert ^{\mu _r}\}}$ for all $ B_0,\ldots ,B_r \in \mathbb{Z}_{\mathbb{I}}$, $ \max \{\lvert B_1 \rvert ^{\mu _1},\ldots ,\lvert B_r \rvert ^{\mu _r}\} \ge H_0$, where the exponents $ \mu _1,\ldots ,\mu _r$ are different when the given type II approximating sequences approximate some of the numbers $ \theta _1,\ldots ,\theta _r$ better than the others. As an application we research certain linear forms in logarithms. Our results are completely explicit.

References [Enhancements On Off] (What's this?)

  • [1] A. Baker, On some Diophantine inequalities involving the exponential function, Canad. J. Math. 17 (1965), 616-626. MR 0177946 (31 #2204)
  • [2] L. E. Dickson, Elementary theory of equations, New York, Wiley (1912), 36-37.
  • [3] Anne-Maria Ernvall-Hytönen, Kalle Leppälä, and Tapani Matala-aho, An explicit Baker-type lower bound of exponential values, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 6, 1153-1182. MR 3427603, https://doi.org/10.1017/S0308210515000049
  • [4] Masayoshi Hata, Rational approximations to $ \pi $ and some other numbers, Acta Arith. 63 (1993), no. 4, 335-349. MR 1218461 (94e:11082)
  • [5] Kurt Mahler, On a paper by A. Baker on the approximation of rational powers of $ e$, Acta Arith. 27 (1975), 61-87. Collection of articles in memory of Juriĭ Vladimirovič Linnik. MR 0366824 (51 #3070)
  • [6] Georges Rhin and Philippe Toffin, Approximants de Padé simultanés de logarithmes, J. Number Theory 24 (1986), no. 3, 284-297 (French, with English summary). MR 866974 (88i:41033), https://doi.org/10.1016/0022-314X(86)90036-3
  • [7] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. MR 0137689 (25 #1139)
  • [8] J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $ \theta (x)$ and $ \psi (x)$, Math. Comp. 29 (1975), 243-269. MR 0457373 (56 #15581a)
  • [9] V. Kh. Salikhov, On the irrationality measure of $ \ln 3$, Dokl. Akad. Nauk 417 (2007), no. 6, 753-755 (Russian); English transl., Dokl. Math. 76 (2007), no. 3, 955-957. MR 2462856 (2009m:11112), https://doi.org/10.1134/S1064562407060361
  • [10] V. Kh. Salikhov, On the irrationality measure of $ \pi $, Uspekhi Mat. Nauk 63 (2008), no. 3(381), 163-164 (Russian); English transl., Russian Math. Surveys 63 (2008), no. 3, 570-572. MR 2483171 (2010b:11082), https://doi.org/10.1070/RM2008v063n03ABEH004543
  • [11] Wolfgang M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710 (81j:10038)
  • [12] Qiang Wu and Lihong Wang, On the irrationality measure of $ \log 3$, J. Number Theory 142 (2014), 264-273. MR 3208402, https://doi.org/10.1016/j.jnt.2014.03.007
  • [13] Qiang Wu, On the linear independence measure of logarithms of rational numbers, Math. Comp. 72 (2003), no. 242, 901-911 (electronic). MR 1954974 (2003m:11111), https://doi.org/10.1090/S0025-5718-02-01442-4

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11J25, 11J82

Retrieve articles in all journals with MSC (2010): 11J25, 11J82


Additional Information

Kalle Leppälä
Affiliation: Bioinformatics Research Centre (BIRC), University of Århus, Denmark
Email: kalle.m.leppala@gmail.com

DOI: https://doi.org/10.1090/mcom/3078
Received by editor(s): November 4, 2014
Received by editor(s) in revised form: April 11, 2015, and May 7, 2015
Published electronically: January 19, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society