Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Kinetic entropy inequality and hydrostatic reconstruction scheme for the Saint-Venant system


Authors: Emmanuel Audusse, François Bouchut, Marie-Odile Bristeau and Jacques Sainte-Marie
Journal: Math. Comp. 85 (2016), 2815-2837
MSC (2010): Primary 65M12, 74S10, 76M12, 35L65
DOI: https://doi.org/10.1090/mcom/3099
Published electronically: March 24, 2016
MathSciNet review: 3522971
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A lot of well-balanced schemes have been proposed for discretizing the classical Saint-Venant system for shallow water flows with nonflat bottom. Among them, the hydrostatic reconstruction scheme is a simple and efficient one. It involves the knowledge of an arbitrary solver for the homogeneous problem (for example, Godunov, Roe, kinetic, etc.). If this solver is entropy satisfying, then the hydrostatic reconstruction scheme satisfies a semi-discrete entropy inequality. In this paper we prove that, when used with the classical kinetic solver, the hydrostatic reconstruction scheme also satisfies a fully discrete entropy inequality, but with an error term. This error term tends to zero strongly when the space step tends to zero, including solutions with shocks. We also prove that the hydrostatic reconstruction scheme does not satisfy the entropy inequality without error term.


References [Enhancements On Off] (What's this?)

  • [1] Emmanuel Audusse, François Bouchut, Marie-Odile Bristeau, Rupert Klein, and Benoît Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput. 25 (2004), no. 6, 2050-2065. MR 2086830 (2005f:76069), https://doi.org/10.1137/S1064827503431090
  • [2] Emmanuel Audusse and Marie-Odile Bristeau, A well-balanced positivity preserving ``second-order'' scheme for shallow water flows on unstructured meshes, J. Comput. Phys. 206 (2005), no. 1, 311-333. MR 2135839 (2005k:76082), https://doi.org/10.1016/j.jcp.2004.12.016
  • [3] E. Audusse, M.-O. Bristeau, M. Pelanti, and J. Sainte-Marie, Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model: kinetic interpretation and numerical solution, J. Comput. Phys. 230 (2011), no. 9, 3453-3478. MR 2780473 (2012a:76101), https://doi.org/10.1016/j.jcp.2011.01.042
  • [4] E. Audusse, M.-O. Bristeau, B. Perthame, Kinetic schemes for Saint Venant equations with source terms on unstructured grids, Technical Report 3989, INRIA, Unité de recherche de Rocquencourt, France, 2000.
    http://www.inria.fr/rrrt/rr-3989.html.
  • [5] Emmanuel Audusse, Marie-Odile Bristeau, Benoît Perthame, and Jacques Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation, ESAIM Math. Model. Numer. Anal. 45 (2011), no. 1, 169-200. MR 2781135 (2012g:76044), https://doi.org/10.1051/m2an/2010036
  • [6] F. Berthelin, Convergence of flux vector splitting schemes with single entropy inequality for hyperbolic systems of conservation laws, Numer. Math. 99 (2005), no. 4, 585-604. MR 2121070 (2006d:65098), https://doi.org/10.1007/s00211-004-0567-0
  • [7] F. Berthelin and F. Bouchut, Relaxation to isentropic gas dynamics for a BGK system with single kinetic entropy, Methods Appl. Anal. 9 (2002), no. 2, 313-327. MR 1957492 (2004b:82046)
  • [8] F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys. 95 (1999), no. 1-2, 113-170. MR 1705583 (2000f:82084), https://doi.org/10.1023/A:1004525427365
  • [9] F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models, Numer. Math. 94 (2003), no. 4, 623-672. MR 1990588 (2005e:65129)
  • [10] François Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004. MR 2128209 (2005m:65002)
  • [11] François Bouchut and Tomás Morales de Luna, A subsonic-well-balanced reconstruction scheme for shallow water flows, SIAM J. Numer. Anal. 48 (2010), no. 5, 1733-1758. MR 2733096 (2012b:65119), https://doi.org/10.1137/090758416
  • [12] François Bouchut and Vladimir Zeitlin, A robust well-balanced scheme for multi-layer shallow water equations, Discrete Contin. Dyn. Syst. Ser. B 13 (2010), no. 4, 739-758. MR 2601337 (2011g:76040), https://doi.org/10.3934/dcdsb.2010.13.739
  • [13] Marie-Odile Bristeau, Nicole Goutal, and Jacques Sainte-Marie, Numerical simulations of a non-hydrostatic shallow water model, Comput. & Fluids 47 (2011), 51-64. MR 2949395, https://doi.org/10.1016/j.compfluid.2011.02.013
  • [14] Manuel J. Castro, Alberto Pardo Milanés, and Carlos Parés, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique, Math. Models Methods Appl. Sci. 17 (2007), no. 12, 2055-2113. MR 2371563 (2009c:65186), https://doi.org/10.1142/S021820250700256X
  • [15] Frédéric Coquel, Khaled Saleh, and Nicolas Seguin, A robust and entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles, Math. Models Methods Appl. Sci. 24 (2014), no. 10, 2043-2083. MR 3211117, https://doi.org/10.1142/S0218202514500158
  • [16] F. Coron and B. Perthame, Numerical passage from kinetic to fluid equations, SIAM J. Numer. Anal. 28 (1991), no. 1, 26-42. MR 1083323 (91m:76097), https://doi.org/10.1137/0728002
  • [17] Laurent Gosse, Computing qualitatively correct approximations of balance laws: Exponential-fit, well-balanced and asymptotic-preserving, SIMAI Springer Series, vol. 2, Springer, Milan, 2013. MR 3053000
  • [18] N. Goutal and J. Sainte-Marie, A kinetic interpretation of the section-averaged Saint-Venant system for natural river hydraulics, Internat. J. Numer. Methods Fluids 67 (2011), no. 7, 914-938. MR 2842218 (2012h:76026), https://doi.org/10.1002/fld.2401
  • [19] Shi Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Riv. Math. Univ. Parma (N.S.) 3 (2012), no. 2, 177-216. MR 2964096
  • [20] Sebastian Noelle, Yulong Xing, and Chi-Wang Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys. 226 (2007), no. 1, 29-58. MR 2356351 (2008f:76124), https://doi.org/10.1016/j.jcp.2007.03.031
  • [21] B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property, SIAM J. Numer. Anal. 27 (1990), no. 6, 1405-1421. MR 1080328 (91k:65135), https://doi.org/10.1137/0727081
  • [22] B. Perthame, Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions, SIAM J. Numer. Anal. 29 (1992), no. 1, 1-19. MR 1149081 (92m:76111), https://doi.org/10.1137/0729001
  • [23] Benoît Perthame, Kinetic formulation of conservation laws, Oxford Lecture Series in Mathematics and its Applications, vol. 21, Oxford University Press, Oxford, 2002. MR 2064166 (2005d:35005)
  • [24] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo 38 (2001), no. 4, 201-231. MR 1890353 (2002k:76109), https://doi.org/10.1007/s10092-001-8181-3
  • [25] Yulong Xing and Chi-Wang Shu, A survey of high order schemes for the shallow water equations, J. Math. Study 47 (2014), no. 3, 221-249. MR 3269836

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M12, 74S10, 76M12, 35L65

Retrieve articles in all journals with MSC (2010): 65M12, 74S10, 76M12, 35L65


Additional Information

Emmanuel Audusse
Affiliation: Université Paris 13, Laboratoire d’Analyse, Géométrie et Applications, 99 av. J.-B. Clément, F-93430 Villetaneuse, France; Inria, ANGE project-team, Paris – 2 rue Simone Iff, F75012 Paris, France; CEREMA, ANGE project-team, 134 rue de Beauvais, F-60280 Margny-Lès-Compiègne, France; Sorbonne University, UPMC University Paris VI, ANGE project-team, UMR 7958 LJLL, F-75005 Paris, France
Email: audusse@math.univ-paris13.fr

François Bouchut
Affiliation: Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), CNRS, UPEM, UPEC, F-77454, Marne-la-Vallée, France
Email: Francois.Bouchut@u-pem.fr

Marie-Odile Bristeau
Affiliation: Inria, ANGE project-team, Paris – 2 rue Simone Iff, F75012 Paris, France; CEREMA, ANGE project-team, 134 rue de Beauvais, F-60280 Margny-Lès-Compiègne, France; Sorbonne University, UPMC University Paris VI, ANGE project-team, UMR 7958 LJLL, F-75005 Paris, France
Email: Marie-Odile.Bristeau@inria.fr

Jacques Sainte-Marie
Affiliation: Inria, ANGE project-team, Paris – 2 rue Simone Iff, F75012 Paris, France; CEREMA, ANGE project-team, 134 rue de Beauvais, F-60280 Margny-Lès-Compiègne, France; Sorbonne University, UPMC University Paris VI, ANGE project-team, UMR 7958 LJLL, F-75005 Paris, France
Email: Jacques.Sainte-Marie@inria.fr

DOI: https://doi.org/10.1090/mcom/3099
Keywords: Shallow water equations, well-balanced schemes, hydrostatic reconstruction, kinetic solver, fully discrete entropy inequality
Received by editor(s): September 12, 2014
Received by editor(s) in revised form: May 29, 2015
Published electronically: March 24, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society