Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Convergence of the PML method for elastic wave scattering problems


Authors: Zhiming Chen, Xueshuang Xiang and Xiaohui Zhang
Journal: Math. Comp. 85 (2016), 2687-2714
MSC (2010): Primary 65N30, 65N50
DOI: https://doi.org/10.1090/mcom/3100
Published electronically: March 22, 2016
MathSciNet review: 3522967
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the convergence of the perfectly matched layer (PML) method for solving the time harmonic elastic wave scattering problems. We introduce a simple condition on the PML complex coordinate stretching function to guarantee the ellipticity of the PML operator. We also introduce a new boundary condition at the outer boundary of the PML layer which allows us to extend the reflection argument of Bramble and Pasciak to prove the stability of the PML problem in the truncated domain. The exponential convergence of the PML method in terms of the thickness of the PML layer and the strength of PML medium property is proved. Numerical results are included.


References [Enhancements On Off] (What's this?)

  • [1] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L'Excellent, and Jacko Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23 (2001), no. 1, 15-41 (electronic). MR 1856597 (2003d:65019), https://doi.org/10.1137/S0895479899358194
  • [2] Patrick R. Amestoy, Abdou Guermouche, Jean-Yves L'Excellent, and Stéphane Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Comput. 32 (2006), no. 2, 136-156. MR 2202663 (2006i:65240), https://doi.org/10.1016/j.parco.2005.07.004
  • [3] Gang Bao and Haijun Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal. 43 (2005), no. 5, 2121-2143. MR 2192334 (2007h:65115), https://doi.org/10.1137/040604315
  • [4] Jean-Pierre Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994), no. 2, 185-200. MR 1294924 (95e:78002), https://doi.org/10.1006/jcph.1994.1159
  • [5] J.-P. Bérénger, Perfectly Matched Layer (PML) for Computational Electromagnetics, Morgean and Clayfool Publishers, 2007
  • [6] James H. Bramble and Joseph E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comp. 76 (2007), no. 258, 597-614 (electronic). MR 2291829 (2008b:65130), https://doi.org/10.1090/S0025-5718-06-01930-2
  • [7] James H. Bramble and Joseph E. Pasciak, A note on the existence and uniqueness of solutions of frequency domain elastic wave problems: a priori estimates in $ \mathbf {H}^1$, J. Math. Anal. Appl. 345 (2008), no. 1, 396-404. MR 2422659 (2009j:74053), https://doi.org/10.1016/j.jmaa.2008.04.028
  • [8] James H. Bramble, Joseph E. Pasciak, and Dimitar Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math. Comp. 79 (2010), no. 272, 2079-2101. MR 2684356 (2012b:74062), https://doi.org/10.1090/S0025-5718-10-02355-0
  • [9] James H. Bramble and Joseph E. Pasciak, Analysis of Cartesian PML approximation to the three dimensional electromagnetic wave scattering problem, Int. J. Numer. Anal. Model. 9 (2012), no. 3, 543-561. MR 2926536
  • [10] James H. Bramble and Joseph E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in $ \mathbb{R}^2$ and $ \mathbb{R}^3$, J. Comput. Appl. Math. 247 (2013), 209-230. MR 3023309, https://doi.org/10.1016/j.cam.2012.12.022
  • [11] W. C. Chew and W. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microwave Opt. Tech. Lett. 7 (1994), 599-604.
  • [12] W. C. Chew and Q. H. Liu, Perfectly matched layers for elastodynamics: A new absorbing boundary condition, J. Comp. Acoust. 4 (1996), 72-79.
  • [13] Junqing Chen and Zhiming Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems, Math. Comp. 77 (2008), no. 262, 673-698. MR 2373175 (2008m:78007), https://doi.org/10.1090/S0025-5718-07-02055-8
  • [14] Zhiming Chen, Tao Cui, and Linbo Zhang, An adaptive anisotropic perfectly matched layer method for 3-D time harmonic electromagnetic scattering problems, Numer. Math. 125 (2013), no. 4, 639-677. MR 3127326, https://doi.org/10.1007/s00211-013-0550-8
  • [15] Zhiming Chen and Xuezhe Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal. 43 (2005), no. 2, 645-671 (electronic). MR 2177884 (2006m:65260), https://doi.org/10.1137/040610337
  • [16] Zhiming Chen and Xinming Wu, An adaptive uniaxial perfectly matched layer method for time-harmonic scattering problems, Numer. Math. Theory Methods Appl. 1 (2008), no. 2, 113-137. MR 2441968 (2010a:65231)
  • [17] Zhiming Chen and Haijun Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal. 41 (2003), no. 3, 799-826. MR 2005183 (2004k:65215), https://doi.org/10.1137/S0036142902400901
  • [18] Zhiming Chen and Weiying Zheng, Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media, SIAM J. Numer. Anal. 48 (2010), no. 6, 2158-2185. MR 2763660 (2012d:65272), https://doi.org/10.1137/090750603
  • [19] Francis Collino and Peter Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput. 19 (1998), no. 6, 2061-2090. MR 1638033 (99e:78029), https://doi.org/10.1137/S1064827596301406
  • [20] David Gilbarg and Neil S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364 (2001k:35004)
  • [21] Thorsten Hohage, Frank Schmidt, and Lin Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II. Convergence of the PML method, SIAM J. Math. Anal. 35 (2003), no. 3, 547-560 (electronic). MR 2048399 (2005f:78003), https://doi.org/10.1137/S0036141002406485
  • [22] Seungil Kim and Joseph E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in $ \mathbb{R}^2$, J. Math. Anal. Appl. 370 (2010), no. 1, 168-186. MR 2651138 (2011f:76153), https://doi.org/10.1016/j.jmaa.2010.05.006
  • [23] V.A. Kupradze, Dynamical Problems in Elasticity, North-Holland, Amersterdam, 1963.
  • [24] M. Kuzuoglu and R. Mittra, Frequency dependence of the constructive parameters of causal perfectly matched absorbers, IEEE Microw. Duid. Wave Lett. 6 (1996), 447-449.
  • [25] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations, Computing 60 (1998), no. 3, 229-241. MR 1621305 (99a:65133), https://doi.org/10.1007/BF02684334
  • [26] Rolf Leis, Initial-Boundary Value Problems in Mathematical Physics, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. MR 841971 (87h:35003)
  • [27] William McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. MR 1742312 (2001a:35051)
  • [28] C. Michler, L. Demkowicz, J. Kurtz, and D. Pardo, Improving the performance of perfectly matched layers by means of $ hp$-adaptivity, Numer. Methods Partial Differential Equations 23 (2007), no. 4, 832-858. MR 2326196 (2008e:65388), https://doi.org/10.1002/num.20252
  • [29] PHG, Parallel Hiarachical Grid, http://lsec.cc.ac.cn/phg/.
  • [30] Alfred H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959-962. MR 0373326 (51 #9526)
  • [31] Lin-Bo Zhang, A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection, Numer. Math. Theory Methods Appl. 2 (2009), no. 1, 65-89. MR 2494452 (2009k:65035)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N30, 65N50

Retrieve articles in all journals with MSC (2010): 65N30, 65N50


Additional Information

Zhiming Chen
Affiliation: LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China.
Email: zmchen@lsec.cc.ac.cn

Xueshuang Xiang
Affiliation: Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China.
Email: xueshuangx@gmail.com

Xiaohui Zhang
Affiliation: LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China.
Email: zhangxh@lsec.cc.ac.cn

DOI: https://doi.org/10.1090/mcom/3100
Received by editor(s): June 23, 2014
Received by editor(s) in revised form: January 29, 2015, and June 28, 2015
Published electronically: March 22, 2016
Additional Notes: This work was supported in part by the National Basic Research Project under the grant 2011CB309700 and the China NSF under the grants 11021101 and 11321061.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society