Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

How to compute the Stanley depth of a module


Authors: Bogdan Ichim, Lukas Katthän and Julio José Moyano-Fernández
Journal: Math. Comp. 86 (2017), 455-472
MSC (2010): Primary 05A18, 05E40; Secondary 16W50
DOI: https://doi.org/10.1090/mcom/3106
Published electronically: April 13, 2016
MathSciNet review: 3557807
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce an algorithm for computing the Stanley depth of a finitely generated multigraded module $ M$ over the polynomial ring $ \mathbb{K}[X_1, \ldots , X_n]$. As an application, we give an example of a module whose Stanley depth is strictly greater than the depth of its syzygy module. In particular, we obtain complete answers for two open questions raised by Herzog. Moreover, we show that the question whether $ M$ has Stanley depth at least $ r$ can be reduced to the question whether a certain combinatorially defined polytope $ \mathscr {P}$ contains a $ \mathbb{Z}^n$-lattice point.


References [Enhancements On Off] (What's this?)

  • [Ach09] Tobias Achterberg, SCIP: solving constraint integer programs, Math. Program. Comput. 1 (2009), no. 1, 1-41. MR 2520442 (2010f:90094), https://doi.org/10.1007/s12532-008-0001-1
  • [Aig76] Martin Aigner, Kombinatorik. II, Matroide und Transversaltheorie; Hochschultext, Springer-Verlag, Berlin-New York, 1976 (German). MR 0460127 (57 #123)
  • [Ape03] Joachim Apel, On a conjecture of R. P. Stanley. I. Monomial ideals, J. Algebraic Combin. 17 (2003), no. 1, 39-56. MR 1958008 (2004e:13026), https://doi.org/10.1023/A:1021912724441
  • [BI10] Winfried Bruns and Bogdan Ichim, Normaliz: algorithms for affine monoids and rational cones, J. Algebra 324 (2010), no. 5, 1098-1113. MR 2659215 (2011m:20001), https://doi.org/10.1016/j.jalgebra.2010.01.031
  • [BIS16] Winfried Bruns, Bogdan Ichim, and Christof Söger, The power of pyramid decomposition in Normaliz, J. Symbolic Comput. 74 (2016), 513-536. MR 3424054, https://doi.org/10.1016/j.jsc.2015.09.003
  • [BKU10] Winfried Bruns, Christian Krattenthaler, and Jan Uliczka, Stanley decompositions and Hilbert depth in the Koszul complex, J. Commut. Algebra 2 (2010), no. 3, 327-357. MR 2728147 (2011j:13027), https://doi.org/10.1216/JCA-2010-2-3-327
  • [BW93] Thomas Becker and Volker Weispfenning, Gröbner Bases, A computational approach to commutative algebra, in cooperation with Heinz Kredel, Graduate Texts in Mathematics, vol. 141, Springer-Verlag, New York, 1993. MR 1213453 (95e:13018)
  • [CLO07] David Cox, John Little, and Donal O'Shea, Ideals, Varieties, and Algorithms: An introduction to computational algebraic geometry and commutative algebra, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2007. MR 2290010 (2007h:13036)
  • [DGKM15] A. M. Duval, B. Goeckner, C. J. Klivans, and J. L. Martin, A non-partitionable Cohen-Macaulay simplicial complex.
    Preprint, arXiv:1504.04279, 2015.
  • [Eis95] David Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
  • [Her13] Jürgen Herzog, A survey on Stanley depth, Monomial ideals, computations and applications, Lecture Notes in Math., vol. 2083, Springer, Heidelberg, 2013, pp. 3-45. MR 3184118, https://doi.org/10.1007/978-3-642-38742-5_1
  • [HH02] Jürgen Herzog and Takayuki Hibi, Discrete polymatroids, J. Algebraic Combin. 16 (2002), no. 3, 239-268 (2003). MR 1957102 (2004c:52017), https://doi.org/10.1023/A:1021852421716
  • [HVZ09] Jürgen Herzog, Marius Vladoiu, and Xinxian Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra 322 (2009), no. 9, 3151-3169. MR 2567414 (2010k:13036), https://doi.org/10.1016/j.jalgebra.2008.01.006
  • [IMF14] Bogdan Ichim and Julio-José Moyano-Fernández, How to compute the multigraded Hilbert depth of a module, Math. Nachr. 287 (2014), no. 11-12, 1274-1287. MR 3247016, https://doi.org/10.1002/mana.201300120
  • [IZ14] Bogdan Ichim and Andrei Zarojanu, An algorithm for computing the multigraded Hilbert depth of a module, Exp. Math. 23 (2014), no. 3, 322-331. MR 3255942, https://doi.org/10.1080/10586458.2014.908753
  • [Kat15] Lukas Katthän, Stanley depth and simplicial spanning trees, J. Algebraic Combin. 42 (2015), no. 2, 507-536. MR 3369566, https://doi.org/10.1007/s10801-015-0589-y
  • [Mil00] Ezra Miller, The Alexander duality functors and local duality with monomial support, J. Algebra 231 (2000), no. 1, 180-234. MR 1779598 (2001k:13028), https://doi.org/10.1006/jabr.2000.8359
  • [MS07] James Murdock and Jan A. Sanders, A new transvectant algorithm for nilpotent normal forms, J. Differential Equations 238 (2007), no. 1, 234-256. MR 2334598 (2009a:37099), https://doi.org/10.1016/j.jde.2007.03.016
  • [Mur02] James Murdock, On the structure of nilpotent normal form modules, J. Differential Equations 180 (2002), no. 1, 198-237. MR 1890604 (2003d:37068), https://doi.org/10.1006/jdeq.2001.4058
  • [Pop15] Adrian Popescu, An algorithm to compute the Hilbert depth, J. Symbolic Comput. 66 (2015), 1-7. MR 3229916, https://doi.org/10.1016/j.jsc.2014.03.002
  • [PSFTY09] M. R. Pournaki, S. A. Seyed Fakhari, M. Tousi, and S. Yassemi, What is $ \dots $ Stanley depth?, Notices Amer. Math. Soc. 56 (2009), no. 9, 1106-1108. MR 2568497 (2010k:05346)
  • [San07] Jan A. Sanders, Stanley decomposition of the joint covariants of three quadratics, Regul. Chaotic Dyn. 12 (2007), no. 6, 732-735. MR 2373169 (2008j:13010), https://doi.org/10.1134/S1560354707060135
  • [Sch13] Achill Schürmann, Exploiting polyhedral symmetries in social choice, Soc. Choice Welf. 40 (2013), no. 4, 1097-1110. MR 3046852, https://doi.org/10.1007/s00355-012-0667-1
  • [Sta82] Richard P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982), no. 2, 175-193. MR 666158 (83m:10017), https://doi.org/10.1007/BF01394054
  • [SW91] Bernd Sturmfels and Neil White, Computing combinatorial decompositions of rings, Combinatorica 11 (1991), no. 3, 275-293. MR 1122013 (92f:13031), https://doi.org/10.1007/BF01205079
  • [Uli10] Jan Uliczka, Remarks on Hilbert series of graded modules over polynomial rings, Manuscripta Math. 132 (2010), no. 1-2, 159-168. MR 2609292 (2011c:13030), https://doi.org/10.1007/s00229-010-0341-9

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 05A18, 05E40, 16W50

Retrieve articles in all journals with MSC (2010): 05A18, 05E40, 16W50


Additional Information

Bogdan Ichim
Affiliation: Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit 5, C.P. 1-764, 014700 Bucharest, Romania
Email: bogdan.ichim@imar.ro

Lukas Katthän
Affiliation: FB Mathematik/Informatik, Universität Osnabrück, 49069 Osnabrück, Germany
Address at time of publication: Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Str. 10, 60325 Frankfurt am Main, Germany
Email: katthaen@math.uni-frankfurt.de

Julio José Moyano-Fernández
Affiliation: Departamento de Matemáticas $&$ Institut Universitari de Matemàtiques i Aplicacions de Castelló, Universitat Jaume I, Campus de Riu Sec, 12071 Castellón de la Plana, Spain
Email: moyano@uji.es

DOI: https://doi.org/10.1090/mcom/3106
Keywords: Graded modules, Hilbert depth, Stanley depth, Stanley decomposition.
Received by editor(s): April 2, 2015
Received by editor(s) in revised form: July 16, 2015
Published electronically: April 13, 2016
Additional Notes: The first author was partially supported by the project PN-II-RU-TE-2012-3-0161, granted by the Romanian National Authority for Scientific Research, CNCS – UEFISCDI
The second author was partially supported by the German Research Council DFG-GRK 1916
The third author was partially supported by the Spanish Government, Ministerio de Economía y Competitividad (MINECO), grants MTM2012-36917-C03-03 and MTM2015-65764-C3-2-P, as well as by Universitat Jaume I, grant P1-1B2015-02.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society