Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

On the robustness of multiscale hybrid-mixed methods


Authors: Diego Paredes, Frédéric Valentin and Henrique M. Versieux
Journal: Math. Comp. 86 (2017), 525-548
MSC (2010): Primary 35J15, 65N15, 65N30
DOI: https://doi.org/10.1090/mcom/3108
Published electronically: March 28, 2016
MathSciNet review: 3584539
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this work we prove uniform convergence of the Multiscale
Hybrid-Mixed (MHM for short) finite element method for second-order elliptic problems with rough periodic coefficients. The MHM method is shown to avoid resonance errors without adopting oversampling techniques. In particular, we establish that the discretization error for the primal variable in the broken $ H^1$ and $ L^2$ norms are $ O(h + \varepsilon ^\delta )$ and $ O(h^2 + h\,\varepsilon ^\delta )$, respectively, and for the dual variable it is $ O(h + \varepsilon ^\delta )$ in the $ H(\div ;\cdot )$ norm, where $ 0<\delta \leq 1/2$ (depending on regularity). Such results rely on sharpened asymptotic expansion error estimates for the elliptic models with prescribed Dirichlet, Neumann or mixed boundary conditions.


References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams, Sobolev Spaces, Pure and Applied Mathematics, vol. 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957 (56 #9247)
  • [2] Grégoire Allaire and Micol Amar, Boundary layer tails in periodic homogenization, ESAIM Control Optim. Calc. Var. 4 (1999), 209-243 (English, with English and French summaries). MR 1696289 (2000k:35019), https://doi.org/10.1051/cocv:1999110
  • [3] Grégoire Allaire and Robert Brizzi, A multiscale finite element method for numerical homogenization, Multiscale Model. Simul. 4 (2005), no. 3, 790-812. MR 2203941 (2006j:35010), https://doi.org/10.1137/040611239
  • [4] Rodolfo Araya, Christopher Harder, Diego Paredes, and Frédéric Valentin, Multiscale hybrid-mixed method, SIAM J. Numer. Anal. 51 (2013), no. 6, 3505-3531. MR 3143841, https://doi.org/10.1137/120888223
  • [5] Todd Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems, SIAM J. Numer. Anal. 42 (2004), no. 2, 576-598. MR 2084227 (2005h:65205), https://doi.org/10.1137/S0036142902406636
  • [6] Todd Arbogast and Kirsten J. Boyd, Subgrid upscaling and mixed multiscale finite elements, SIAM J. Numer. Anal. 44 (2006), no. 3, 1150-1171. MR 2231859 (2007k:65165), https://doi.org/10.1137/050631811
  • [7] Todd Arbogast and Hailong Xiao, A multiscale mortar mixed space based on homogenization for heterogeneous elliptic problems, SIAM J. Numer. Anal. 51 (2013), no. 1, 377-399. MR 3033015, https://doi.org/10.1137/120874928
  • [8] Ivo Babuška, Solution of interface problems by homogenization. I, SIAM J. Math. Anal. 7 (1976), no. 5, 603-634. MR 0509273 (58 #23013a)
  • [9] I. Babuška and J. E. Osborn, Generalized finite element methods: Their performance and their relation to mixed methods, SIAM J. Numer. Anal. 20 (1983), no. 3, 510-536. MR 701094 (84h:65076), https://doi.org/10.1137/0720034
  • [10] Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330 (82h:35001)
  • [11] Franco Brezzi and Michel Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205 (92d:65187)
  • [12] Zhiming Chen and Thomas Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients, Math. Comp. 72 (2003), no. 242, 541-576. MR 1954956 (2004a:65147), https://doi.org/10.1090/S0025-5718-02-01441-2
  • [13] C.-C. Chu, I. G. Graham, and T.-Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comp. 79 (2010), no. 272, 1915-1955. MR 2684351 (2011j:65267), https://doi.org/10.1090/S0025-5718-2010-02372-5
  • [14] Weinan E and Bjorn Engquist, The heterogeneous multiscale methods, Commun. Math. Sci. 1 (2003), no. 1, 87-132. MR 1979846 (2004b:35019)
  • [15] Yalchin R. Efendiev, Thomas Y. Hou, and Xiao-Hui Wu, Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal. 37 (2000), no. 3, 888-910. MR 1740386 (2002a:65176), https://doi.org/10.1137/S0036142997330329
  • [16] Vivette Girault and Pierre-Arnaud Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. MR 851383 (88b:65129)
  • [17] Georges Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal. 40 (2004), no. 3-4, 269-286. MR 2107633 (2006a:35015)
  • [18] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683 (86m:35044)
  • [19] C. Harder, A. L. Madureira, and F. Valentin, A hybrid-mixed method for elasticity, to appear in M2AN (https://doi.org/10.1051/m2an/2015046).
  • [20] Christopher Harder, Diego Paredes, and Frédéric Valentin, A family of multiscale hybrid-mixed finite element methods for the Darcy equation with rough coefficients, J. Comput. Phys. 245 (2013), 107-130. MR 3066201, https://doi.org/10.1016/j.jcp.2013.03.019
  • [21] Christopher Harder, Diego Paredes, and Frédéric Valentin, On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogeneous coefficients, Multiscale Model. Simul. 13 (2015), no. 2, 491-518. MR 3336297, https://doi.org/10.1137/130938499
  • [22] Thomas Y. Hou, Xiao-Hui Wu, and Zhiqiang Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp. 68 (1999), no. 227, 913-943. MR 1642758 (99i:65126), https://doi.org/10.1090/S0025-5718-99-01077-7
  • [23] Thomas Y. Hou and Xiao-Hui Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys. 134 (1997), no. 1, 169-189. MR 1455261 (98e:73132), https://doi.org/10.1006/jcph.1997.5682
  • [24] Thomas Y. Hou, Xiao-Hui Wu, and Yu Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation, Commun. Math. Sci. 2 (2004), no. 2, 185-205. MR 2119937 (2005m:65268)
  • [25] L. J. Jiang, Y. R. Efendiev, and I. Mishev, Mixed multiscale finite element methods using approximate global information based on partial upscaling, Computational Geosciences 14 (2010), no. 2, 319-341.
  • [26] V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosifyan]. MR 1329546 (96h:35003b)
  • [27] Olga A. Ladyzhenskaya and Nina N. Uraltseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. MR 0244627 (39 #5941)
  • [28] Claude Le Bris, Frédéric Legoll, and Alexei Lozinski, MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems, Chin. Ann. Math. Ser. B 34 (2013), no. 1, 113-138. MR 3011462, https://doi.org/10.1007/s11401-012-0755-7
  • [29] Yan Yan Li and Michael Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Ration. Mech. Anal. 153 (2000), no. 2, 91-151. MR 1770682 (2001m:35083), https://doi.org/10.1007/s002050000082
  • [30] Norman G. Meyers, An $ L^{p}$e-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3) 17 (1963), 189-206. MR 0159110 (28 #2328)
  • [31] Shari Moskow and Michael Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 6, 1263-1299. MR 1489436 (99g:35018), https://doi.org/10.1017/S0308210500027050
  • [32] D. Onofrei and B. Vernescu, Error estimates for periodic homogenization with non-smooth coefficients, Asymptot. Anal. 54 (2007), no. 1-2, 103-123. MR 2356467 (2008m:35019)
  • [33] P.-A. Raviart and J. M. Thomas, Primal hybrid finite element methods for $ 2$nd order elliptic equations, Math. Comp. 31 (1977), no. 138, 391-413. MR 0431752 (55 #4747)
  • [34] Giancarlo Sangalli, Capturing small scales in elliptic problems using a residual-free bubbles finite element method, Multiscale Model. Simul. 1 (2003), no. 3, 485-503 (electronic). MR 2030161 (2004m:65202), https://doi.org/10.1137/S1540345902411402
  • [35] Marcus Sarkis and Henrique Versieux, Convergence analysis for the numerical boundary corrector for elliptic equations with rapidly oscillating coefficients, SIAM J. Numer. Anal. 46 (2008), no. 2, 545-576. MR 2383203 (2009a:65332), https://doi.org/10.1137/060654773
  • [36] Mary Fanett Wheeler, Guangri Xue, and Ivan Yotov, A multiscale mortar multipoint flux mixed finite element method, ESAIM Math. Model. Numer. Anal. 46 (2012), no. 4, 759-796. MR 2891469 (2012m:65446), https://doi.org/10.1051/m2an/2011064

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35J15, 65N15, 65N30

Retrieve articles in all journals with MSC (2010): 35J15, 65N15, 65N30


Additional Information

Diego Paredes
Affiliation: Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso - IMA/ PUCV, Chile
Email: diego.paredes@ucv.cl

Frédéric Valentin
Affiliation: Department of Computational and Applied Mathematics, National Laboratory for Scientific Computing - LNCC, Av. Getúlio Vargas, 333, 25651-070 Petrópolis - RJ, Brazil
Email: valentin@lncc.br

Henrique M. Versieux
Affiliation: Instituto de Matemática, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro - RJ, Brazil
Email: henrique@im.ufrj.br

DOI: https://doi.org/10.1090/mcom/3108
Keywords: Asymptotic expansion, homogenization, elliptic equation, multiscale method, hybridization, finite element
Received by editor(s): October 15, 2014
Received by editor(s) in revised form: May 31, 2015, and August 21, 2015
Published electronically: March 28, 2016
Additional Notes: The first author was partially supported by CONICYT/Chile through FONDECYT project 11140699 and PCI-CNPq/Brazil.
The second author was funded by CNPq/Brazil and CAPES/Brazil.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society