Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Optimized Schwarz methods with nonoverlapping circular domain decomposition


Authors: Martin J. Gander and Yingxiang Xu
Journal: Math. Comp. 86 (2017), 637-660
MSC (2010): Primary 65N55; Secondary 65F10
DOI: https://doi.org/10.1090/mcom/3127
Published electronically: May 17, 2016
MathSciNet review: 3584543
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: While the classical Schwarz method can only be used with overlap, optimized Schwarz methods can also be used without overlap, which can be an advantage when simulating heterogeneous problems, problems with jumping coefficients, or also for independent mesh generation per subdomain. The analysis of nonoverlapping optimized Schwarz methods has so far been restricted to the case of straight interfaces, even though the method has been successfully used with curved interfaces. We close this gap by presenting a rigorous analysis of optimized Schwarz methods for circular domain decompositions. We derive optimized zeroth and second order transmission conditions for a model elliptic operator in two dimensions, and show why the straight interface analysis results, when properly scaled to include the curvature, are also successful for curved interfaces. Our analysis thus complements earlier asymptotic results by Lui for curved interfaces, where the influence of the curvature remained unknown. We illustrate our results with numerical experiments.


References [Enhancements On Off] (What's this?)

  • [1] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
  • [2] Y. Achdou and F. Nataf, An iterated tangential filtering decomposition, Numer. Linear Algebra Appl. 10 (2003), no. 5-6, 511-539. Preconditioning, 2001 (Tahoe City, CA). MR 2008372 (2004i:65110), https://doi.org/10.1002/nla.326
  • [3] Mohammad Al-Khaleel, Martin J. Gander, and Albert E. Ruehli, A mathematical analysis of optimized waveform relaxation for a small RC circuit, Appl. Numer. Math. 75 (2014), 61-76. MR 3126686, https://doi.org/10.1016/j.apnum.2012.12.005
  • [4] Mohammad D. Al-Khaleel, Martin J. Gander, and Albert E. Ruehli, Optimization of transmission conditions in waveform relaxation techniques for RC circuits, SIAM J. Numer. Anal. 52 (2014), no. 2, 1076-1101. MR 3198601, https://doi.org/10.1137/110854187
  • [5] Árpád Baricz and Saminathan Ponnusamy, On Turán type inequalities for modified Bessel functions, Proc. Amer. Math. Soc. 141 (2013), no. 2, 523-532. MR 2996956, https://doi.org/10.1090/S0002-9939-2012-11325-5
  • [6] H. Barucq, M. J. Gander, and Y. Xu, On the influence of curvature on transmission conditions, Domain Decomposition Methods in Science and Engineering XXI, Lecture Notes in Computational Science and Engineering 98, 2013, pp. 279-286.
  • [7] Jean-David Benamou and Bruno Desprès, A domain decomposition method for the Helmholtz equation and related optimal control problems, J. Comput. Phys. 136 (1997), no. 1, 68-82. MR 1468624 (98c:65162), https://doi.org/10.1006/jcph.1997.5742
  • [8] D. Bennequin, M. J. Gander, and L. Halpern, A homographic best approximation problem with application to optimized Schwarz waveform relaxation, Math. Comp. 78 (2009), no. 265, 185-223. MR 2448703 (2010g:65129), https://doi.org/10.1090/S0025-5718-08-02145-5
  • [9] Eric Blayo, David Cherel, and Antoine Rousseau, Towards optimized Schwarz methods for the Navier-Stokes equations, J. Sci. Comput. 66 (2016), no. 1, 275-295. MR 3440281, https://doi.org/10.1007/s10915-015-0020-9
  • [10] M. El Bouajaji, V. Dolean, M. J. Gander, and S. Lanteri, Optimized Schwarz methods for the time-harmonic Maxwell equations with damping, SIAM J. Sci. Comput. 34 (2012), no. 4, A2048-A2071. MR 2970396, https://doi.org/10.1137/110842995
  • [11] Zhiming Chen and Xueshuang Xiang, A source transfer domain decomposition method for Helmholtz equations in unbounded domain, SIAM J. Numer. Anal. 51 (2013), no. 4, 2331-2356. MR 3085122, https://doi.org/10.1137/130917144
  • [12] Bruno Després, Décomposition de domaine et problème de Helmholtz, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 6, 313-316 (French, with English summary). MR 1071633 (91k:65153)
  • [13] V. Dolean, M. J. Gander, and L. Gerardo-Giorda, Optimized Schwarz methods for Maxwell's equations, SIAM J. Sci. Comput. 31 (2009), no. 3, 2193-2213. MR 2516149 (2010f:65180), https://doi.org/10.1137/080728536
  • [14] V. Dolean, M. J. Gander, and E. Veneros, Optimized schwarz methods for maxwell equations with discontinuous coefficients, Domain Decomposition Methods in Science and Engineering XXI, Lecture Notes in Computational Science and Engineering 98, 2013, pp. 439-446.
  • [15] Olivier Dubois, Optimized Schwarz methods for the advection-diffusion equation and for problems with discontinuous coefficients, ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)-McGill University (Canada). MR 2711738
  • [16] Björn Engquist and Lexing Ying, Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers, Multiscale Model. Simul. 9 (2011), no. 2, 686-710. MR 2818416 (2012i:65055), https://doi.org/10.1137/100804644
  • [17] Bjorn Engquist and Hong-Kai Zhao, Absorbing boundary conditions for domain decomposition: Absorbing boundary conditions, Appl. Numer. Math. 27 (1998), no. 4, 341-365. MR 1644668 (99j:65228), https://doi.org/10.1016/S0168-9274(98)00019-1
  • [18] Martin J. Gander, Optimized Schwarz methods, SIAM J. Numer. Anal. 44 (2006), no. 2, 699-731 (electronic). MR 2218966 (2007d:65121), https://doi.org/10.1137/S0036142903425409
  • [19] Martin J. Gander, Schwarz methods over the course of time, Electron. Trans. Numer. Anal. 31 (2008), 228-255. MR 2569603 (2011a:65440)
  • [20] Martin J. Gander, Mohammad Al-Khaleel, and Albert E. Ruchli, Optimized waveform relaxation methods for longitudinal partitioning of transmission lines, IEEE Trans. Circuits Syst. I. Regul. Pap. 56 (2009), no. 8, 1732-1743. MR 2722279 (2011e:94250), https://doi.org/10.1109/TCSI.2008.2008286
  • [21] Martin J. Gander and Olivier Dubois, Optimized Schwarz methods for a diffusion problem with discontinuous coefficient, Numer. Algorithms 69 (2015), no. 1, 109-144. MR 3339213, https://doi.org/10.1007/s11075-014-9884-2
  • [22] Martin J. Gander and Laurence Halpern, Absorbing boundary conditions for the wave equation and parallel computing, Math. Comp. 74 (2005), no. 249, 153-176. MR 2085406 (2005h:65158), https://doi.org/10.1090/S0025-5718-04-01635-7
  • [23] M. J. Gander and L. Halpern, Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems, SIAM J. Numer. Anal. 45 (2007), no. 2, 666-697 (electronic). MR 2300292 (2008e:65291), https://doi.org/10.1137/050642137
  • [24] Martin J. Gander, Laurence Halpern, and Frédéric Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal. 41 (2003), no. 5, 1643-1681. MR 2035001 (2005h:65252), https://doi.org/10.1137/S003614290139559X
  • [25] Martin J. Gander, Frédéric Magoulès, and Frédéric Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM J. Sci. Comput. 24 (2002), no. 1, 38-60 (electronic). MR 1924414 (2003i:65124), https://doi.org/10.1137/S1064827501387012
  • [26] Martin J. Gander and Frédéric Nataf, AILU: a preconditioner based on the analytic factorization of the elliptic operator, Numer. Linear Algebra Appl. 7 (2000), no. 7-8, 505-526. Preconditioning techniques for large sparse matrix problems in industrial applications (Minneapolis, MN, 1999). MR 1800676 (2001k:65185), https://doi.org/10.1002/1099-1506(200010/12)7:7/8$ \langle $505::AID-NLA210$ \rangle $3.0.CO;2-Z
  • [27] Martin J. Gander and Frédéric Nataf, An incomplete LU preconditioner for problems in acoustics, J. Comput. Acoust. 13 (2005), no. 3, 455-476. MR 2174402 (2006d:76096), https://doi.org/10.1142/S0218396X05002803
  • [28] Martin J. Gander and Yingxiang Xu, Optimized Schwarz methods for circular domain decompositions with overlap, SIAM J. Numer. Anal. 52 (2014), no. 4, 1981-2004. MR 3246902, https://doi.org/10.1137/130946125
  • [29] M. J. Gander and Y. Xu, Optimized Schwarz method with two-sided transmission conditions in an unsymmetric domain decomposition, Domain Decomposition Methods in Science and Engineering XXII, Lecture Notes in Computational Science and Engineering 104, 2016, pp. 631-639.
  • [30] M. J. Gander and Y. Xu, Optimized Schwarz methods for elliptical domain decompositions, (2016), in preparation.
  • [31] Giacomo Gigante, Matteo Pozzoli, and Christian Vergara, Optimized Schwarz methods for the diffusion-reaction problem with cylindrical interfaces, SIAM J. Numer. Anal. 51 (2013), no. 6, 3402-3430. MR 3143836, https://doi.org/10.1137/120887758
  • [32] S. H. Lui, A Lions non-overlapping domain decomposition method for domains with an arbitrary interface, IMA J. Numer. Anal. 29 (2009), no. 2, 332-349. MR 2491430 (2010f:65283), https://doi.org/10.1093/imanum/drm011
  • [33] S. H. Lui, Convergence estimates for an higher order optimized Schwarz method for domains with an arbitrary interface, J. Comput. Appl. Math. 235 (2010), no. 1, 301-314. MR 2671053 (2011k:65177), https://doi.org/10.1016/j.cam.2010.06.007
  • [34] Yvon Maday and Frédéric Magoulès, Optimized Schwarz methods without overlap for highly heterogeneous media, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 8, 1541-1553. MR 2277037 (2007m:65127), https://doi.org/10.1016/j.cma.2005.05.059
  • [35] F. Magoulès, P. Iványi, and B. H. V. Topping, Non-overlapping Schwarz methods with optimized transmission conditions for the Helmholtz equation, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 45-47, 4797-4818. MR 2097757 (2005e:65198), https://doi.org/10.1016/j.cma.2004.05.004
  • [36] Véronique Martin, An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions, Appl. Numer. Math. 52 (2005), no. 4, 401-428. MR 2112867 (2005i:65137), https://doi.org/10.1016/j.apnum.2004.08.022
  • [37] Fabio Nobile, Matteo Pozzoli, and Christian Vergara, Time accurate partitioned algorithms for the solution of fluid-structure interaction problems in haemodynamics, Comput. & Fluids 86 (2013), 470-482. MR 3104148, https://doi.org/10.1016/j.compfluid.2013.07.031
  • [38] Z. Peng and J.-F. Lee, Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics, J. Comput. Phys. 229 (2010), no. 16, 5615-5629.
  • [39] Zhen Peng, Vineet Rawat, and Jin-Fa Lee, One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems, J. Comput. Phys. 229 (2010), no. 4, 1181-1197. MR 2576244 (2010m:65290), https://doi.org/10.1016/j.jcp.2009.10.024
  • [40] Lizhen Qin and Xuejun Xu, Optimized Schwarz methods with Robin transmission conditions for parabolic problems, SIAM J. Sci. Comput. 31 (2008), no. 1, 608-623. MR 2460791 (2009j:65234), https://doi.org/10.1137/070682149
  • [41] Ana Alonso Rodríguez and Luca Gerardo-Giorda, New nonoverlapping domain decomposition methods for the harmonic Maxwell system, SIAM J. Sci. Comput. 28 (2006), no. 1, 102-122 (electronic). MR 2219289 (2007e:78021), https://doi.org/10.1137/040608696
  • [42] A. Vion and C. Geuzaine, Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem, J. Comput. Phys. 266 (2014), 171-190. MR 3179763, https://doi.org/10.1016/j.jcp.2014.02.015
  • [43] D. Yang, A parallel nonoverlapping Schwarz domain decomposition method for elliptic interface problems, Tech. Report IMA preprint 1508, University of Minnesota, 1997.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N55, 65F10

Retrieve articles in all journals with MSC (2010): 65N55, 65F10


Additional Information

Martin J. Gander
Affiliation: Section de Mathématiques, Université de Genève, 2-4 rue du Lièvre, CP 64, CH-1211, Genève, Suisse
Email: Martin.Gander@unige.ch

Yingxiang Xu
Affiliation: School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, People’s Republic of China
Email: yxxu@nenu.edu.cn

DOI: https://doi.org/10.1090/mcom/3127
Keywords: Nonoverlapping optimized Schwarz method, circular domain decomposition, optimized transmission conditions, curved interfaces
Received by editor(s): September 23, 2014
Received by editor(s) in revised form: September 2, 2015
Published electronically: May 17, 2016
Additional Notes: The second author is the corresponding author, who was supported by NSFC-11201061, CPSF-2012M520657 and the Science and Technology Development Planning of Jilin Province 20140520058JH
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society