Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Sums of two $ S$-units via Frey-Hellegouarch curves


Authors: Michael A. Bennett and Nicolas Billerey
Journal: Math. Comp. 86 (2017), 1375-1401
MSC (2010): Primary 11D61; Secondary 11G05
DOI: https://doi.org/10.1090/mcom/3129
Published electronically: August 18, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we develop a new method for finding all perfect powers which can be expressed as the sum of two rational $ S$-units, where $ S$ is a finite set of primes. Our approach is based upon the modularity of Galois representations and, for the most part, does not require lower bounds for linear forms in logarithms. Its main virtue is that it enables us to carry out such a program explicitly, at least for certain small sets of primes $ S$; we do so for $ S = \{ 2, 3 \}$ and $ S= \{ 3, 5, 7 \}$.


References [Enhancements On Off] (What's this?)

  • [1] Michael A. Bennett, Products of consecutive integers, Bull. London Math. Soc. 36 (2004), no. 5, 683-694. MR 2070445 (2005e:11034), https://doi.org/10.1112/S0024609304003480
  • [2] M. A. Bennett, K. Győry, M. Mignotte, and Á. Pintér, Binomial Thue equations and polynomial powers, Compos. Math. 142 (2006), no. 5, 1103-1121. MR 2264658 (2007h:11044), https://doi.org/10.1112/S0010437X06002181
  • [3] Michael A. Bennett and Chris M. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56 (2004), no. 1, 23-54. MR 2031121 (2005c:11035), https://doi.org/10.4153/CJM-2004-002-2
  • [4] Michael A. Bennett, Vinayak Vatsal, and Soroosh Yazdani, Ternary Diophantine equations of signature $ (p,p,3)$, Compos. Math. 140 (2004), no. 6, 1399-1416. MR 2098394 (2005i:11036), https://doi.org/10.1112/S0010437X04000983
  • [5] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
  • [6] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $ \mathbf {Q}$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939 (electronic). MR 1839918 (2002d:11058), https://doi.org/10.1090/S0894-0347-01-00370-8
  • [7] Armand Brumer and Kenneth Kramer, The conductor of an abelian variety, Compositio Math. 92 (1994), no. 2, 227-248. MR 1283229 (95g:11055)
  • [8] J. E. Cremona,
    Database of elliptic curves, 2014.
    SAGE package available at http://www.sagemath.org/packages/.
  • [9] J. E. Cremona and M. P. Lingham, Finding all elliptic curves with good reduction outside a given set of primes, Experiment. Math. 16 (2007), no. 3, 303-312. MR 2367320 (2008k:11057)
  • [10] Sander R. Dahmen and Samir Siksek, Perfect powers expressible as sums of two fifth or seventh powers, Acta Arith. 164 (2014), no. 1, 65-100. MR 3223319, https://doi.org/10.4064/aa164-1-5
  • [11] Mou-Jie Deng, A note on the Diophantine equation $ x^2+q^m=c^{2n}$, Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), no. 2, 15-18. MR 3310965, https://doi.org/10.3792/pjaa.91.15
  • [12] Clemens Fuchs, Rafael von Känel, and Gisbert Wüstholz, An effective Shafarevich theorem for elliptic curves, Acta Arith. 148 (2011), no. 2, 189-203. MR 2786163 (2012h:11085), https://doi.org/10.4064/aa148-2-5
  • [13] K. Hambrook, Implementation of a Thue-Mahler solver,
    M.Sc. thesis, University of British Columbia, 2011.
  • [14] R. von Känel, Modularity and integral points on moduli schemes,
    preprint.
  • [15] D. Kim, A modular approach to Thue-Mahler equations,
    preprint.
  • [16] Alain Kraus, Majorations effectives pour l'équation de Fermat généralisée, Canad. J. Math. 49 (1997), no. 6, 1139-1161 (French, with French summary). MR 1611640 (99g:11039), https://doi.org/10.4153/CJM-1997-056-2
  • [17] M. Ram Murty and Hector Pasten, Modular forms and effective Diophantine approximation, J. Number Theory 133 (2013), no. 11, 3739-3754. MR 3084298, https://doi.org/10.1016/j.jnt.2013.05.006
  • [18] The PARI Group, Bordeaux,
    PARI/GP version 2.7.1, 2014,
    available at http://pari. math.u-bordeaux.fr/.
  • [19] K. A. Ribet, On modular representations of $ {\rm Gal}(\overline {\bf Q}/{\bf Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431-476. MR 1047143 (91g:11066), https://doi.org/10.1007/BF01231195
  • [20] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Mathematics, vol. 87, Cambridge University Press, Cambridge, 1986. MR 891406 (88h:11002)
  • [21] Joseph H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094 (2010i:11005)
  • [22] W. A. Stein et al.,
    Sage Mathematics Software (Version 5.13).
    The Sage Development Team, 2013.
    http://www.sagemath.org.
  • [23] C. Störmer, Solution complète en nombres entiers de l'équation $ m\arctan \frac 1x+n\arctan \frac 1y=k\frac {\pi }4$, Bull. Soc. Math. France 27 (1899), 160-170 (French). MR 1504340
  • [24] Nobuhiro Terai, A note on the Diophantine equation $ x^2+q^m=c^n$, Bull. Aust. Math. Soc. 90 (2014), no. 1, 20-27. MR 3227126, https://doi.org/10.1017/S0004972713000981
  • [25] B. M. M. de Weger, Algorithms for Diophantine Equations, CWI Tract, vol. 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR 1026936 (90m:11205)
  • [26] B. M. M. de Weger, The weighted sum of two $ S$-units being a square, Indag. Math. (N.S.) 1 (1990), no. 2, 243-262. MR 1060828 (91j:11017), https://doi.org/10.1016/0019-3577(90)90007-A

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11D61, 11G05

Retrieve articles in all journals with MSC (2010): 11D61, 11G05


Additional Information

Michael A. Bennett
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
Email: bennett@math.ubc.edu

Nicolas Billerey
Affiliation: Laboratoire de Mathématiques, Université Clermont Auvergne, Université Blaise Pascal, BP 10448, F-63000 Clermont-Ferrand, France — and — CNRS, UMR 6620, LM, F-63171 Aubière, France
Email: Nicolas.Billerey@math.univ-bpclermont.fr

DOI: https://doi.org/10.1090/mcom/3129
Received by editor(s): July 21, 2015
Received by editor(s) in revised form: October 19, 2015
Published electronically: August 18, 2016
Additional Notes: The first-named author was supported in part by a grant from NSERC
The second-named author acknowledges the financial support of CNRS and ANR-14-CE25-0015 Gardio. He also warmly thanks PIMS and the Mathematics Department of UBC for hospitality and excellent working conditions
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society