Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

The BMR freeness conjecture for the 2-reflection groups


Authors: Ivan Marin and Götz Pfeiffer
Journal: Math. Comp. 86 (2017), 2005-2023
MSC (2010): Primary 20C08; Secondary 20F55
DOI: https://doi.org/10.1090/mcom/3142
Published electronically: October 12, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the freeness conjecture of Broué, Malle and Rouquier for the Hecke algebras associated to the primitive complex 2-reflection groups with a single conjugacy class of reflections.


References [Enhancements On Off] (What's this?)

  • [Ba] Etsuko Bannai, Fundamental groups of the spaces of regular orbits of the finite unitary reflection groups of dimension $ 2$, J. Math. Soc. Japan 28 (1976), no. 3, 447-454. MR 0407199 (53 #10982)
  • [Be] David Bessis, Finite complex reflection arrangements are $ K(\pi ,1)$, Ann. of Math. (2) 181 (2015), no. 3, 809-904. MR 3296817, https://doi.org/10.4007/annals.2015.181.3.1
  • [BM] David Bessis and Jean Michel, Explicit presentations for exceptional braid groups, Experiment. Math. 13 (2004), no. 3, 257-266. MR 2103323 (2006b:20051)
  • [BMR] Michel Broué, Gunter Malle, and Raphaël Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127-190. MR 1637497 (99m:20088)
  • [C] E. Chavli, The Broué-Malle-Rouquier conjecture for reflection groups of rank $ 2$, Thèse de doctorat, Université Paris-Diderot, 2016, arXiv:1608.00834.
  • [DMM] François Digne, Ivan Marin, and Jean Michel, The center of pure complex braid groups, J. Algebra 347 (2011), 206-213. MR 2846406, https://doi.org/10.1016/j.jalgebra.2011.06.034
  • [ER] Pavel Etingof and Eric Rains, Central extensions of preprojective algebras, the quantum Heisenberg algebra, and 2-dimensional complex reflection groups, J. Algebra 299 (2006), no. 2, 570-588. MR 2228327 (2007f:16037), https://doi.org/10.1016/j.jalgebra.2006.01.005
  • [GP] Meinolf Geck and Götz Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802 (2002k:20017)
  • [L] Ivan Losev, Finite-dimensional quotients of Hecke algebras, Algebra Number Theory 9 (2015), no. 2, 493-502. MR 3320850, https://doi.org/10.2140/ant.2015.9.493
  • [Ma1] Ivan Marin, The cubic Hecke algebra on at most $ 5$ strands, J. Pure Appl. Algebra 216 (2012), no. 12, 2754-2782. MR 2943756, https://doi.org/10.1016/j.jpaa.2012.04.013
  • [Ma2] Ivan Marin, The freeness conjecture for Hecke algebras of complex reflection groups, and the case of the Hessian group $ G_{26}$, J. Pure Appl. Algebra 218 (2014), no. 4, 704-720. MR 3133700, https://doi.org/10.1016/j.jpaa.2013.08.009
  • [Mi] Jean Michel, The development version of the CHEVIE package of GAP3, J. Algebra 435 (2015), 308-336. MR 3343221, https://doi.org/10.1016/j.jalgebra.2015.03.031
  • [P] M. Picantin, Petits Groupes Gaussiens, Thèse de doctorat, Université de Caen, 2000.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 20C08, 20F55

Retrieve articles in all journals with MSC (2010): 20C08, 20F55


Additional Information

Ivan Marin
Affiliation: LAMFA, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens, France
Email: ivan.marin@u-picardie.fr

Götz Pfeiffer
Affiliation: School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, Galway, Ireland
Email: goetz.pfeiffer@nuigalway.ie

DOI: https://doi.org/10.1090/mcom/3142
Received by editor(s): September 17, 2015
Received by editor(s) in revised form: January 12, 2016
Published electronically: October 12, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society