Georgios Akrivis, Buyang Li, and Christian Lubich, Combining
maximal regularity and energy estimates for time discretizations of
quasilinear parabolic equations .. 1527
Peipei Lu, Huangxin Chen, and Weifeng Qiu, An absolutely stable hp-
HDG method for the time-harmonic Maxwell equations with high wave
number ... 1553
Buyang Li and Zhimin Zhang, Mathematical and numerical analysis of
the time-dependent Ginzburg–Landau equations in nonconvex polygons
based on Hodge decomposition ... 1579
Bernardo Cockburn, Guosheng Fu, and Francisco Javier Sayas,
Superconvergence by M-decompositions. Part I: General theory for
HDG methods for diffusion .. 1609
Aycil Cesmelioglu, Bernardo Cockburn, and Weifeng Qiu, Analysis
of a hybridizable discontinuous Galerkin method for the steady-state
incompressible Navier-Stokes equations 1643
Hailong Guo, Zhimin Zhang, and Ren Zhao, Hessian recovery for finite
element methods .. 1671
Wenming He and Zhimin Zhang, $2k$ superconvergence of Q_k finite
elements by anisotropic mesh approximation in weighted Sobolev spaces
1693
Hiroki Kojima, Takayasu Matsuo, and Daisuke Furihata, Some
discrete inequalities for central-difference type operators 1719
Vanni Noferini and Javier Pérez, Chebyshev rootfinding via computing
eigenvalues of colleague matrices: when is it stable? 1741
Benjamin Berkels, Alexander Effland, and Martin Rumpf, A
posteriori error control for the binary Mumford-Shah model 1769
Xiao Wang, Shiqian Ma, and Ya-xiang Yuan, Penalty methods with
stochastic approximation for stochastic nonlinear programming 1793
Mín Tao and Xiaoming Yuan, Accelerated Uzawa methods for convex
optimization ... 1821
Michael Griebel, Frances Y. Kuo, and Ian H. Sloan, Note on “The
smoothing effect of integration in \mathbb{R}^d and the ANOVA decomposition” 1847
Michael Griebel, Frances Y. Kuo, and Ian H. Sloan, The ANOVA
decomposition of a non-smooth function of infinitely many variables
can have every term smooth .. 1855
Miódrag M. Spalević, On generalized averaged Gaussian formulas. II ... 1877
Jonathan Jaquette and Miroslav Kramár, On ε approximations of
persistence diagrams .. 1887
Akil Narayan, John D. Jakeman, and Tao Zhou, A Christoffel function
weighted least squares algorithm for collocation approximations 1913
Jose Ignacio Burgos Gil and Ariel Pacetti, Hecke and Sturm bounds
for Hilbert modular forms over real quadratic fields 1949
Steve Nugent and John Voight, On the arithmetic dimension of triangle
groups .. 1979
Ivan Marin and Götz Pfeiffer, The BMR freeness conjecture for the 2-reflection groups ... 2005
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are electronically published on the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish is required before we can begin processing your paper. After a paper is accepted for publication, the Providence office will send a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/submission/mcom, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index.

Electronically prepared manuscripts. Manuscripts should be electronically prepared in \texttt{AMSTeX}. To this end, the Society has prepared \texttt{AMSTeX} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \texttt{AMSTeX} style file and the \texttt{label} and \texttt{ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web.

Authors may retrieve an author package for Mathematics of Computation from www.ams.org/mcom/mcomauthorpac.html or via FTP to ftp.ams.org (login as anonymous, enter your complete email address as password, and type cd pub/author-info). The AMS Author Handbook and the Instruction Manual are available in PDF format from the author package link. The author package can also be obtained free of charge by sending email to tech-support@ams.org or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author package, please specify the publication in which your paper will appear. Please be sure to include your complete email address.
After acceptance. The source files for the final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also submit a PDF of the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at www.ams.org/submit-book-journal/, sent via email to pub-submit@ams.org, or sent on CD to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When sending a manuscript electronically via email or CD, please be sure to include a message indicating in which publication the paper has been accepted. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available starting from www.ams.org/authors/journals.html. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

Any graphics created in color will be rendered in grayscale for the printed version unless color printing is authorized by the Managing Editor and the Publisher. In general, color graphics will appear in color in the online version.

AMS policy on making changes to articles after publication. Articles are published on the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually published to the AMS website, changes cannot be made in place in the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is electronically published.

Corrections of critical errors may be made to the paper by submitting an errata article to the Editor. The errata article will be published electronically, will appear in a future print issue, and will link back and forth on the Web with the original article.

Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.
FRANK-OLAF SCHREYER, Faculty of Mathematics and Computer Science, Saarland University, Campus E2 4, 66123 Saarbrücken, Germany; E-mail: schreyer@math.uni-sb.de
CHRISTOPH SCHWAB, Seminar for Applied Mathematics, ETH Zürich, Raemistrasse 101, HG G57.1, CH-8092 Zürich, Switzerland; E-mail: schwab@math.ethz.ch
ZUOWEI SHEN, Department of Mathematics, National University of Singapore, Block S17 10, Lower Kent Ridge Road, 119076 Singapore; E-mail: matzuows@nus.edu.sg
ANDREW V. SUTHERLAND, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; E-mail: drew@math.mit.edu
HANS VOLKMER, Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201-0413 USA; E-mail: volkmer@uwm.edu
BARBARA WOHLMUTH, Fakultät für Mathematik, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany; E-mail: wohlmuth@ma.tum.de
Jose Ignacio Burgos Gil and Ariel Pacetti, Hecke and Sturm bounds for Hilbert modular forms over real quadratic fields 1949

Steve Nugent and John Voight, On the arithmetic dimension of triangle groups ... 1979

Ivan Marin and Götz Pfeiffer, The BMR freeness conjecture for the 2-reflection groups ... 2005
Georgios Akrivis, Buyang Li, and Christian Lubich, Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations .. 1527

Peipei Lu, Huangxin Chen, and Weifeng Qiu, An absolutely stable hp-HDG method for the time-harmonic Maxwell equations with high wave number ... 1553

Buyang Li and Zhimin Zhang, Mathematical and numerical analysis of the time-dependent Ginzburg–Landau equations in nonconvex polygons based on Hodge decomposition ... 1579

Bernardo Cockburn, Guosheng Fu, and Francisco Javier Sayas, Superconvergence by M-decompositions. Part I: General theory for HDG methods for diffusion ... 1609

Aycil Cesmelioglu, Bernardo Cockburn, and Weifeng Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations .. 1643

Hailong Guo, Zhimin Zhang, and Ren Zhao, Hessian recovery for finite element methods ... 1671

Wenming He and Zhimin Zhang, $2k$ superconvergence of Q_k finite elements by anisotropic mesh approximation in weighted Sobolev spaces 1693

Hiroki Kojima, Takayasu Matsuo, and Daisuke Furihata, Some discrete inequalities for central-difference type operators 1719

Vanni Noferini and Javier Pérez, Chebyshev rootfinding via computing eigenvalues of colleague matrices: when is it stable? 1741

Benjamin Berkels, Alexander Effland, and Martin Rumpf, A posteriori error control for the binary Mumford-Shah model 1769

Xiao Wang, Shiqian Ma, and Ya-xiang Yuan, Penalty methods with stochastic approximation for stochastic nonlinear programming 1793

Min Tao and Xiaoming Yuan, Accelerated Uzawa methods for convex optimization ... 1821

Michael Griebel, Frances Y. Kuo, and Ian H. Sloan, Note on “The smoothing effect of integration in \mathbb{R}^d and the ANOVA decomposition” 1847

Michael Griebel, Frances Y. Kuo, and Ian H. Sloan, The ANOVA decomposition of a non-smooth function of infinitely many variables can have every term smooth .. 1855

Miodrag M. Spalević, On generalized averaged Gaussian formulas. II ... 1877

Jonathan Jaquette and Miroslav Kramár, On ε approximations of persistence diagrams ... 1887

Akil Narayan, John D. Jakeman, and Tao Zhou, A Christoffel function weighted least squares algorithm for collocation approximations 1913

(Continued on inside back cover)