Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Skew braces and the Yang-Baxter equation


Authors: L. Guarnieri and L. Vendramin
Journal: Math. Comp. 86 (2017), 2519-2534
MSC (2010): Primary 16T25; Secondary 81R50
DOI: https://doi.org/10.1090/mcom/3161
Published electronically: November 28, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Braces were introduced by Rump to study non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation. We generalize Rump's braces to the non-commutative setting and use this new structure to study not necessarily involutive non-degenerate set-theoretical solutions of the Yang-Baxter equation. Based on results of Bachiller and Catino and Rizzo, we develop an algorithm to enumerate and construct classical and non-classical braces of small size up to isomorphism. This algorithm is used to produce a database of braces of small size. The paper contains several open problems, questions and conjectures.


References [Enhancements On Off] (What's this?)

  • [1] David Bachiller, Classification of braces of order $ p^3$, J. Pure Appl. Algebra 219 (2015), no. 8, 3568-3603. MR 3320237, https://doi.org/10.1016/j.jpaa.2014.12.013
  • [2] David Bachiller, Counterexample to a conjecture about braces, J. Algebra 453 (2016), 160-176. MR 3465351, https://doi.org/10.1016/j.jalgebra.2016.01.011
  • [3] D. Bachiller, F. Cedo, and E. Jespers, Solutions of the Yang-Baxter equation associated with a left brace, arXiv:1503.02814.
  • [4] Rodney J. Baxter, Partition function of the eight-vertex lattice model, Ann. Physics 70 (1972), 193-228. MR 0290733
  • [5] Rodney J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. Reprint of the 1982 original. MR 998375
  • [6] Nir Ben David and Yuval Ginosar, On groups of central type, non-degenerate and bijective cohomology classes, Israel J. Math. 172 (2009), 317-335. MR 2534251, https://doi.org/10.1007/s11856-009-0075-0
  • [7] Hans Ulrich Besche, Bettina Eick, and E. A. O'Brien, A millennium project: constructing small groups, Internat. J. Algebra Comput. 12 (2002), no. 5, 623-644. MR 1935567, https://doi.org/10.1142/S0218196702001115
  • [8] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, Computational algebra and number theory (London, 1993), J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. MR 1484478, https://doi.org/10.1006/jsco.1996.0125
  • [9] Francesco Catino and Roberto Rizzo, Regular subgroups of the affine group and radical circle algebras, Bull. Aust. Math. Soc. 79 (2009), no. 1, 103-107. MR 2486886, https://doi.org/10.1017/S0004972708001068
  • [10] Ferran Cedó, Eric Jespers, and Ángel del Río, Involutive Yang-Baxter groups, Trans. Amer. Math. Soc. 362 (2010), no. 5, 2541-2558. MR 2584610, https://doi.org/10.1090/S0002-9947-09-04927-7
  • [11] Ferran Cedó, Eric Jespers, and Jan Okniński, Retractability of set theoretic solutions of the Yang-Baxter equation, Adv. Math. 224 (2010), no. 6, 2472-2484. MR 2652212, https://doi.org/10.1016/j.aim.2010.02.001
  • [12] Ferran Cedó, Eric Jespers, and Jan Okniński, Braces and the Yang-Baxter equation, Comm. Math. Phys. 327 (2014), no. 1, 101-116. MR 3177933, https://doi.org/10.1007/s00220-014-1935-y
  • [13] Patrick Dehornoy, Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs, Adv. Math. 282 (2015), 93-127. MR 3374524, https://doi.org/10.1016/j.aim.2015.05.008
  • [14] V. G. Drinfeld, On some unsolved problems in quantum group theory, Quantum Groups (Leningrad, 1990) Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp. 1-8. MR 1183474, https://doi.org/10.1007/BFb0101175
  • [15] Pavel Etingof, Travis Schedler, and Alexandre Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, Duke Math. J. 100 (1999), no. 2, 169-209. MR 1722951, https://doi.org/10.1215/S0012-7094-99-10007-X
  • [16] The GAP Group,
    GAP - Groups, Algorithms, and Programming, Version 4.7.8, 2015.
  • [17] T. Gateva-Ivanova, Set-theoretic solutions of the Yang-Baxter equation, braces, and symmetric groups, arXiv:1507.02602.
  • [18] Tatiana Gateva-Ivanova, A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation, J. Math. Phys. 45 (2004), no. 10, 3828-3858. MR 2095675, https://doi.org/10.1063/1.1788848
  • [19] Tatiana Gateva-Ivanova, Quadratic algebras, Yang-Baxter equation, and Artin-Schelter regularity, Adv. Math. 230 (2012), no. 4-6, 2152-2175. MR 2927367, https://doi.org/10.1016/j.aim.2012.04.016
  • [20] Tatiana Gateva-Ivanova and Peter Cameron, Multipermutation solutions of the Yang-Baxter equation, Comm. Math. Phys. 309 (2012), no. 3, 583-621. MR 2885602, https://doi.org/10.1007/s00220-011-1394-7
  • [21] Tatiana Gateva-Ivanova and Shahn Majid, Set-theoretic solutions of the Yang-Baxter equation, graphs and computations, J. Symbolic Comput. 42 (2007), no. 11-12, 1079-1112. MR 2368074, https://doi.org/10.1016/j.jsc.2007.06.007
  • [22] Tatiana Gateva-Ivanova and Shahn Majid, Matched pairs approach to set theoretic solutions of the Yang-Baxter equation, J. Algebra 319 (2008), no. 4, 1462-1529. MR 2383056, https://doi.org/10.1016/j.jalgebra.2007.10.035
  • [23] Tatiana Gateva-Ivanova and Shahn Majid, Quantum spaces associated to multipermutation solutions of level two, Algebr. Represent. Theory 14 (2011), no. 2, 341-376. MR 2776789, https://doi.org/10.1007/s10468-009-9192-z
  • [24] Tatiana Gateva-Ivanova and Michel Van den Bergh, Semigroups of $ I$-type, J. Algebra 206 (1998), no. 1, 97-112. MR 1637256, https://doi.org/10.1006/jabr.1997.7399
  • [25] Eric Jespers and Jan Okniński, Monoids and groups of $ I$-type, Algebr. Represent. Theory 8 (2005), no. 5, 709-729. MR 2189580, https://doi.org/10.1007/s10468-005-0342-7
  • [26] Eric Jespers and Jan Okniński, Noetherian Semigroup Algebras, Algebras and Applications, vol. 7, Springer, Dordrecht, 2007. MR 2301033
  • [27] Christian Kassel, Quantum Groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145
  • [28] V. Lebed and L. Vendramin, Homology of left non-degenerate set-theoretic solutions to the yang-baxter equation, arXiv:1509.07067.
  • [29] Jiang-Hua Lu, Min Yan, and Yong-Chang Zhu, On the set-theoretical Yang-Baxter equation, Duke Math. J. 104 (2000), no. 1, 1-18. MR 1769723, https://doi.org/10.1215/S0012-7094-00-10411-5
  • [30] Shahn Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge, 1995. MR 1381692
  • [31] Sam Nelson, The combinatorial revolution in knot theory, Notices Amer. Math. Soc. 58 (2011), no. 11, 1553-1561. MR 2896084
  • [32] Wolfgang Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math. 193 (2005), no. 1, 40-55. MR 2132760, https://doi.org/10.1016/j.aim.2004.03.019
  • [33] Wolfgang Rump, Modules over braces, Algebra Discrete Math. 2 (2006), 127-137. MR 2320986
  • [34] Wolfgang Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), no. 1, 153-170. MR 2278047, https://doi.org/10.1016/j.jalgebra.2006.03.040
  • [35] Wolfgang Rump, Classification of cyclic braces, J. Pure Appl. Algebra 209 (2007), no. 3, 671-685. MR 2298848, https://doi.org/10.1016/j.jpaa.2006.07.001
  • [36] Wolfgang Rump, The brace of a classical group, Note Mat. 34 (2014), no. 1, 115-144. MR 3291816
  • [37] A. Smoktunowicz, A note on set-theoretic solutions of the Yang-Baxter equation, arXiv:1512.95542.
  • [38] Alexander Soloviev, Non-unitary set-theoretical solutions to the quantum Yang-Baxter equation, Math. Res. Lett. 7 (2000), no. 5-6, 577-596. MR 1809284, https://doi.org/10.4310/MRL.2000.v7.n5.a4
  • [39] Mitsuhiro Takeuchi, Survey on matched pairs of groups--an elementary approach to the ESS-LYZ theory, Noncommutative geometry and quantum groups (Warsaw, 2001) Banach Center Publ., vol. 61, Polish Acad. Sci., Warsaw, 2003, pp. 305-331. MR 2024436, https://doi.org/10.4064/bc61-0-19
  • [40] L. Vendramin, Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra 220 (2016), no. 5, 2064-2076. MR 3437282, https://doi.org/10.1016/j.jpaa.2015.10.018
  • [41] Alan Weinstein and Ping Xu, Classical solutions of the quantum Yang-Baxter equation, Comm. Math. Phys. 148 (1992), no. 2, 309-343. MR 1178147
  • [42] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315. MR 0261870

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 16T25, 81R50

Retrieve articles in all journals with MSC (2010): 16T25, 81R50


Additional Information

L. Guarnieri
Affiliation: Departamento de Matemática – FCEN, Universidad de Buenos Aires, Pab. I – Ciudad Universitaria (1428) Buenos Aires, Argentina
Email: leandroguarnieri@gmail.com

L. Vendramin
Affiliation: Departamento de Matemática – FCEN, Universidad de Buenos Aires, Pab. I – Ciudad Universitaria (1428) Buenos Aires, Argentina
Email: lvendramin@dm.uba.ar

DOI: https://doi.org/10.1090/mcom/3161
Received by editor(s): December 3, 2015
Received by editor(s) in revised form: February 21, 2016, and March 13, 2016
Published electronically: November 28, 2016
Additional Notes: This work was partially supported by CONICET, PICT-2014-1376, MATH-AmSud and ICTP
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society