Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The Euclidean algorithm in quintic and septic cyclic fields


Authors: Pierre Lezowski and Kevin J. McGown
Journal: Math. Comp. 86 (2017), 2535-2549
MSC (2010): Primary 11A05, 11R04, 11Y40; Secondary 11R16, 11R80, 11L40, 11R32
DOI: https://doi.org/10.1090/mcom/3169
Published electronically: February 16, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Conditionally on the Generalized Riemann Hypothesis (GRH), we prove the following results: (1) a cyclic number field of degree $ 5$ is norm-Euclidean if and only if $ \Delta =11^4,31^4,41^4$; (2) a cyclic number field of degree $ 7$ is norm-Euclidean if and only if $ \Delta =29^6,43^6$; (3) there are no norm-Euclidean cyclic number fields of degrees $ 19$, $ 31$, $ 37$, $ 43$, $ 47$, $ 59$, $ 67$, $ 71$, $ 73$, $ 79$, $ 97$.

Our proofs contain a large computational component, including the calculation of the Euclidean minimum in some cases; the correctness of these calculations does not depend upon the GRH. Finally, we improve on what is known unconditionally in the cubic case by showing that any norm-Euclidean cyclic cubic field must have conductor $ f\leq 157$ except possibly when $ f\in (2\cdot 10^{14}, 10^{50})$.


References [Enhancements On Off] (What's this?)

  • [1] Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), no. 191, 355-380. MR 1023756, https://doi.org/10.2307/2008811
  • [2] E. S. Barnes and H. P. F. Swinnerton-Dyer, The inhomogeneous minima of binary quadratic forms. I, Acta Math. 87 (1952), 259-323. MR 0053162
  • [3] Jean-Paul Cerri, Euclidean minima of totally real number fields: algorithmic determination, Math. Comp. 76 (2007), no. 259, 1547-1575 (electronic). MR 2299788, https://doi.org/10.1090/S0025-5718-07-01932-1
  • [4] H. Chatland and H. Davenport, Euclid's algorithm in real quadratic fields, Canadian J. Math. 2 (1950), 289-296. MR 0041885
  • [5] H. J. Godwin, On Euclid's algorithm in some cubic fields with signature one, Quart. J. Math. Oxford Ser. (2) 18 (1967), 333-338. MR 0219509
  • [6] H. J. Godwin, On Euclid's algorithm in some quartic and quintic fields, J. London Math. Soc. 40 (1965), 699-704. MR 0184928
  • [7] H. J. Godwin and J. R. Smith, On the Euclidean nature of four cyclic cubic fields, Math. Comp. 60 (1993), no. 201, 421-423. MR 1149291, https://doi.org/10.2307/2153178
  • [8] H. Heilbronn, On Euclid's algorithm in cyclic fields, Canadian J. Math. 3 (1951), 257-268. MR 0043134
  • [9] H. Heilbronn, On Euclid's algorithm in cubic self-conjugate fields, Proc. Cambridge Philos. Soc. 46 (1950), 377-382. MR 0035313
  • [10] Franz Lemmermeyer, The Euclidean algorithm in algebraic number fields, Exposition. Math. 13 (1995), no. 5, 385-416. MR 1362867
  • [11] Pierre Lezowski, Computation of the Euclidean minimum of algebraic number fields, Math. Comp. 83 (2014), no. 287, 1397-1426. MR 3167464, https://doi.org/10.1090/S0025-5718-2013-02746-9
  • [12] Kevin J. McGown, Norm-Euclidean cyclic fields of prime degree, Int. J. Number Theory 8 (2012), no. 1, 227-254. MR 2887892, https://doi.org/10.1142/S1793042112500133
  • [13] Kevin J. McGown, Norm-Euclidean Galois fields and the generalized Riemann hypothesis, J. Théor. Nombres Bordeaux 24 (2012), no. 2, 425-445 (English, with English and French summaries). MR 2950700
  • [14] Kevin J. McGown, On the second smallest prime non-residue, J. Number Theory 133 (2013), no. 4, 1289-1299. MR 3004000, https://doi.org/10.1016/j.jnt.2012.09.011
  • [15] J. R. Smith, On Euclid's algorithm in some cyclic cubic fields, J. London Math. Soc. 44 (1969), 577-582. MR 0240075
  • [16] Robert Spira, Calculation of the gamma function by Stirling's formula, Math. Comp. 25 (1971), 317-322. MR 0295539
  • [17] Enrique Treviño, The Burgess inequality and the least $ k$th power non-residue, Int. J. Number Theory 11 (2015), no. 5, 1653-1678. MR 3376232, https://doi.org/10.1142/S1793042115400163
  • [18] Enrique Treviño, On the maximum number of consecutive integers on which a character is constant, Mosc. J. Comb. Number Theory 2 (2012), no. 1, 56-72. MR 2988388
  • [19] Enrique Treviño, The least $ k$-th power non-residue, J. Number Theory 149 (2015), 201-224. MR 3296008, https://doi.org/10.1016/j.jnt.2014.10.019

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11A05, 11R04, 11Y40, 11R16, 11R80, 11L40, 11R32

Retrieve articles in all journals with MSC (2010): 11A05, 11R04, 11Y40, 11R16, 11R80, 11L40, 11R32


Additional Information

Pierre Lezowski
Affiliation: Université Blaise Pascal, Laboratoire de Mathématiques UMR 6620, Campus Universitaire des Cézeaux, BP 80026, 63171 Aubière Cédex, France
Email: pierre.lezowski@math.univ-bpclermont.fr

Kevin J. McGown
Affiliation: California State University, Chico, Department of Mathematics and Statistics, 601 E. Main St., Chico, California 95929
Email: kmcgown@csuchico.edu

DOI: https://doi.org/10.1090/mcom/3169
Received by editor(s): December 1, 2015
Received by editor(s) in revised form: March 26, 2016
Published electronically: February 16, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society