Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

   
 
 

 

Covering rational ruled surfaces


Authors: J. Rafael Sendra, David Sevilla and Carlos Villarino
Journal: Math. Comp. 86 (2017), 2861-2875
MSC (2010): Primary 14Q10, 68W30
DOI: https://doi.org/10.1090/mcom/3193
Published electronically: March 3, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present an algorithm that covers any given rational ruled surface with two rational parametrizations. In addition, we present an algorithm that transforms any rational surface parametrization into a new rational surface parametrization without affine base points and such that the degree of the corresponding maps is preserved.


References [Enhancements On Off] (What's this?)

  • [AL94] William W. Adams and Philippe Loustaunau, An Introduction to Gröbner Bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, Providence, RI, 1994. MR 1287608
  • [AR07] Carlos Andradas and Tomás Recio, Plotting missing points and branches of real parametric curves, Appl. Algebra Engrg. Comm. Comput. 18 (2007), no. 1-2, 107-126. MR 2280313, https://doi.org/10.1007/s00200-006-0032-7
  • [BYLLM11] Y.-B. Bai, J.-H. Yong, C.-Y. Liu, X.-M. Liu, and Y. Meng, Polyline approach for approximating Hausdorff distance between planar free-form curves, Comput.-Aided Des. 43 (2011), no. 6, 687-698.
  • [BR95] Chandrajit L. Bajaj and Andrew V. Royappa, Finite representations of real parametric curves and surfaces, Internat. J. Comput. Geom. Appl. 5 (1995), no. 3, 313-326. MR 1339190, https://doi.org/10.1142/S0218195995000180
  • [GC91] Xiao Shan Gao and Shang-Ching Chou, On the normal parameterization of curves and surfaces, Internat. J. Comput. Geom. Appl. 1 (1991), no. 2, 125-136. MR 1132800, https://doi.org/10.1142/S0218195991000116
  • [CMXP10] X.-D. Chen, W. Ma, G. Xu, and J.-C. Paul, Computing the Hausdorff distance between two B-spline curves, Comput.-Aided Des. 42 (2010), 1197-1206.
  • [CLO07] David Cox, John Little, and Donal O'Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2007. MR 2290010
  • [KOYKE10] Y.-J. Kim, Y.-T. Oh, S.-H. Yoon, M.-.S Kim, and G. Elber, Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer, Vis. Comput. 26 (2010), nos. 6-8, 1007-1016.
  • [SPD14] Li-Yong Shen and Sonia Pérez-Díaz, Characterization of rational ruled surfaces, J. Symbolic Comput. 63 (2014), 21-45. MR 3165726, https://doi.org/10.1016/j.jsc.2013.11.003
  • [Sei74] A. Seidenberg, Constructions in algebra, Trans. Amer. Math. Soc. 197 (1974), 273-313. MR 0349648
  • [Sen02] J. Rafael Sendra, Normal parametrizations of algebraic plane curves, J. Symbolic Comput. 33 (2002), no. 6, 863-885. MR 1921714, https://doi.org/10.1006/jsco.2002.0538
  • [SSV14a] J. Rafael Sendra, David Sevilla, and Carlos Villarino, Covering of surfaces parametrized without projective base points, ISSAC 2014--Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2014, pp. 375-380. MR 3239949, https://doi.org/10.1145/2608628.2608635
  • [SSV14b] J. Rafael Sendra, David Sevilla, and Carlos Villarino, Some results on the surjectivity of surface parametrizations, Lecture Notes in Comput. Sci., vol. 8942, Springer, Cham, 2015, pp. 192-203. MR 3335575
  • [Wan04] Dongming Wang, A simple method for implicitizing rational curves and surfaces, J. Symbolic Comput. 38 (2004), no. 1, 899-914. MR 2094561, https://doi.org/10.1016/j.jsc.2004.02.004

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 14Q10, 68W30

Retrieve articles in all journals with MSC (2010): 14Q10, 68W30


Additional Information

J. Rafael Sendra
Affiliation: Department of Physics and Mathematics, Research Group asynacs, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
Email: Rafael.Sendra@uah.es

David Sevilla
Affiliation: University Center of Mérida, University of Extremadura, Av. Santa Teresa de Jornet 38, E-06800 Mérida, Badajoz, Spain
Email: sevillad@unex.es

Carlos Villarino
Affiliation: Department of Physics and Mathematics, Research Group asynacs, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
Email: Carlos.Villarino@uah.es

DOI: https://doi.org/10.1090/mcom/3193
Keywords: Parametrization of ruled surfaces, normality, base points
Received by editor(s): October 20, 2014
Received by editor(s) in revised form: April 26, 2016
Published electronically: March 3, 2017
Article copyright: © Copyright 2017 by the authors

American Mathematical Society