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DETERMINANTAL REPRESENTATIONS OF HYPERBOLIC

CURVES VIA POLYNOMIAL HOMOTOPY CONTINUATION

ANTON LEYKIN AND DANIEL PLAUMANN

Abstract. A smooth curve of degree d in the real projective plane is hyper-
bolic if its ovals are maximally nested, i.e., its real points contain � d

2
� nested

ovals. By the Helton-Vinnikov theorem, any such curve admits a definite

symmetric determinantal representation. We use polynomial homotopy con-
tinuation to compute such representations numerically. Our method works by
lifting paths from the space of hyperbolic polynomials to a branched cover in
the space of pairs of symmetric matrices.

Introduction

Let p ∈ C[t, x, y] be a homogeneous polynomial of degree d � 1. A (linear
symmetric) determinantal representation of p is an expression

p = det(tM1 + xM2 + yM3),

where M1,M2,M3 are complex symmetric matrices of size d × d. Determinantal
representations of plane curves are a classical topic of algebraic geometry. Existence
for smooth curves of arbitrary degree was first proved by Dixon in 1902 [3]. For an
exposition in modern language, see Beauville [2].

Real determinantal representations of real curves have only been studied system-
atically much later in the work of Dubrovin [4] and Vinnikov [15]. Of particular
interest here are the definite representations, where some linear combination of the
matrices M1,M2,M3 is positive definite. By a celebrated result due to Helton and
Vinnikov [9], these correspond exactly to the hyperbolic curves, whose real points
consist of maximally nested ovals in the real projective plane.

The Helton-Vinnikov theorem (previously known as the Lax Conjecture) has
attracted attention in connection with semidefinite programming, since it charac-
terizes the boundary of those convex subsets of the real plane that can be described
by linear matrix inequalities. See Vinnikov [17] for an excellent survey.

While the Helton-Vinnikov theorem ensures the existence of a definite determi-
nantal representation for any hyperbolic curve, finding such a representation for
a given polynomial p remains a difficult computational problem. With a suitable
choice of coordinates, we can restrict to representations of the form

p = det(tId + xD + yR)

where Id is the identity matrix, D is a real diagonal and R a real symmetric matrix.
The hyperbolicity of p is reflected in the fact that for any point (u, v) ∈ R2, all
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roots of the univariate polynomial p(t, u, v) ∈ R[t] are real. Given such p, the
computational task of finding the unknown entries of D and R leads, in general, to
a zero-dimensional system of polynomial equations. However, as d grows, this direct
approach quickly becomes infeasible in practice. This, as well as symbolic methods
and an alternative approach via theta functions based on the proof of the Helton-
Vinnikov theorem, have been investigated in [13]. As far as actual computations
are concerned, d = 6 was the largest degree for which computations terminated in
reasonable time.

We present here a more sophisticated numerical approach, implemented with
NAG4M2: the NumericalAlgebraicGeometry package [10] for Macaulay2 [7]. We
consider the branched cover of the space of homogeneous polynomials by pairs of
matrices (D,R), with D diagonal and R symmetric, via the determinantal map

(D,R) �→ det(tId + xD + yR).

We use known results on the number of equivalence classes of complex determinantal
representations to show that the determinantal map is unramified over the set of
smooth hyperbolic polynomials (Theorem 1.4). We then use the fact that this set
is path-connected. In fact, an explicit path connecting any hyperbolic polynomial
to a certain fixed polynomial was constructed by Nuij in [12], which we refer to
as the N-path. Our algorithm works by constructing a lifting of the N-path to
the covering space. The advantage over an application of a blackbox homotopy
continuation solver to the zero-dimensional system of equations is that we need to
track a single path instead of as many paths as there are complex solutions. We
also recover the Helton-Vinnikov theorem from these topological considerations and
the count of equivalence classes of complex representations.

Since the singular locus has codimension at least 2 inside the set of strictly hy-
perbolic polynomials, the N-path avoids singularities for almost all starting poly-
nomials (Proposition 2.5). In the unlikely event that the N-path goes through the
singular locus, it is possible to perturb the starting point and obtain an approxi-
mate determinantal representation. We also provide an algorithm that produces a
complex determinantal representation via the complexification of the N-path.

We modify the approach of Nuij to introduce a randomized N-path, which de-
pends on a choice of random linear forms. For a given starting polynomial p, we
conjecture (Conjecture 2.8) that the randomized N-path avoids the singular lo-
cus with probability 1. This also results in a better practical complexity of the
computation than the original N-path (Remark 4.1).

Our proof-of-concept implementation is written in the top-level interpreted lan-
guage ofMacaulay2 and, by default, uses standard double floating point precision.
Even with these limitations we can compute small examples in reasonable time (see
the example in §4 for d = 6): we are able to finish examples with d ≤ 10 within one
day. With arbitrary precision arithmetic and speeding up the numerical evaluation
procedure, we see no obstacles to computing robustly for d in double digits using
the present-day hardware.

We note that the developed method constructs an intrinsically real homotopy
to find real solutions to a (specially structured) polynomial system. The only
other intrinsically real homotopy known to us is introduced for Khovanskii-Rolle
continuation in [1].
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1. Hyperbolic and determinantal polynomials

We consider real or complex homogeneous polynomials of degree d � 1 in n + 1
variables (t, x), x = x1, . . . , xn. Let

F =
{
p ∈ C[t, x] | p is homogeneous of total degree d and p(1, 0, . . . , 0) = 1

}
,

FR = F ∩ R[t, x].

A polynomial p ∈ FR is called hyperbolic if all roots of the univariate polynomial
p(t, u) ∈ R[t] are real, for all u ∈ R

n. It is called strictly hyperbolic if all these roots
are distinct, for all u ∈ Rn, u �= 0. Write

H =
{
p ∈ FR | p is hyperbolic

}
.

Proposition 1.1.

(1) The interior int(H) of H is the set of strictly hyperbolic polynomials and H
is the closure of int(H) in FR.

(2) The set int(H) is contractible and path-connected (hence so is H).
(3) A polynomial f ∈ H is strictly hyperbolic if and only if the projective variety

VC(f) defined by f has no real singular points.
(4) Let H◦ be the set of hyperbolic polynomials p ∈ H for which VC(p) is smooth.

Then int(H) \ H◦ has codimension at least 2 in FR.

Proof. (1) and (2) are proved by Nuij [12] (see also Section 2 below). (3) is proved
in [14, Lemma 2.4]. (4) follows from the fact that the elements of int(H) have no
real singularities, while complex singularities must come in conjugate pairs. �

For the remainder of this section, we restrict to the case n = 2 (plane projective
curves) and use (x, y) instead of (x1, x2).

Remark 1.2. If n = 2 and d � 3, then H◦ = int(H), i.e., every strictly hyperbolic
curve of degree at most 3 is smooth. This is simply because a real plane curve of
degree at most 3 cannot have any non-real singularities.

When d � 4, a strictly hyperbolic curve may still have complex singularities.
For example, let p = 1/19(19t4 − 31x2t2 − 86y2t2 + 9x4 + 41x2y2 + 39y4). One can
check that p is hyperbolic and that the projective plane curve defined by p has no
real singularities, hence p is strictly hyperbolic. However, (1 : ±2 : ±i) are two
pairs of complex-conjugate singular points of VC(p). Thus, p ∈ int(H) \ H◦.

We will use the notation

M =
{
(D,R) ∈

(
Symd(C))

2 |D is diagonal
}
,

MR = M∩ (Sym(R))2.

Note that, since n = 2, we have dimC F = dimR FR = dimR MR = dimC M =
d(d+3)

2 . We study the map

Φ:

{
M → F

(D,R) �→ det(tId + xD + yR)

and its restriction to MR.
The image of MR under Φ is contained in H. It is also not hard to show that it

is closed (see [14, Lemma 3.4]). Our first goal is to find a connected open subset U
of H such that the restriction of Φ to Φ−1(U) is smooth.
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For fixed p ∈ H, the group SLd(C)×{±1} acts on the determinantal representa-
tions p = det(tM1+xM2+yM3) via symmetric equivalence. In other words, any A ∈
SLd(C)×{±1} gives a new representation p = det(tAM1A

T+xAM2A
T+yAM3A

T ).
When we restrict to the normalized representations we are considering, we have an
action on pairs (D,R) ∈ Φ−1(p) by those elements A ∈ SLd(C) × {±1} for which
AAT = Id (i.e., A ∈ Od(C)) and ADAT is diagonal.

Theorem 1.3. For n = 2, any p ∈ F has only finitely many complex representa-
tions p = det(tId + xD + yR) up to symmetric equivalence. If the curve VC(p) is

smooth, the number of equivalence classes is precisely 2g−1 ·(2g+1), where g =
(
d−1
2

)
is the genus of VC(p).

Proof. For smooth curves, the equivalence classes of symmetric determinantal rep-
resentations are in canonical bijection with ineffective even theta characteristics;
see [13, Thm. 2.1] and the references given there. �

Theorem 1.4. The set H◦ of smooth hyperbolic polynomials in three variables is
an open, dense, path-connected subset of H, and each fiber of Φ over a point of H◦

consists of exactly 2g−1 · (2g + 1) · 2d−1 · d! distinct points.

Proof. The statements about the topology of H◦ follow immediately from Prop-
osition 1.1. Let p ∈ int(H) and let (D,R) ∈ Φ−1(p), which means p =
det(tId+xD+yR). The diagonal entries of D are the zeros of p(t,−1, 0). Since p is
strictly hyperbolic, these zeros are real and distinct. So D is a real diagonal matrix
with distinct entries. It follows then that the centralizer of D in Od(C) consists
precisely of the 2d diagonal matrices with entries ±1. Let S be such a matrix with
S �= ±Id. We want to identify the set of symmetric matrices R that commute with
S. Up to permutation, we may assume that the first k diagonal entries of S are
equal to −1 and the remaining d−k are equal to 1. It follows then that any R with
SR = RS must have rij = rji = 0 if i > k � j, so that R is block-diagonal. For
such R to show up in a pair (D,R) ∈ Φ−1(p), the polynomial p must be reducible.
In particular, if p ∈ H◦, there is no such S commuting with R. It follows then
that {SRS | S diagonal with S2 = Id} has 2d−1 distinct elements. Permuting the
distinct diagonal entries of D gives d! possible choices of D. This, combined with
the count of equivalence classes in the preceding theorem, completes the proof. �

Corollary 1.5. The restriction of Φ to Φ−1(H◦) is smooth.

Proof. The restriction of Φ to Φ−1(H◦) is a polynomial map with finite fibers that
is unramified over H◦, since the cardinality of the fiber does not change. Hence it
is smooth (see, for example, Hartshorne [8, III.10]). �

We sketch an argument for deducing the Helton-Vinnikov theorem from Theo-
rem 1.4.

Corollary 1.6 (Helton-Vinnikov theorem). Every hyperbolic polynomial p ∈ H in
three variables admits a determinantal representation p = det(tId + xD+ yR) with
D diagonal and R real symmetric.

Proof. Since all fibers of Φ over H◦ have the same cardinality and H◦ is path-
connected, the number of real points in each fiber must also be constant over
H◦. That number cannot be zero, since there exist fibers with real points. (This
amounts to showing that for each d � 1 there exists a real pair (D,R) such that
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p = det(tId+xD+ yR) defines a smooth curve. This can, for example, be deduced
with the help of Bertini’s theorem.) It follows that H◦ is contained in Φ(MR). On
the other hand, Φ(MR) is closed in FR by [14, Lemma 3.4] and contained in H,
hence Φ(MR) = H. �

Remark 1.7. The number of equivalence classes of real definite representations of
a hyperbolic curve is in fact also known, namely it is 2g. See [13] and references to
[16] given there. We conclude that Φ−1(p) ∩MR consists of 2g · 2d−1 · d! distinct
points for every p ∈ H◦.

Note also that, even if p is hyperbolic, it will typically admit real determinantal
representations p = det(tM1+xM2+yM3) that are not definite, i.e., are not equiv-
alent to such a representation with M1 = Id and M2,M3 real. Such representations
do not reflect the hyperbolicity of p.

2. The Nuij path

In order to use homotopy continuation methods for numerical computations, we
need an explicit path connecting any two given points in the space H of hyperbolic
polynomials.

2.1. Original N-path. Following Nuij [12], we consider the following operators on
polynomials FR ⊂ R[t, x] = R[t, x1, . . . , xn]:

T �
s : p �→ p+ s�

∂p

∂t
(� ∈ R[x] a linear form),

Gs : p �→ p(t, sx),

Fs = (T x1
s )d · · · (T xn

s )d,

Ns = F1−sGs ,

where s ∈ R is a parameter. For fixed s, all of these are linear operators on R[t, x]
taking the affine-linear subspace FR to itself. Clearly, Gs preserves hyperbolicity for
any s ∈ R, and G0(p) = td for all p ∈ FR. The operator Fs is used to “smoothen”
the polynomials along the path s �→ Gs(p). The exact statement is the following.

Proposition 2.1 (Nuij [12]). For s � 0, the operators T �
s preserve hyperbolicity.

Moreover, for p ∈ H, we have Ns(p) ∈ int(H) for all s ∈ [0, 1), with N0(p) ∈ int(H)
not depending on p and N1(p) = p. �

For p ∈ FR, we call [0, 1] 	 s �→ Ns(p) the N-path of p.

Remark 2.2. The N-path defines the contraction that appeared in Proposition 1.1(2):
for all p ∈ H, the N-path leads to N0(p) = F1G0(p) = F1(t

d) = N0(t
d).

However, it does not define a strong deformation retract as Ns(t
d) = td holds

only at the end of the N-path.

In order to ensure smoothness of the map Φ: M → H along an N-path, we
would like to ensure that the N-path stays inside the set H◦ of smooth hyperbolic
polynomials and thus away from the ramification locus, by the discussion in the
preceding section.

Example 2.3. If n = 2 and d � 3, we know that H◦ = int(H) (Remark 1.2).
For n = d = 2, we verify by explicit computation that the N-path stays inside the
strictly hyperbolic conics, which in this case is just equivalent to irreducibility.
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Let D = Diag(d1, d2) and R =

[
r(1,1) r(1,2)
r(1,2) r(2,2)

]
. The quadric

Ns(Φ(D,R)) = Ax2 +Bxy + Cy2 +Dxt+ Eyt+ Ft2

is not contained in H◦ if and only if it factors, which happens if and only if

4Disc(Ns(Φ(D,R))) = 4 det

⎡
⎣ A B/2 D/2
B/2 C E/2
D/2 E/2 F

⎤
⎦

= 2s2(s− 1)2(d1 − d2)
2

+2s2(s− 1)2 (r11 − r22)
2

+s4r212 (d1 − d2)
2

+8r212s
2 (1− s)2

+16(s− 1)4

= 0.

The sum-of-squares representation was produced using the intuition obtained by
a numerical sum-of-squares decomposition delivered by Yalmip and further exact
symbolic computations in Mathematica (see Nuij-d2.mathematica [11]). The
components of the sum-of-squares decomposition above vanish simultaneously only
when s = 1 (this proves the proposition) and either r12 = 0 or d2 = d1.

Unfortunately, for d � 4 it is no longer true that the N-path always stays inside
H◦, due to the existence of strictly hyperbolic polynomials with complex singular-
ities.

Example 2.4. Consider again the polynomial

p = 1/19(19t4 − 31x2t2 − 86y2t2 + 9x4 + 41x2y2 + 39y4),

which is contained in int(H) but not in H◦ (cf. Remark 1.2). One can verify through
direct computation that the polynomial

r =
1

124659

(
124659t4 − 221616t3(x+ y)− 324t2 −

(
205x2 − 912xy + 1580y2

)

+ 1440t
(
98x3 + 41− x2y + 316xy2 + 373y3

)

+ 40
(
1099x4 − 1568x3 − y + 5540x2y2 − 5968xy3 + 5849y4

))

is hyperbolic and smooth, i.e., r ∈ H◦, but N1/9(r) = p, so that the N-path for r
is not fully contained in H◦.

However, one can still attempt to avoid the ramification points in the following
manner.

Proposition 2.5. The N-path Ns(p), with parameter s varied along a piecewise-
linear path [0, c] ∪ [c, 1) ⊂ C, does not meet the ramification locus of Φ, for almost
all c ∈ C. (More precisely, this holds for any c taken in the complement of some
proper real algebraic subset of C � R2.)

Proof. This immediately follows from the fact that the ramification locus is a proper
complex subvariety of F and therefore has real codimension at least 2. �
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Remark 2.6. Using a random path as described in the proposition may result in a
non-real determinantal representation; indeed, a non-real path for s is not guaran-
teed to result in a real point in the fiber Φ−1(N0(p)) when a real point in Φ−1(N1(p))
is taken.

One may ask for the probability of obtaining a real determinantal representation
at the end of the path described in Proposition 2.5. (For a more precise question,
one may pick c on a unit circle with a uniform distribution.) While this probability
is clearly non-zero, deriving an explicit lower bound seems to be a very hard prob-
lem. A naive intuition suggests that the probability can be estimated as a ratio
of the number of real representations (Remark 1.7) to the total count of complex
representations (Theorem 1.4). The experiments with quartic hyperbolic curves,
however, suggest that the probability is much higher.

On the other hand, the set of polynomials for which the N-path avoids the
ramification locus altogether is dense, as the following proposition shows.

Proposition 2.7. The set of strictly hyperbolic polynomials p such that Ns(p) ∈ H◦

for all s ∈ (0, 1] is dense in H. (More precisely, its complement is a semialgebraic
subset of positive codimension.)

Proof. Consider the map

N :

{
FR × R → FR

(p, s) �→ Ns(p),

and put R = int(H) \ H◦ ⊂ FR. We want to show that the projection of the
semialgebraic set N−1(R) ⊂ FR × R onto FR has codimension at least 1.

The linear operator Ns = (T x1
1−s)

d · · · (T xn
1−s)

dGs is bijective for all s �= 0. For
p = −sxk(∂p/∂t) is only possible for p = 0, since sxk(∂p/∂t) has strictly lower
degree in t than p, so T xk

s has trivial kernel. Furthermore, Gs is bijective for s �= 0,
hence so is Ns. This implies that all fibers N−1(p) of N have dimension at most 1
(except if p = N0(p) is the fixed endpoint of the N-path). In particular, all fibers
of N over R are at most 1-dimensional, and since R has codimension 2 in FR,
this implies that N−1(R) also has codimension at least 2 in FR × R, so that the
projection of N−1(R) onto FR has codimension at least 1, as claimed. �

In principle, this proposition can be used as follows: Suppose p ∈ H is such
that the N-path intersects the ramification locus. If p ∈ int(H), we can apply the
algorithm to small random perturbations of p, which will avoid the ramification
locus with probability 1. If p is a boundary point of H, i.e., if p is not strictly
hyperbolic, we can first replace p by N1−ε(p) for small ε > 0, which is strictly
hyperbolic, and then perturb further if necessary.

On the other hand, we do not know whether the fixed endpoint N0(p) = F1(t
d) is

contained inH◦ in all degrees d, although the direct computation in our experiments
suggests that this is the case. (See also Theorem 2.10 below.)

2.2. Randomized N-path. The following modification of Nuij’s construction has
proved itself useful in computations. Let e = max{d, n} and choose a sequence
L = (�1, . . . , �e) ∈ R[x]e of e linear forms. The randomized N-path NL

s given by L
is defined by

FL
s = T �1

s T �2
s · · ·T �e

s ,

NL
s = FL

1−s Gs ,
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with T , G as before. Thus the randomized N-path only involves max{d, n} differen-
tial operators rather than dn. In practice, replacing the N-path by the randomized
N-path has worked very well (cf. Remark 4.1).
The product of operators in FL

s can be expanded explicitly, namely

FL
s (p) =

e∑
k=0

skσk(�1, . . . , �e)
∂

∂tk
p

for all p ∈ FR, where σk(y1, . . . , ye) denotes the elementary symmetric polynomial
of degree k in the variables y1, . . . , ye.

Conjecture 2.8. Let e ≥ {d, n}.
(1) For a given p ∈ H, the set of L such that NL

s (p) ∈ H◦ for s ∈ [0, 1) is dense
in R[x]e.

(2) For a general choice of the linear forms L ∈ R[x]e, the set of polynomials
p such that NL

s (p) ∈ H◦ for all s ∈ [0, 1] is dense in H.

Note that e is chosen minimally in the sense that if e < d or e < n, the fixed
endpoint NL

0 (p) = FL
1 (td) is no longer smooth or even strictly hyperbolic.

We will show that if n = 2, then at least that endpoint lies in H◦ for a generic
choice of L. The proof relies on Bertini’s theorem in the following form.

Theorem 2.9 (Bertini’s theorem, extended form; [6, Thm. 4.1]). On an arbitrary
ambient variety, if a linear system has no fixed components, then the general mem-
ber has no singular points outside of the base locus of the system and of the singular
locus of the ambient variety.

For the proof, see also [5, Thm. 6.6.2].

Theorem 2.10. Let n = 2. For all d � 2, the plane projective curve VC(F
L
1 (td))

is smooth for a generic choice of L ∈ C[x, y]d1.

Proof. We first show the following: Let q ∈ C[t, x, y] be homogeneous and monic
in t with VC(q) smooth, q �= t. Let � ∈ C[x, y]1 and k a positive integer, then
T �
1 (t

kq) = tkq + �(ktk−1q + tkq′) = tk−1
(
(t+ k�)q + t�q′

)
, where q′ = ∂q/∂t. Put

r� = (t+ k�)q + t�q′.

We claim that, for generic �, the variety VC(r�) is smooth. To see this, consider
R = (t+u)q+tvq′ ∈ C[t, x, y, u, v]. We find ∂R/∂u = q and ∂R/∂v = tq′, hence the
singular locus of the variety VC(R) in P

4 is contained in VC(q) ∩ VC(tq
′). Consider

the linear series on VC(R) defined by u = k�, v = �, � ∈ C[x, y]1. It is basepoint-
free (in particular without fixed components), since the only basepoint on P4 is
(1 : 0 : 0 : 0 : 0), and that is not a point on VC(R). By Bertini’s theorem as
stated above, the variety VC(r�) has no singular points outside the singular locus
of VC(R) for generic � ∈ C[x, y]1. Thus we are left with showing that, for any point
P ∈ VC(q) ∩ VC(tq

′), we have (∇r�)(P ) �= 0 for generic � ∈ C[x, y]1. Since VC(q)
is smooth by assumption, q and tq′ are coprime in C[t, x, y], hence the intersection
VC(q) ∩ VC(tq

′) in P
2 is finite. If P is any of these intersection points, suppose

first that q′(P ) = 0, which implies either (∂q/∂x)(P ) �= 0 or (∂q/∂y)(P ) �= 0, since
VC(q) is smooth. Suppose a = (∂q/∂x)(P ) �= 0 and put b = (∂q′/∂x)(P ), then

(∂r�/∂x)(P ) =
(
t(P ) + k�(P )

)
a+ t(P )�(P )b

= (ka+ bt(P ))�(P ) + at(P ).
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If ka �= −bt(P ), there is at most one value �(P ) for which (∂r�/∂x)(P ) = 0.
Otherwise, if ka = −bt(P ), then at(P ) �= 0, so (∂r�/∂x)(P ) �= 0. The case
(∂q/∂x)(P ) = 0 and (∂q/∂y)(P ) �= 0 is analogous. Finally, if q′(P ) �= 0, then
we must have t(P ) = 0, hence (∂r�/∂t)(P ) = (k + 1)�(P )q′(P ) is non-zero, pro-
vided that �(P ) �= 0.

Thus we have shown that VC(r�) is smooth for generic �. To prove the original
claim, let L ∈ C[x, y]d1 and consider

FL
1 (td) = T �1

1 · · ·T �d
1 (td).

Applying the above, with k = d and q = 1, shows that T �d
1 (td) is of the form td−1q,

and VC(q) is smooth for generic �d. The claim now follows by induction. �

3. Algorithm and implementation

Given a hyperbolic polynomial p ∈ H, the N-path Ns(p) connects p = N1(p) with
p0 = N0(p) which does not depend on p. This suggests the following algorithm to
compute a determinantal representation (Dp, Rp) ∈ MR for p:

(1) Pick (Dq, Rq) ∈ MR giving a strictly hyperbolic polynomial q = Φ(Dq, Rq).
Track the homotopy path Ns(q) from s = 1 with the start solution (Dq, Rq)
to s = 0 producing the target solution (Dp0

, Rp0
). Then p0 = Φ(Dp0

, Rp0
).

(2) Track the homotopy path Ns(p) from s = p0 with the start solution
(Dp0

, Rp0
) to s = 1 to obtain (Dp, Rp) such that p = Φ(Dp, Rp).

In principle, the first step only has to be performed once in each degree d. In
what follows we describe two ways to set up a polynomial homotopy continuation
for the pullback of an N-path.

3.1. N-path in the monomial basis. One way is to take the coefficients of the
polynomial Φ(D,R)−Ns(p) ∈ C[D,R, s][t, x, y] with respect to the monomial basis
of F . This gives a family of square (#equations=#unknowns) systems of polyno-
mial equations in C[D,R] parametrized by s.

Then this family is passed to a homotopy continuation software package (we use
NAG4M2 [10]). As long as s ∈ C follows a path that ensures that Ns(p) stays in
H◦ ⊂ H, there are no singularities on the homotopy path except, perhaps, at the
target system (see the discussion in Section 2).

The bottleneck of this approach is the expansion of the determinant in the ex-
pression Φ(D,R) and evaluation of its (t, x, y)-coefficients: it takes Θ(d!) operations
and results in an expression with Θ(d!) terms. This limits us to d ≤ 5 in the current
implementation of this approach.

3.2. N-path with respect to a dual basis. While it may seem that picking a
basis of F different from the monomial one does not bring any advantage, it turns
out to be crucial for practical computation in case of larger d.

We fix a dual basis in F∗ consisting of m = dimF evaluations ei at general
points (ti, xi, yi) ∈ C3, for i = 1, . . . ,m. The current implementation generates the
points with coordinates on the unit circle in C at random.

Now the family of polynomial systems to consider is

hi = ei(Φ(D,R)−Ns(p)) ∈ C[D,R, s], i = 1, . . . ,m.

Since ei(Φ(D,R)) = det(Iti + Dxi + Ryi), the evaluation of hi and its partial
derivatives costs O((dimF)3) = O(d6).
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Evaluation of the (unexpanded) expression Φ(D,R) and its partial derivatives
is much faster than expanding it in the monomial basis. The latter costs Θ(d!) in
the worst case and, in addition, numerical tracking procedures would still need to
evaluate the large expanded expression and its partial derivatives.

We modified the NAG4M2 implementation of evaluation circuits, which can be
written as straight-line programs, to include taking a determinant as an atomic
operation.

4. Example

The last improvement in the implementation allows us to compute examples for
larger d. With an implementation of the homotopy tracking in arbitrary precision
arithmetic, we see no obstacles to computing determinantal representations for d
in double digits.

To give an example, we choose the sextic

p =− 36x6 − 157x4y2 − 20x3y3 − 109x2y4 + 246xy5 − 92y6 − 12x3y2t+ 90x2y3t

+ 10xy4t+ 76y5t+ 49x4t2 + 156x2y2t2 − 16xy3t2 + 132y4t2 + 12xy2t3

− 14y3t3 − 14x2t4 − 27y2t4 + t6.

The polynomial p is hyperbolic, since p = Φ(D,R) with

(4.1) D = Diag(−3,−2,−1, 1, 2, 3), R =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 −1 1 2 1
1 0 −1 −2 1 −1
−1 −1 0 1 2 1
1 −2 1 0 −1 1
2 1 2 −1 0 −2
1 −1 1 1 −2 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Assuming this pair (D,R) is not known, let us describe the application of our
algorithm to recover a determinantal representation of p; one can reproduce the
following results by running lines in showcase.m2 [11]. First, taking an arbitrary
pair (Dq, Rq) and tracking the N-pathNs(q) from the strictly hyperbolic polynomial
q = Φ(Dq, Rq) = N1(q) to the fixed polynomial p0 = N0(q), we get

Dp0
= Diag(.222847, 1.18893, 2.99274, 5.77514, 9.83747, 15.9829),

Rp0
=

⎡
⎢⎢⎢⎢⎢⎢⎣

6 2.51352 1.19571 4.04309 1.42786 −1.98597
2.51352 6 3.08656 .468873 2.38468 1.05948
1.19571 3.08656 6 .785785 4.66027 2.29433
4.04309 .468873 .785785 6 1.6226 .933245
1.42786 2.38468 4.66027 1.6226 6 3.50198
−1.98597 1.05948 2.29433 .933245 3.50198 6

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Tracking the N-path Ns(p) from p0 = N0(p) = N0(q) to p = N1(p), we obtain

D′ = Diag(−3,−2,−1, 1, 2, 3),

R′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 .596508 −1.43241 2.00316 1.10471 −.725394
.596508 0 .739773 1.79407 .0604427 −1.60948
−1.43241 .739773 0 1.56816 1.66137 −.165953
2.00316 1.79407 1.56816 0 .839374 2.00885
1.10471 .0604427 1.66137 .839374 0 1.57679
−.725394 −1.60948 −.165953 2.00885 1.57679 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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which is an alternative determinantal representation of p. While we returned to the
same point p in the base of the cover Φ, the route taken has led us to a different
sheet than the sheet of the fiber point (D,R) ∈ Φ−1(p) in (4.1) used to construct
this example.

With the default settings of NAG4M2, the homotopy tracking algorithm takes
28 steps on the first path and 15 steps on the second. We were not able to find
a determinantal representation for this example trying to solve the system p =
Φ(D,R) directly. This is in line with what is reported in [13]: the largest examples
that the general solvers could compute with this näıve strategy are in degree d = 5.

Remark 4.1. The following is a table of experiments that can be reproduced using
the examples posted at [11]. Note that the paths produced by the original and
randomized strategies for the same problem are different paths and some random
choices are made even in the algorithm that follows the original (not randomized)
N-path; see §3.2.

d m = dimF randomized? precision(bits) #steps time(seconds)
6 27 no 53 22 1161
6 27 yes 53 24 1326
6 27 no 53 fail
6 27 no 100 38 1870
6 27 yes 53 39 2098
7 35 no 53 fail
7 35 no 100 42 9273
7 35 yes 53 37 7315
8 44 no 53 27 18173
8 44 yes 53 22 12091
9 54 no 53 fail
9 54 no 100 43 60692
9 54 yes 53 38 43410
10 65 no 53 fail
10 65 no 100 fail
10 65 yes 53 36 163744

Our empirical conclusion is that using the randomized N-path instead of the original
N-path allows computing determinantal representations for larger examples than
the original N-path.

The main underlying reason that may explain the observed lower average prac-
tical complexity, in our opinion, is that degs N

L
s (p) = d while degs Ns(p) = 2d,

where d = deg p.
One other reason for a path with lower degree in s having better properties on

average is better average conditioning; one may observe that higher precision was
needed to finish with the original strategy for several examples. The same increase
in precision did not help in our example for d = 10.

That said, condition numbers for the fixed end (s = 0 in Proposition 2.1) of the
original N-path can be better than the corresponding end of the random N-path:
the latter depends on the random choices and can be significantly worse if unlucky.
We provide two examples for d = 6 (separated by a dashed line): if the original
strategy does not fail, then it is even slightly faster than the randomized one. The
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former is faster near one end of the path (s = 0), while the later is faster near the
other end (s = 1).

Acknowledgements

The authors are grateful to Institut Mittag-Leffler, where this project began,
for hosting us in the Spring of 2011. The authors would also like to thank Greg
Blekherman and Victor Vinnikov for helpful discussions.

References

[1] D. J. Bates and F. Sottile, Khovanskii-Rolle continuation for real solutions, Found. Comput.
Math. 11 (2011), no. 5, 563–587, DOI 10.1007/s10208-011-9097-1. MR2844789

[2] A. Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64, DOI
10.1307/mmj/1030132707. Dedicated to William Fulton on the occasion of his 60th birth-
day. MR1786479

[3] A. C. Dixon, Note on the reduction of a ternary quantic to a symmetrical determinant,
Cambr. Proc. 11 (1902), 350–351.

[4] B. A. Dubrovin, Matrix finite-gap operators (Russian), Current problems in mathematics,
Vol. 23, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.,
Moscow, 1983, pp. 33–78. MR734313
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