Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Stable splitting of polyharmonic operators by generalized Stokes systems


Author: Dietmar Gallistl
Journal: Math. Comp. 86 (2017), 2555-2577
MSC (2010): Primary 31B30, 35J30, 65N12, 65N15, 65N30
DOI: https://doi.org/10.1090/mcom/3208
Published electronically: March 29, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A stable splitting of $ 2m$-th order elliptic partial differential equations into $ 2(m-1)$ problems of Poisson type and one generalized Stokes problem is established for any space dimension $ d\geq 2$ and any integer $ m\geq 1$. This allows a numerical approximation with standard finite elements that are suited for the Poisson equation and the Stokes system, respectively. For some fourth- and sixth-order problems in two and three space dimensions, precise finite element formulations along with a priori error estimates and numerical experiments are presented.


References [Enhancements On Off] (What's this?)

  • [1] Chérif Amrouche, Philippe G. Ciarlet, and Patrick Ciarlet Jr., Vector and scalar potentials, Poincaré's theorem and Korn's inequality, C. R. Math. Acad. Sci. Paris 345 (2007), no. 11, 603-608. MR 2371475, https://doi.org/10.1016/j.crma.2007.10.020
  • [2] Chérif Amrouche and Vivette Girault, Problèmes généralisés de Stokes, Portugal. Math. 49 (1992), no. 4, 463-503. MR 1300580
  • [3] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7-32. MR 813687
  • [4] Garth A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), no. 137, 45-59. MR 0431742
  • [5] John W. Barrett, Stephen Langdon, and Robert Nürnberg, Finite element approximation of a sixth order nonlinear degenerate parabolic equation, Numer. Math. 96 (2004), no. 3, 401-434. MR 2028722, https://doi.org/10.1007/s00211-003-0479-4
  • [6] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci. 2 (1980), no. 4, 556-581. MR 595625, https://doi.org/10.1002/mma.1670020416
  • [7] Daniele Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1-120. MR 2652780, https://doi.org/10.1017/S0962492910000012
  • [8] Daniele Boffi, Franco Brezzi, and Michel Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013. MR 3097958
  • [9] Dietrich Braess, Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd ed., Cambridge University Press, Cambridge, 2007. MR 2322235
  • [10] Susanne C. Brenner, $ C^0$ interior penalty methods, Frontiers in numerical analysis--Durham 2010, Lect. Notes Comput. Sci. Eng., vol. 85, Springer, Heidelberg, 2012, pp. 79-147. MR 3051409, https://doi.org/10.1007/978-3-642-23914-4_2
  • [11] S. C. Brenner, P. Monk, and J. Sun, $ C^0$ interior penalty Galerkin method for biharmonic eigenvalue problems, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 (R. M. Kirby, M. Berzins, and J. S. Hesthaven, eds.), Lecture Notes in Computational Science and Engineering, vol. 106, Springer International Publishing, 2015, pp. 3-15.
  • [12] F. Brezzi and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp. 47 (1986), no. 175, 151-158. MR 842127, https://doi.org/10.2307/2008086
  • [13] Franco Brezzi, Michel Fortin, and Rolf Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models Methods Appl. Sci. 1 (1991), no. 2, 125-151. MR 1115287, https://doi.org/10.1142/S0218202591000083
  • [14] C. Carstensen, K. Köhler, D. Peterseim, and M. Schedensack, Comparison results for the Stokes equations, Appl. Numer. Math. 95 (2015), 118-129. MR 3349689, https://doi.org/10.1016/j.apnum.2013.12.005
  • [15] Philippe G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • [16] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33-75. MR 0343661
  • [17] Philippe Destuynder and Thierry Nevers, Une modification du modèle de Mindlin pour les plaques minces en flexion présentant un bord libre, RAIRO Modél. Math. Anal. Numér. 22 (1988), no. 2, 217-242. MR 945123
  • [18] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 34, 3669-3750. MR 1915664, https://doi.org/10.1016/S0045-7825(02)00286-4
  • [19] Dietmar Gallistl, Adaptive nonconforming finite element approximation of eigenvalue clusters, Comput. Methods Appl. Math. 14 (2014), no. 4, 509-535. MR 3259027, https://doi.org/10.1515/cmam-2014-0020
  • [20] Dietmar Gallistl, Morley finite element method for the eigenvalues of the biharmonic operator, IMA J. Numer. Anal. 35 (2015), no. 4, 1779-1811. MR 3407244, https://doi.org/10.1093/imanum/dru054
  • [21] P. Grisvard, Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. MR 1173209
  • [22] Thirupathi Gudi and Michael Neilan, An interior penalty method for a sixth-order elliptic equation, IMA J. Numer. Anal. 31 (2011), no. 4, 1734-1753. MR 2846773, https://doi.org/10.1093/imanum/drq031
  • [23] J. R. King, The isolation oxidation of silicon: the reaction-controlled case, SIAM J. Appl. Math. 49 (1989), no. 4, 1064-1080. MR 1005497, https://doi.org/10.1137/0149064
  • [24] P. Lascaux and P. Lesaint, Some nonconforming finite elements for the plate bending problem, Rev. Française Automat. Informat. Recherche Operationnelle Sér. Rouge Anal. Numér. 9 (1975), no. R-1, 9-53. MR 0423968
  • [25] Zengjian Lou and Alan McIntosh, Hardy space of exact forms on $ {\mathbb{R}}^N$, Trans. Amer. Math. Soc. 357 (2005), no. 4, 1469-1496. MR 2115373, https://doi.org/10.1090/S0002-9947-04-03535-4
  • [26] H. Melzer and R. Rannacher, Spannungskonzentrationen in Eckpunkten der Kirchhoffschen Platte, Bauingenieur 55 (1980), 181-184.
  • [27] M. Schedensack, A class of mixed finite element methods based on the Helmholtz decomposition, Oberwolfach Reports 12 (2015), no. 3, 2555-2556.
  • [28] M. Schedensack, A class of mixed finite element methods based on the Helmholtz decomposition in computational mechanics, Doctoral dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015.
  • [29] M. Schedensack, A new discretization for $ m$th-Laplace equations with arbitrary polynomial degrees, SIAM J. Numer. Anal. 54 (2016), no. 4, 2138-2162. MR 3519555, https://doi.org/10.1137/15M1013651
  • [30] Gilbert Strang and George J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR 0443377
  • [31] Ming Wang and Jinchao Xu, Minimal finite element spaces for $ 2m$-th-order partial differential equations in $ R^n$, Math. Comp. 82 (2013), no. 281, 25-43. MR 2983014, https://doi.org/10.1090/S0025-5718-2012-02611-1
  • [32] Alexander Ženíšek, Interpolation polynomials on the triangle, Numer. Math. 15 (1970), 283-296. MR 0275014

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 31B30, 35J30, 65N12, 65N15, 65N30

Retrieve articles in all journals with MSC (2010): 31B30, 35J30, 65N12, 65N15, 65N30


Additional Information

Dietmar Gallistl
Affiliation: Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für Technologie, Englerstr. 2, 76131 Karlsruhe, Germany

DOI: https://doi.org/10.1090/mcom/3208
Keywords: Finite element methods, Stokes system, mixed finite elements, polyharmonic equation
Received by editor(s): January 4, 2016
Received by editor(s) in revised form: July 7, 2016
Published electronically: March 29, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society