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AN ENTROPY STABLE, HYBRIDIZABLE DISCONTINUOUS

GALERKIN METHOD FOR THE COMPRESSIBLE

NAVIER-STOKES EQUATIONS

D. M. WILLIAMS

Abstract. This article proves that a particular space-time, hybridizable dis-
continuous Galerkin method is entropy stable for the compressible Navier-
Stokes equations. In order to facilitate the proof, ‘entropy variables’ are uti-
lized to rewrite the compressible Navier-Stokes equations in a symmetric form.
The resulting form of the equations is discretized with a hybridizable discon-
tinuous finite element approach in space, and a classical discontinuous finite
element approach in time. Thereafter, the initial solution is shown to contin-
ually bound the solutions at later times.

1. Introduction

In the last decade, hybridizable, discontinuous finite element methods (FEMs)
have emerged as a promising alternative to classical discontinuous FEMs. These
methods have several distinct advantages over their classical counterparts: 1) The
hybridizable methods maintain high-order accuracy at the individual element level
by introducing local degrees of freedom, as opposed to the global degrees of free-
dom that are introduced for this purpose in classical methods. The local degrees of
freedom are in turn explicitly incorporated into local problems that facilitate paral-
lelization, and are only incorporated into the global problem implicitly through the
principle of ‘static condensation.’ 2) In accordance with 1), the number of global

degrees of freedom for a particular time level approximately scales with O(p
(d−1)
s )

for hybridizable methods, while it scales with O
(
pds
)
for classical methods, where ps

is the spatial polynomial order, as opposed to pt which is the temporal polynomial
order, and d is the number of spatial dimensions. Therefore, for sufficiently high
order, i.e., sufficiently large values of ps, the hybridizable methods will require less
global degrees of freedom (cf. [58] for a more precise comparison). 3) The hybridiz-
able methods achieve optimal rates of convergence for the velocity and the velocity
gradient: ps + 2 and ps + 1, respectively, for ps ≥ 1 and the appropriate post-
processing within incompressible, smooth, viscous-dominated flows; alternatively
classical methods achieve suboptimal convergence: ps +1 and ps, respectively [48].

Broadly speaking, there are two distinct classes of hybridizable discontinuous
FEMs: hybridizable discontinuous Galerkin (HDG) methods and hybridizable dis-
continuous Petrov-Galerkin (HDPG) methods. This article will focus on the former,
arguably more popular class of methods, although, the interested reader is referred
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to [41–43] for more information about HDPG methods. For HDG methods, there
have been significant efforts to leverage their aforementioned advantages, particu-
larly in the field of computational fluid dynamics [2, 17, 18, 32, 34, 38, 47–50, 53, 54,
57, 59]. (Note that this list of references is by no means exhaustive). In the course
of these efforts, there have been attempts to rigorously quantify the stability of
HDG methods. In particular, Cockburn et al. ([9, 10, 12, 13]) proved existence and
uniqueness of HDG solutions for a large class of elliptic model problems. Nguyen
et al. [44,45] proved that certain HDG schemes satisfy energy inequalities for large
classes of linear and nonlinear steady, convection-diffusion model problems. Nguyen
et al. [46], and Cockburn and Gopalakrishnan [11], and Egger and Waluga [16]
proved the existence and uniqueness of HDG solutions for the steady Stokes equa-
tions. Finally, Rhebergen and Cockburn [53] proved the existence and uniqueness
of HDG solutions for the Oseen equations.

The primary goal of this article is to extend prior research efforts by rigorously
establishing the stability of HDG schemes for a larger class of problems. In par-
ticular, this work will focus on proving the stability of a space-time HDG scheme
for the unsteady, compressible Navier-Stokes (NS) equations for all d ≥ 2, ps ≥ 1,
and pt ≥ 0. This scheme technically utilizes an HDG approach in space and a DG
approach in time, but it will be henceforth referred to as a space-time HDG scheme
for the sake of brevity. To the author’s knowledge, this is the first time that such
an ambitious proof of stability has been attempted for such a scheme. In what
follows, the proof of stability will require a symmetrization of the compressible NS
equations via the utilization of so-called ‘entropy variables’. The existence of an
entropy-based symmetric formulation of the compressible NS equations has been
known for some time, and has been discussed in significant detail in [22,23,37,40].
There have been several recent efforts to leverage the symmetric formulation to
prove stability of various numerical schemes (for instance to name just a few efforts
[7,8,19–21]). However, overall, there have been relatively few efforts to leverage the
symmetric formulation to prove the stability of FEMs. In this regard, the work of
Hughes et al. [31], Shakib et al. [55], Barth [4], Jiang et al. [33], and Hou et al. [29]
stands out. In [31] and [55], a straightforward symmetrization is introduced, and
is successfully employed to prove the entropy stability of a space-time, streamline
upwind Petrov-Galerkin (SUPG) scheme for the compressible NS equations. In [4],
an alternative symmetrization is introduced and employed to prove the entropy
stability of space-time DG and Galerkin least squares (GLS) schemes for the invis-
cid, compressible NS equations. Finally, in [33] and [29], the entropy stability of
a DG method is established for nonlinear systems of hyperbolic conservation laws
(a category of laws that contains the inviscid, compressible NS equations). As a
result of this work, the entropy stability of classical FEMs is well established. In
what follows, this work is expanded to treat hybridizable methods.

The format of this paper is as follows. Section 2 introduces a symmetric formu-
lation of the unsteady, compressible NS equations, and then section 3 discretizes it
using an HDG approach in space and a DG approach in time. Section 4 proves the
stability of the resulting space-time HDG scheme for the unsteady, compressible
NS equations. In this section, stability is first established for the inviscid form of
the equations and then the viscous form. Then, section 5 presents some concluding
remarks. Finally, Appendix A explains the notation used throughout the article,
and Appendix B contains several lemmas that support the proofs that are presented
in section 4.
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2. The compressible NS equations

Consider the unsteady, compressible NS equations written in conservative form
with associated boundary conditions as follows:

u,t + f i
,xi

− gi
,xi

= 0 in Ω× T,(2.1)

L
(
u,u∂ ,u,x,u

∂
,x

)
= 0 on ∂Ω× T,(2.2)

where t represents the temporal coordinate in the one-dimensional domain T , x ∈
R

d denotes the spatial coordinates in the d-dimensional domain Ω, ∂Ω denotes the
(d − 1)-dimensional boundary of Ω, u denotes the m-valued solution, f i = f i (u)
denotes the m-valued inviscid fluxes in the i = 1, . . . , d directions, gi = gi (u,u,x)
denotes the m-valued viscous fluxes also in the i = 1, . . . , d directions, (where it
should be noted that the gradient u,x =

{
u,xj

}
has components in the j = 1, . . . , d

directions as well), and L is a linear function of the solution, its gradient, and the
boundary data. The solution, inviscid fluxes, and viscous fluxes take the following
precise forms when d = 3 and m = 5,

u =

⎡⎢⎢⎢⎢⎣
ρ

ρV1

ρV2

ρV3

ρ
(
e+ 1

2V
kVk

)

⎤⎥⎥⎥⎥⎦ ,(2.3)

f1 =

⎡⎢⎢⎢⎢⎢⎣
ρV1

ρV1V1 + p
ρV1V2

ρV1V3

ρV1
(
e+ 1

2V
kVk + p

ρ

)

⎤⎥⎥⎥⎥⎥⎦ ,f2 =

⎡⎢⎢⎢⎢⎢⎣
ρV2

ρV1V2

ρV2V2 + p
ρV2V3

ρV2
(
e+ 1

2V
kVk + p

ρ

)

⎤⎥⎥⎥⎥⎥⎦ ,

f3 =

⎡⎢⎢⎢⎢⎢⎣
ρV3

ρV1V3

ρV2V3

ρV3V3 + p

ρV3
(
e+ 1

2V
kVk + p

ρ

)

⎤⎥⎥⎥⎥⎥⎦ ,

(2.4)

g1 =

⎡⎢⎢⎢⎢⎣
0
τ11
τ21
τ31

τ1jV
j + κT,x1

⎤⎥⎥⎥⎥⎦ , g2 =

⎡⎢⎢⎢⎢⎣
0
τ12
τ22
τ32

τ2jV
j + κT,x2

⎤⎥⎥⎥⎥⎦ , g3 =

⎡⎢⎢⎢⎢⎣
0
τ13
τ23
τ33

τ3jV
j + κT,x3

⎤⎥⎥⎥⎥⎦ ,(2.5)

where ρ is the density, V =
{
Vi
}
is the velocity vector, e is the internal energy, p

is the pressure, κ is the heat conductivity coefficient, T is the temperature, and τ
is the viscous stress tensor

(2.6) τij = μ
(
Vi

,xj
+Vj

,xi

)
− 2

3
μδijV

l
,xl

,

and where μ is the shear viscosity coefficient.
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In their present form, the compressible NS equations (equation (2.1)) are difficult
to analyze or discretize. As a result, it is common practice (cf. for instance [26,27])
to rewrite the compressible NS equations as a first-order system of equations as
follows:

σi − gi = 0,(2.7)

u,t + f i
,xi

− σi
,xi

= 0,(2.8)

where simplification to a first-order system has required the introduction of an
auxiliary variable σi. In order to further facilitate analysis, one may ‘symmetrize’
(2.7) and (2.8) by introducing the m-valued entropy variable v, where for d = 3
and m = 5,

v =
1

e (γ − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−VkVk−2e(γ−log(e(γ−1)ρ1−γ))
2e(γ−1)

V1

V2

V3

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(2.9)

and where γ is the ratio of specific heats. This formulation of v arises from the work
of [31] and [55]. Although the precise formulation is not necessary for subsequent
analysis, it is provided here for the sake of completeness.

On writing the solution as a function of the entropy variable (u = u (v)) and
then introducing the result into (2.7) and (2.8), one obtains

σi − gi
,u,xj

u,vv,xj
= 0,(2.10)

u,vv,t + f i
,uu,vv,xi

− σi
,xi

= 0.(2.11)

In line with the approach of Barth [4], one may introduce the following definitions
for the quantities that appear in (2.10) and (2.11)

Mij = gi
,u,xj

, Ã0 = u,v, M̃ij = MijÃ0,(2.12)

Ai = f i
,u, Ãi = AiÃ0,(2.13)

where Ã0 is symmetric positive-definite (SPD), {M̃ij} is symmetric positive semi-

definite (SPSD), and Ãi is symmetric. These matrices are associated with real-
valued, scalar functions U (u), F i (u), U (v), and F i (v) defined such that

U,v = uT , U,v,v = u,v,(2.14)

F i
,v =

(
f i
)T

, F i
,v,v = f i

,v,(2.15)

U (u) = vT (u)u− U (v (u)) , F i (u) = vT (u) f i (u)−F i (v (u)) .(2.16)

From the definitions of U (u), F i (u), U (v), and F i (v), it immediately follows
(cf. [4]) that the following lemma holds.
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Lemma 2.1 (Barth [4], p. 199).

vT = U,u, vTf i
,u = F i

,u.(2.17)

Proof. The proof appears in [4]. �

The identities in (2.13)–(2.17) will be utilized directly and indirectly in the sub-
sequent stability analysis. For now, one may set these aside, and proceed by using
the definitions in (2.12) in order to rewrite (2.10) and (2.11) as follows:

σi − M̃ij (v)v,xj
= 0,(2.18)

u,t (v) + f i
,xi

(v)− σi
,xi

= 0.(2.19)

3. A space-time HDG scheme

One can now proceed to begin discretizing (2.18) and (2.19). Towards this end,
consider tessellating the space-time domain (Ω× T ) with space-time elements. Let
In = (tn, tn+1) denote the nth time interval (where T =

⋃
n I

n) and let Th denote
the d-triangulation of Ω that contains nonoverlapping, d-dimensional simplex ele-
ments Tk. Here, it is assumed that Ω is polygonal, so that Ω and Th coincide, i.e.,
Ω =

⋃
Tk∈Th

Tk. The full space-time elements Tk × In are shown in Figure 1.

Figure 1. Space-time elements for d = 2 (left) and d = 3 (right).

In addition, one may introduce Eh in order to denote the set of (d−1)-dimensional
faces (F�) of the d-triangulation. For each face, it is possible to arbitrarily label
one side as the ‘−’ side and the opposite side as the ‘+’ side. With this convention,
one may define for each face a unit normal n̂ that points from the ‘−’ to the ‘+’
side of a face.

Now, it is useful to note that the set of d-triangulation faces can be partitioned
such that Eh = E0

h ∪ E∂
h , where E0

h and E∂
h are the interior and boundary faces,

respectively (cf. Figure 2 that illustrates this for d = 2). Also, since Ω is polygonal,
its boundary ∂Ω coincides with E∂

h , i.e. ∂Ω =
⋃

F
�∈E∂

h

F�.

In a natural fashion, the (d − 1)-dimensional faces of the individual elements,
∂Tk = {Fl} , l = 1, . . . , d + 1, coincide with the faces of the d-triangulation. For
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Figure 2. Interior and boundary faces for the spatial part of a
mesh for d = 2.

an element, one can define unit normal vectors n for each face of the element such
that they point outward from the interior of the element.

Having defined the d-triangulation Th and its faces Eh, one may define the fol-
lowing function spaces:

Wh =
{
wh : wh ∈ (L2 (Ω× In))m ,wh|Tk×In

∈
(
P(pt,ps) (Tk × In)

)m
, ∀Tk ∈ Th

}
,

Ŵ
h
=
{
ŵh : ŵh ∈ (L2 (Eh × In))m , ŵh|F�×In

∈
(
P(pt,ps) (F� × In)

)m
, ∀F� ∈ Eh

}
,

Φh =

{
φh : φh ∈ ((L2 (Ω× In))

m
)
d
,φh|Tk×In

∈
((

P(pt,ps) (Tk × In)
)m)d

, ∀Tk ∈ Th
}
,

where P(pt,ps) (Tk × In) is the function space of polynomials of order ≤ pt and ≤ ps
on Tk × In.

3.1. Discretizing the auxiliary equation. In order to begin discretizing the
auxiliary equation, consider substituting σh ∈ Φh and vh ∈ Wh in place of σ and
v in (2.18), multiplying the resulting expression by φh ∈ Φh, and integrating over
space and time. Upon integrating the resulting expression by parts, replacing vh in
the spatial boundary integral with v̂h, integrating by parts again, and rearranging
the result, one obtains

(3.1)

∫
In

∑
Tk∈Th

[∫
Tk

[(
φh
)i]T (

σh
)i
dx

]
dt

=

∫
In

∑
Tk∈Th

[∫
Tk

[(
φh
)i]T

M̃ij

(
vh
)
vh
,xj

dx

]
dt

+

∫
In

∑
Tk∈Th

[∫
∂Tk

[(
φh
)i]T

M̃ij

(
vh
) [

v̂h − vh
]
njdx̂

]
dt,



AN ENTROPY STABLE HDG METHOD FOR NS EQUATIONS 101

where v̂h ∈ Ŵ
h
and n ∈ R

d. It is now possible to obtain a definition for
(
σh
)i

from (3.1). Towards this end, one may define the following ‘element-based lifting
operator’ R such that ∫

Tk

ϑT
j Rj (q;n) dx =

∫
∂Tk

ϑT
j q n

jdx̂,(3.2)

where ϑ ∈ ((L2 (Ω))
m)

d
and q ∈

(
Wh|∂Tk

+ Ŵ
h
|∂Tk

)
. Note that the existence of

R is assured by the Riesz representation theorem. On introducing the definition of

R into (3.1), one obtains the following definition of
(
σh
)i

(
σh
)i

= M̃ij

(
vh
) [

vh
,xj

+Rj
(
v̂h − vh;n

)]
.

In a similar fashion, one can introduce the face-based lifting operator rFl
,

(3.3)

∫
Tk

ϑT
j rjFl

(q;n) dx =

∫
Fl

ϑT
j q n

jdx̂,∑
Fl∈∂Tk

∫
Tk

ϑT
j rjFl

(q;n) dx =

∫
∂Tk

ϑT
j q n

jdx̂,

where it should be noted that the face-based and element-based lifting operators
are related as follows:

Rj (q;n) =
∑

Fl∈∂Tk

rjFl
(q;n) .

In turn, the definition of
(
σh
)i

takes the following approximate ‘Bassi-Rebay 2’
(BR2)-type form (cf. [6]) on the individual faces of an element(

σh
)i ∣∣∣∣

Fl∈∂Tk

≈ M̃ij

(
vh
) [

vh
,xj

+ ηFl
rjFl

(
v̂h − vh;n

)]
,

where ηFl
∈ R is a user specified constant in the BR2 approach. Constraints on the

value of ηFl
that are required in order to ensure stability, will be given in section 4.

3.2. Discretizing the primary equation. In order to begin discretizing the pri-
mary equation, consider substituting σh ∈ Φh and vh ∈ Wh in place of σ and v
in (2.19), multiplying the resulting expression by wh ∈ Wh, and integrating over
space and time. Upon integrating the resulting expression by parts, replacing f ini

and σini in the spatial boundary integrals with f̂
(
vh, v̂h;n

)
and σ̂

(
vh, v̂h,vh

,x;n
)
,

respectively, and adding a stabilizing term, one obtains
(3.4)∫

In

∑
Tk∈Th

[∫
Tk

(
−
[
wh

,t

]T
u
(
vh
)
−
[
wh

,xi

]T
f i
(
vh
)
+
[
wh

,xi

]T (
σh
)i)

dx

]
dt

+
∑

Tk∈Th

[∫
Tk

([
wh

(
tn+1
−

)]T
u
(
vh
(
tn+1
−

))
−
[
wh

(
tn+
)]T

u
(
vh
(
tn−
)))

dx

]

+

∫
In

∑
Tk∈Th

[∫
∂Tk

[
wh
]T [

f̂
(
vh, v̂h;n

)
− σ̂

(
vh, v̂h,vh

,x;n
)]

dx̂

]
dt = 0,
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where one may define

f̂
(
vh, v̂h;n

)
=

1

2

[
f i
(
v̂h
)
+ f i

(
vh
)]

ni +
1

2
hf
(
vh, v̂h;n

)
,(3.5)

σ̂
(
vh, v̂h,vh

,x;n
)
=
(
σh
)i
ni +

1

2
hσ
(
vh, v̂h;n

)
.(3.6)

Note that hf
(
vh, v̂h;n

)
and hσ

(
vh, v̂h;n

)
will be defined in a subsequent discus-

sion. The aforementioned stabilizing term that was utilized to help form (3.4) takes
the precise form

∑
Tk∈Th

[∫
Tk

[
wh

(
tn+
)]T ([[

u
(
vh
)]]tn+

tn−

)
dx

]
,

where [[
u
(
vh
)]]tn+

tn−
= u

(
vh
(
tn+
))

− u
(
vh
(
tn−
))

is the temporal jump in the solution. This term controls the jumps in the solu-
tion that are present due to the DG approach that was utilized for the temporal
discretization. It is a necessary term in order to facilitate the subsequent stability
proof.

There is one more step required to ensure viability of the scheme. One may
introduce an equation that couples the elements and enforces boundary conditions
as follows:

(3.7)

∫
In

∑
Tk∈Th

[∫
∂Tk

[
ŵh
]T [

f̂
(
vh, v̂h;n

)
− σ̂

(
vh, v̂h,vh

,x;n
)]

dx̂

]
dt

+

∫
In

∑
F�∈E∂

h

[∫
F�

[
ŵh
]T [−f̂

(
vh, v̂h; n̂

)
+ σ̂

(
vh, v̂h,vh

,x; n̂
)]

dx̂

]
dt

+

∫
In

∑
F�∈E∂

h

[∫
F�

[
ŵh
]T [

bf
(
vh, v̂h,v∂ ; n̂

)
+ bσ

(
vh, v̂h,v∂ ,vh

,x,v
∂
,x; n̂

)]
dx̂

]
dt = 0,

where ŵh ∈ Ŵ
h
, bf

(
vh, v̂h,v∂ ; n̂

)
and bσ

(
vh, v̂h,v∂ ,vh

,x,v
∂
,x; n̂

)
are normal fluxes

that weakly enforce the boundary conditions for the problem, and v∂ and v∂
,x are

states defined on the boundary (cf. [49] for details).
One arrives at the full space-time HDG scheme by solving (3.1), (3.4), and (3.7)

with wh ∈ Wh, ŵh ∈ Ŵ
h
, and φh ∈ Φh, for unknowns vh ∈ Wh, v̂h ∈ Ŵ

h
, and

σh ∈ Φh.

3.3. Primal formulation. A primal formulation of the scheme is obtained by

eliminating σh. Towards this end, one may set
(
φh
)i

= wh
,xi

in (3.1), and then
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substitute the result into (3.4) in order to obtain

(3.8)

∫
In

∑
Tk∈Th

[∫
Tk

(
−
[
wh

,t

]T
u
(
vh
)
−
[
wh

,xi

]T
f i
(
vh
))

dx

]
dt

+
∑

Tk∈Th

[∫
Tk

([
wh

(
tn+1
−

)]T
u
(
vh
(
tn+1
−

))
−
[
wh

(
tn+
)]T

u
(
vh
(
tn−
)))

dx

]

+

∫
In

∑
Tk∈Th

[∫
Tk

[
wh

,xi

]T
M̃ij

(
vh
)
vh
,xj

dx

+

∫
∂Tk

[
wh

,xi

]T
M̃ij

(
vh
) [

v̂h − vh
]
njdx̂

]
dt

+

∫
In

∑
Tk∈Th

[∫
∂Tk

[
wh
]T [

f̂
(
vh, v̂h;n

)
− σ̂

(
vh, v̂h,vh

,x;n
)]

dx̂

]
dt = 0.

For the sake of efficiency, one can solve (3.7) and (3.8) with wh ∈ Wh and ŵh ∈
Ŵ

h
, for unknowns vh ∈ Wh and v̂h ∈ Ŵ

h
.

3.4. Reformulation for analysis. In order to prove the entropy stability of the
scheme from the previous section, it is necessary to first rewrite (3.7) and (3.8)
so that they are more suitable to analysis. Towards this end, one may perform
integration by parts in (3.8), and selectively rewrite the resulting expression in terms
of summations over faces in the mesh (as opposed to summations over individual
element faces). In addition, one may selectively rewrite (3.7) in terms of summations
over faces in the mesh. On subtracting the modified form of (3.7) from the modified
form of (3.8), one obtains

(3.9)
Λsol

(
wh,vh

)
+ Λinv

(
wh,vh; ŵh, v̂h

)
+ Λvis

(
wh,vh; ŵh, v̂h

)
− Λbc,inv

(
wh,vh; ŵh, v̂h

)
− Λbc,vis

(
wh,vh; ŵh, v̂h

)
= 0,

where

Λsol

(
wh,vh

)
=

∫
In

∑
Tk∈Th

[∫
Tk

[
wh
]T

u,t

(
vh
)
dx

]
dt

+
∑

Tk∈Th

[∫
Tk

[
wh

(
tn+
)]T ([[

u
(
vh
)]]tn+

tn−

)
dx

]
,
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corresponds (at least in part) to terms 1 and 2 in (3.8),

Λinv

(
wh,vh; ŵh, v̂h

)
=

∫
In

∑
Tk∈Th

[∫
Tk

[
wh
]T

f i
,xi

(
vh
)
dx

]
dt

+

∫
In

∑
F�∈E0

h

[∫
F�

[
wh (x−)− ŵh

]T
f̂
(
vh (x−) , v̂

h; n̂
)
dx̂

]
dt

+

∫
In

∑
F�∈E0

h

[∫
F�

[
ŵh −wh (x+)

]T
f̂
(
v̂h,vh (x+) ; n̂

)
dx̂

]
dt

+

∫
In

∑
F�∈E0

h

[∫
F�

(
−
[
wh (x−)

]T
f i
(
vh (x−)

)
n̂i

+
[
wh (x+)

]T
f i
(
vh (x+)

)
n̂i
)
dx̂

]
dt,

corresponds (at least in part) to terms 1 and 2 in (3.7), and terms 1 and 4 in (3.8),

Λvis

(
wh,vh; ŵh, v̂h

)
=

∫
In

∑
Tk∈Th

[∫
Tk

[
wh

,xi

]T
M̃ij

(
vh
)
vh
,xj

dx

]
dt

−
∫
In

∑
Tk∈Th

[∫
∂Tk

[
wh

,xi

]T
M̃ij

(
vh
) [

vh − v̂h
]
njdx̂

]
dt

−
∫
In

∑
Tk∈Th

[∫
∂Tk

[
wh − ŵh

]T
σ̂
(
vh, v̂h,vh

,x;n
)
dx̂

]
dt,

corresponds (at least in part) to term 1 in (3.7), and terms 3 and 4 in (3.8),

Λbc,inv

(
wh,vh; ŵh, v̂h

)
= −

∫
In

∑
F�∈E∂

h

[∫
F�

[
wh
]T [

f̂
(
vh, v̂h; n̂

)
− f i

(
vh
)
n̂i
]
dx̂

]
dt

+

∫
In

∑
F�∈E∂

h

[∫
F�

[
ŵh
]T

bf
(
vh, v̂h,v∂ ; n̂

)
dx̂

]
dt,

corresponds (at least in part) to term 3 in (3.7), and terms 1 and 4 in (3.8), and

Λbc,vis

(
wh,vh; ŵh, v̂h

)
=

∫
In

∑
F�∈E∂

h

[∫
F�

[
ŵh
]T [

σ̂
(
vh, v̂h,vh

,x; n̂
)

+ bσ
(
vh, v̂h,v∂ ,vh

,x,v
∂
,x; n̂

)]
dx̂

]
dt,

corresponds (at least in part) to terms 2 and 3 in (3.7). In addition, the boundary
condition terms can be grouped together as follows for the sake of convenience:

Λbc

(
wh,vh; ŵh, v̂h

)
= Λbc,inv

(
wh,vh; ŵh, v̂h

)
+ Λbc,vis

(
wh,vh; ŵh, v̂h

)
.
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4. Entropy stability proof

One first seeks to quantify the ‘energy’ of the scheme over the time interval

[t0−, t
N
− ] =

⋃N−1
n=0 In. In order to do this, one may set wh = vh and ŵh = v̂h

in (3.9), and then sum over the time slabs in the resulting expression in order to
obtain

(4.1)

N−1∑
n=0

[
Λsol

(
vh,vh

)
+ Λinv

(
vh,vh; v̂h, v̂h

)
+ Λvis

(
vh,vh; v̂h, v̂h

)]

=

N−1∑
n=0

[
Λbc,inv

(
vh,vh; v̂h, v̂h

)
+ Λbc,vis

(
vh,vh; v̂h, v̂h

)]
.

In (4.1), one seeks an upper bound on the solution at time tN− in terms of the

solution at time t0− and the boundary terms Λinv,bc

(
vh,vh; v̂h, v̂h

)
and

Λvis,bc

(
vh,vh; v̂h, v̂h

)
. With this in mind, one may consider the subsequent theo-

rems that establish said bounds.
In preparation for viewing the first theorem, one may examine the following

definitions.

Definition 4.1 (Mean-value flux hf
MV

(
vh, v̂h; n̂

)
; [4], p. 216).

(4.2)

hf
MV

(
vh (x−) , v̂

h; n̂
)

≡
∫ 1

0

[1− θ]

(∣∣∣Ãi

(
v
h
(θ)
)
n̂i
∣∣∣
˜A0

+
∣∣∣Ãi

(
vh (θ)

)
n̂i
∣∣∣
˜A0

)[
vh (x−)− v̂h

]
dθ,

(4.3)

hf
MV

(
v̂h,vh (x+) ; n̂

)
≡
∫ 1

0

[1− θ]

(∣∣∣Ãi

(
vh (θ)

)
n̂i
∣∣∣
˜A0

+
∣∣∣Ãi

(
vh (θ)

)
n̂i
∣∣∣
˜A0

)[
v̂h − vh (x+)

]
dθ,

where

vh (θ) = v̂h − θ
[
v̂h − vh (x−)

]
, v

h
(θ) = vh (x−) + θ

[
v̂h − vh (x−)

]
,

vh (θ) = vh (x+)− θ
[
vh (x+)− v̂h

]
, vh (θ) = v̂h + θ

[
vh (x+)− v̂h

]
,∣∣∣Ãi (·) n̂i

∣∣∣
˜A0

≡
∣∣Ai (·) n̂i

∣∣ Ã0 (·) .

Here, the matrix absolute value of Ãi (·) n̂i is SPSD and has eigenvalues that are

equal to the eigenvalues of Ãi (·) n̂i to within a sign.

Definition 4.2 (Nonnegative function |||·|||| ˜A(vh)|,F�×I).

|||·|||2| ˜A(vh)|,F�×I ≡
∫
F�

∫ 1

0

[1− θ] [·]T
(⎧⎩Ã+

i

(
vh (θ)

)
n̂i
⎫⎭

˜A0

−
⎧⎩Ã−

i

(
v
h
(θ)
)
n̂i
⎫⎭

˜A0

)
[·] dθ dx̂,
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where ⎧⎩Ã+
i

(
vh (θ)

)
n̂i
⎫⎭

˜A0

= A+
i

(
vh (θ)

)
n̂iÃ0

(
vh (θ)

)
,⎧⎩Ã−

i

(
v
h
(θ)
)
n̂i
⎫⎭

˜A0

= A−
i

(
v
h
(θ)
)
n̂iÃ0

(
v
h
(θ)
)
.

Theorem 4.3. The aforementioned space-time HDG scheme is entropy stable for
the Euler equations (the inviscid, compressible NS equations) when the boundary
conditions are chosen appropriately,1 ps ≥ 0, pt ≥ 0, and hf

(
vh, v̂h; n̂

)
is chosen to

be the mean-value flux. Under these conditions, the solution at time tN− is governed
by the following equation:

(4.4)

∑
Tk∈Th

[∫
Tk

U
(
vh
(
tN−
))

dx

]
+

N−1∑
n=0

( ∑
Tk∈Th

∥∥∥[[u (vh
)]]tn+

tn−

∥∥∥2
˜A−1
0 ,Tk

)

+

N−1∑
n=0

( ∑
F�∈E0

h

[∣∣∣∣∣∣v̂h − vh (x−)
∣∣∣∣∣∣2
| ˜A(vh)|,F�×I×In

+
∣∣∣∣∣∣v̂h − vh (x+)

∣∣∣∣∣∣2| ˜A(vh)|,F�×I×In

])

=
∑

Tk∈Th

[∫
Tk

U
(
vh
(
t0−
))

dx

]
+

N−1∑
n=0

⎛⎝−
∫
In

∑
F�∈E∂

h

[∫
F�

F i
(
vh
)
n̂idx̂

]
dt

+ Λbc,inv

(
vh,vh; v̂h, v̂h

)⎞⎠ .

Proof. The inviscid form of (4.1) is as follows:

N−1∑
n=0

[
Λsol

(
vh,vh

)
+ Λinv

(
vh,vh; v̂h, v̂h

)]
=

N−1∑
n=0

[
Λbc,inv

(
vh,vh; v̂h, v̂h

)]
.(4.5)

Consider expanding the first term on the LHS of (4.5),

(4.6)

N−1∑
n=0

[
Λsol

(
vh,vh

)]

=
N−1∑
n=0

(∫
In

∑
Tk∈Th

[∫
Tk

U,t

(
vh
)
dx

]
dt

+
∑

Tk∈Th

[∫
Tk

[
vh
(
tn+
)]T ([[

u
(
vh
)]]tn+

tn−

)
dx

])
,

1For instance, if periodic boundary conditions are enforced on all boundaries such that the
boundary terms vanish. Or the contributions of the boundary terms are designed such that they
are nonpositive in line with the approach of [1], although precise details are beyond the scope of
this work.
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where the fact that
[
vh
]T

u,t

(
vh
)
= U,t

(
u
(
vh
))

= U,t

(
vh
)
has been used. (This

identity follows from (2.17) in Lemma 2.1.) Next, one may note that
(4.7)∫

In

∑
Tk∈Th

[∫
Tk

U,t

(
vh
)
dx

]
dt =

∑
Tk∈Th

[∫
Tk

([[
U
(
vh
)]]tn+1

−
tn−

−
[[
U
(
vh
)]]tn+

tn−

)
dx

]
.

Equation (4.7) can be immediately substituted into (4.6). Thereafter, one may
rewrite (B.1) from Lemma B.1 with tn− and tn+ in place of ta and tb, and substitute
this expression into the result from the previous step. This sequence of actions is
carried out below.

(4.8)

N−1∑
n=0

[
Λsol

(
vh,vh

)]

=
N−1∑
n=0

( ∑
Tk∈Th

[∫
Tk

([[
U
(
vh
)]]tn+1

−
tn−

−
[[
U
(
vh
)]]tn+

tn−

+
[
vh
(
tn+
)]T ([[

u
(
vh
)]]tn+

tn−

))
dx

])

=
∑

Tk∈Th

[∫
Tk

[
U
(
vh
(
tN−
))

− U
(
vh
(
t0−
))]

dx

]

+
N−1∑
n=0

( ∑
Tk∈Th

∥∥∥[[u (vh
)]]tn+

tn−

∥∥∥2
˜A−1
0 ,Tk

)
.

The Λsol term in (4.8) now relates the initial condition at t0− and the current

condition at tN− to nonnegative functions of the solution, as required by the main
result (equation (4.4)) of Theorem 4.3.

Now, it is useful to examine the second term on the LHS of (4.5):

(4.9)

N−1∑
n=0

[
Λinv

(
vh,vh; v̂h, v̂h

)]
=

N−1∑
n=0

(∫
In

∑
Tk∈Th

[∫
Tk

[
vh
]T

f i
,xi

(
vh
)
dx

]
dt

+

∫
In

∑
F�∈E0

h

[∫
F�

[
vh (x−)− v̂h

]T
f̂
(
vh (x−) , v̂

h; n̂
)
dx̂

]
dt

+

∫
In

∑
F�∈E0

h

[∫
F�

[
v̂h − vh (x+)

]T
f̂
(
v̂h,vh (x+) ; n̂

)
dx̂

]
dt

+

∫
In

∑
F�∈E0

h

[∫
F�

(
−
[
vh (x−)

]T
f i
(
vh (x−)

)
n̂i

+
[
vh (x+)

]T
f i
(
vh (x+)

)
n̂i
)
dx̂
]
dt

)
.
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The first term on the RHS of (4.9) can be rewritten as

(4.10)

N−1∑
n=0

(∫
In

∑
Tk∈Th

[∫
Tk

[
vh
]T

f i
,xi

(
vh
)
dx

]
dt

)

=
N−1∑
n=0

(∫
In

∑
F�∈E0

h

[∫
F�

[
F i
(
vh (x−)

)
− F i

(
vh (x+)

)]
n̂idx̂

]
dt

+

∫
In

∑
F�∈E∂

h

[∫
F�

F i
(
vh
)
n̂idx̂

]
dt

)
,

where the divergence theorem and the fact that

[
vh
]T

f i
,xi

(
vh
)
=
[
vh
]T

f i
,xi

(
u
(
vh
))

= F i
,xi

(
u
(
vh
))

= F i
,xi

(
vh
)

have been used. (The identity follows from (2.17) in Lemma 2.1.) The remaining

terms on the RHS of (4.9) can be rewritten in terms of the definition of f̂
(
vh, v̂h;n

)
in (3.5). On introducing this definition along with (4.10) into (4.9), and simplifying
the results, one obtains

(4.11)

N−1∑
n=0

[
Λinv

(
vh,vh; v̂h, v̂h

)]

=

N−1∑
n=0

(∫
In

∑
F�∈E0

h

[∫
F�

[
F i
(
vh (x−)

)
− F i

(
vh (x+)

)]
n̂idx̂

]
dt

+

∫
In

∑
F�∈E∂

h

[∫
F�

F i
(
vh
)
n̂idx̂

]
dt

+
1

2

∫
In

∑
F�∈E0

h

[∫
F�

[
v̂h + vh (x−)

]T [
f i
(
v̂h
)
− f i

(
vh (x−)

)]
n̂idx̂

]
dt

+
1

2

∫
In

∑
F�∈E0

h

[∫
F�

[
vh (x+) + v̂h

]T [
f i
(
vh (x+)

)
− f i

(
v̂h
)]

n̂idx̂

]
dt

+
1

2

∫
In

∑
F�∈E0

h

[∫
F�

[
vh (x−)− v̂h

]T
hf
(
vh (x−) , v̂

h; n̂
)
dx̂

]
dt

+
1

2

∫
In

∑
F�∈E0

h

[∫
F�

[
v̂h − vh (x+)

]T
hf
(
v̂h,vh (x+) ; n̂

)
dx̂

]
dt

)
.
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Setting (4.11) aside for the moment, consider the relations below that follow directly
from Lemma B.2, (B.2):

F i
(
vh (x−)

)
− F i

(
v̂h
)
+

1

2

[
v̂h + vh (x−)

]T [
f i
(
v̂h
)
− f i

(
vh (x−)

)]
=

1

2

∫ 1

0

[1− θ]
[
v̂h − vh (x−)

]T [
Ãi

(
v
h
(θ)
)
− Ãi

(
vh (θ)

)] [
v̂h − vh (x−)

]
dθ,

(4.12)

F i
(
v̂h
)
− F i

(
vh (x+)

)
+

1

2

[
vh (x+) + v̂h

]T [
f i
(
vh (x+)

)
− f i

(
v̂h
)]

=
1

2

∫ 1

0

[1− θ]
[
vh (x+)− v̂h

]T [
Ãi

(
vh (θ)

)
− Ãi

(
vh (θ)

)] [
vh (x+)− v̂h

]
dθ.

(4.13)

On substituting (4.12) and (4.13) into (4.11), one obtains

(4.14)

N−1∑
n=0

[
Λinv

(
vh,vh; v̂h, v̂h

)]
=

N−1∑
n=0

(∫
In

∑
F�∈E∂

h

[∫
F�

F i
(
vh
)
n̂idx̂

]
dt

+
1

2

∫
In

∑
F�∈E0

h

[ ∫
F�

∫ 1

0

[1− θ]
[
v̂h − vh (x−)

]T
·
[
Ãi

(
v
h
(θ)
)
− Ãi

(
vh (θ)

)]
n̂i
[
v̂h − vh (x−)

]
dθ dx̂

+

∫
F�

∫ 1

0

[1− θ]
[
vh (x+)− v̂h

]T
·
[
Ãi

(
vh (θ)

)
− Ãi

(
vh (θ)

)]
n̂i
[
vh (x+)− v̂h

]
dθ dx̂

+

∫
F�

[
vh (x−)− v̂h

]T
hf
(
vh (x−) , v̂

h; n̂
)
dx̂

+

∫
F�

[
v̂h − vh (x+)

]T
hf
(
v̂h,vh (x+) ; n̂

)
dx̂

]
dt

)
.

Now, consider substituting hf
MV

(
vh, v̂h; n̂

)
(equations (4.2) and (4.3)) in place of

hf
(
vh, v̂h; n̂

)
in (4.14), so that one obtains

N−1∑
n=0

[
Λinv

(
vh,vh; v̂h, v̂h

)]
=

N−1∑
n=0

(∫
In

∑
F�∈E∂

h

[∫
F�

F i
(
vh
)
n̂idx̂

]
dt

(4.15)

+
1

2

∫
In

∑
F�∈E0

h

[ ∫
F�

∫ 1

0

[1− θ]
[
v̂h − vh (x−)

]T
·
[
Ãi

(
v
h
(θ)
)
− Ãi

(
vh (θ)

)]
n̂i
[
v̂h − vh (x−)

]
dθ dx̂
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+

∫
F�

∫ 1

0

[1− θ]
[
vh (x+)− v̂h

]T [
Ãi

(
vh (θ)

)
− Ãi

(
vh (θ)

)]
n̂i

·
[
vh (x+)− v̂h

]
dθ dx̂

+

∫
F�

∫ 1

0

[1− θ]
[
vh (x−)− v̂h

]T (∣∣∣Ãi

(
v
h
(θ)
)
n̂i
∣∣∣
˜A0

+
∣∣∣Ãi

(
vh (θ)

)
n̂i
∣∣∣
˜A0

)
·
[
vh (x−)− v̂h

]
dθ dx̂

+

∫
F�

∫ 1

0

[1− θ]
[
v̂h − vh (x+)

]T (∣∣∣Ãi

(
vh (θ)

)
n̂i
∣∣∣
˜A0

+
∣∣∣Ãi

(
vh (θ)

)
n̂i
∣∣∣
˜A0

)

·
[
v̂h − vh (x+)

]
dθ dx̂

]
dt

)
.

The central part of the fourth term on the RHS of (4.15) can be simplified with the
right change of variables (i.e., setting θ = 1 − θ′, rearranging terms, and rewriting
everything in terms of θ again) as follows:

(4.16)

∫ 1

0

[1− θ]
[
vh (x−)− v̂h

]T (∣∣∣Ãi

(
v
h
(θ)
)
n̂i
∣∣∣
˜A0

+
∣∣∣Ãi

(
vh (θ)

)
n̂i
∣∣∣
˜A0

)[
vh (x−)− v̂h

]
dθ

=

∫ 1

0

[
vh (x−)− v̂h

]T ∣∣∣Ãi

(
vh (θ)

)
n̂i
∣∣∣
˜A0

[
vh (x−)− v̂h

]
dθ.

In addition, the central part of the second term on the RHS of (4.15) can be
simplified as follows:
(4.17)∫ 1

0

[1− θ]
[
v̂h − vh (x−)

]T [
Ãi

(
v
h
(θ)
)
− Ãi

(
vh (θ)

)]
n̂i
[
v̂h − vh (x−)

]
dθ

=

∫ 1

0

[
v̂h − vh (x−)

]T
[1− 2θ]

[
Ãi

(
vh (θ)

)]
n̂i
[
v̂h − vh (x−)

]
dθ.

Similar steps can be taken to simplify the third and fifth terms on the RHS of
(4.15). On performing these steps, combining (4.15)–(4.17), splitting the matrices
into plus and minus parts, performing one more change of variables, and rewriting
everything in terms of θ, one obtains the following:

N−1∑
n=0

[
Λinv

(
vh,vh; v̂h, v̂h

)]
=

N−1∑
n=0

(∫
In

∑
F�∈E∂

h

[∫
F�

F i
(
vh
)
n̂idx̂

]
dt

+

∫
In

∑
F�∈E0

h

[∣∣∣∣∣∣v̂h − vh (x−)
∣∣∣∣∣∣2
| ˜A(vh)|,F�×I +

∣∣∣∣∣∣v̂h − vh (x+)
∣∣∣∣∣∣2
| ˜A(vh)|,F�×I

]
dt

)
,

where the nonnegative function from Definition 4.2 has been used. This concludes
the proof of Theorem 4.3. �
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Remark 4.4. Entropy stability is implied by Theorem 4.3 because it states that a
measure of the entropy function of the solution at some later time U

(
vh
(
tN−
))

is

equal to a measure of the entropy function at the initial time U
(
vh
(
t0−
))

plus some
additional terms, i.e.,

∑
Tk∈Th

[∫
Tk

U
(
vh
(
tN−
))

dx

]
=

∑
Tk∈Th

[∫
Tk

U
(
vh
(
t0−
))

dx

]
+ non-positive terms + B.C. terms.

It is clear from the expression above that if the boundary condition terms vanish
(i.e., we have periodic boundary conditions) or are nonpositive, then the measure
of the entropy function cannot grow to be larger than its value at the initial time.

Remark 4.5. One should note that the aforementioned HDG scheme is also stable
for any hf

(
vh, v̂h;n

)
such that

[
vh − v̂h

]T
hf
(
vh, v̂h;n

)
≥
[
vh − v̂h

]T
hf
MV

(
vh, v̂h;n

)
.

There are a number of suitable numerical fluxes that satisfy this condition, including
a particular form of the Lax-Friedrichs flux (cf. [4], pp. 229–230).

Remark 4.6. Entropy stability is a valuable property for a scheme to possess. It
effectively ensures that the solution remains bounded, and while this does not en-
sure pointwise convergence, it facilitates the convergence of boundary functionals of
engineering interest [28, 39]. Furthermore, in flows with strong shocks, an entropy
stable method will still remain stable. However, it will exhibit spurious oscilla-
tions (referred to as Gibbs phenomenon) at the location of the discontinuities. It is
usually necessary to damp these oscillations in order to ensure that the scheme pro-
duces reasonable results (i.e., accurately ‘captures’ the shocks). There are a number
of approaches for shock-capturing, including limiting, artificial diffusion, and ENO
(Essentially Non-Oscillatory) or WENO (Weighted ENO) schemes. The reader
may consult [15] for a detailed overview of these shock-capturing methodologies.
Some of the more popular approaches for shock-capturing for high-order methods
on unstructured grids are documented in [3,5,24,25,28,30,35,36,51,52,56]. (Note
that this list of references is by no means exhaustive). Of particular interest is the
recent approach of [28], which is entropy stable.

Remark 4.7. In addition to the mathematical proof given above, there is numerical
evidence that the aforementioned HDG scheme is stable. The HDG scheme is very
similar to a scheme formulated by Fidkowski in [18]. The primary difference is
that Fidkowski does not employ entropy variables, but rather utilizes the standard
conservative variables. In addition, a different stabilization strategy is utilized,
which is effectively a Roe-like flux. The Roe flux can be shown to not succeed
in preserving entropy stability [4]. Nevertheless, stable results are obtained for an
Euler vortex problem, and a pitching and plunging NACA 0012 airfoil [18]. It is
expected that the stability properties of the scheme proposed in this article, will be
greater than or equal to those of the scheme in [18].



112 D. M. WILLIAMS

In preparation for viewing the final theorem, one may examine the following
definitions.

Definition 4.8 (Interior Penalty (IP)-type flux hσ
IP

(
vh, v̂h;n

)
[14]).

hσ
IP

(
vh, v̂h;n

)
≡ βFl

niM̃ij

(
vh
)
nj
[
v̂h − vh

]
,(4.18)

where βFl
≥ 0.

Definition 4.9 (Function Θ
(
vh
,x, ·

)
˜M,Tk

and the nonnegative functions

Θabs

(
vh
,x, ·

)
˜M,Tk

and |||·|||
˜M,Tk

).

Θ
(
vh
,x, ·

)
˜M,Tk

≡
∫
Tk

[
vh
,xi

]T
M̃ij

(
vh
)
[·] dx,

Θabs

(
vh
,x, ·

)
˜M,Tk

≡
∫
Tk

∣∣∣[vh
,xi

]T
M̃ij

(
vh
)
[·]
∣∣∣ dx,

|||·|||2
˜M,Tk

≡
∫
Tk

[·]T M̃ij

(
vh
)
[·] dx.

Theorem 4.10. The aforementioned space-time HDG scheme is entropy stable
for the compressible NS equations when the boundary conditions are chosen ap-
propriately,2 ps ≥ 1, pt ≥ 0, hf

(
vh, v̂h; n̂

)
is chosen to be the mean-value flux,

hσ
(
vh, v̂h;n

)
is chosen to be an IP-type flux, ηFl

≥ NF , and NF = d+ 1. Under

these conditions, the solution at time tN− is governed by the following equation:

(4.19)

∑
Tk∈Th

[∫
Tk

U
(
vh
(
tN−
))

dx

]
+

N−1∑
n=0

( ∑
Tk∈Th

∥∥∥[[u (vh
)]]tn+

tn−

∥∥∥2
˜A−1
0 ,Tk

)

+

N−1∑
n=0

( ∑
F�∈E0

h

[∣∣∣∣∣∣v̂h − vh (x−)
∣∣∣∣∣∣2
| ˜A(vh)|,F�×I×In

+
∣∣∣∣∣∣v̂h − vh (x+)

∣∣∣∣∣∣2
| ˜A(vh)|,F�×I×In

])

+
N−1∑
n=0

( ∑
Tk∈Th

[
2Θ

(
vh
,x,R

(
v̂h − vh;n

))
˜M,Tk×In +

∣∣∣∣∣∣vh
,x

∣∣∣∣∣∣2
˜M,Tk×In

+
∑

Fl∈∂Tk

(
ηFl

∣∣∣∣∣∣rFl

(
v̂h − vh;n

)∣∣∣∣∣∣2
˜M,Tk×In

+
1

2
βFl

∣∣∣∣∣∣n [v̂h − vh
]∣∣∣∣∣∣2

˜M,Fl×In

)])

=
∑

Tk∈Th

[∫
Tk

U
(
vh
(
t0−
))

dx

]

+
N−1∑
n=0

⎛⎝−
∫
In

∑
F�∈E∂

h

[∫
F�

F i
(
vh
)
n̂idx̂

]
dt+ Λbc

(
vh,vh; v̂h, v̂h

)⎞⎠ ,

2See footnote 1.
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where

(4.20)

2

N−1∑
n=0

( ∑
Tk∈Th

[
Θabs

(
vh
,x,R

(
v̂h − vh;n

))
˜M,Tk×In

])

≤
N−1∑
n=0

( ∑
Tk∈Th

[∣∣∣∣∣∣vh
,x

∣∣∣∣∣∣2
˜M,Tk×In

+
∑

Fl∈∂Tk

ηFl

∣∣∣∣∣∣rFl

(
v̂h − vh;n

)∣∣∣∣∣∣2
˜M,Tk×In

])
.

Proof. The proof of Theorem 4.10 follows from the proof of Theorem 4.3 and appro-
priate manipulations of the viscous terms in (4.1). One may begin by considering
the third (and final) term on the LHS of (4.1)
(4.21)

N−1∑
n=0

[
Λvis

(
vh,vh; v̂h, v̂h

)]
=

N−1∑
n=0

(∫
In

∑
Tk∈Th

[∫
Tk

[
vh
,xi

]T
M̃ij

(
vh
)
vh
,xj

dx

]
dt

−
∫
In

∑
Tk∈Th

[∫
∂Tk

[
vh
,xi

]T
M̃ij

(
vh
) [

vh − v̂h
]
njdx̂

]
dt

−
∫
In

∑
Tk∈Th

[∫
∂Tk

[
vh − v̂h

]T
σ̂
(
vh, v̂h,vh

,x;n
)
dx̂

]
dt

)
.

The second term on the RHS of (4.21) can be simplified by utilizing the definition
of the element-based lifting operator (equation (3.2)) as follows:

(4.22)

−
∫
In

∑
Tk∈Th

[∫
∂Tk

[
vh
,xi

]T
M̃ij

(
vh
) [

vh − v̂h
]
njdx̂

]
dt

=

∫
In

∑
Tk∈Th

[∫
Tk

[
vh
,xi

]T
M̃ij

(
vh
)
Rj
(
v̂h − vh;n

)
dx

]
dt.

Now, consider the third term on the RHS of (4.21). One can express this term
utilizing the definition of σ̂

(
vh, v̂h,vh

,x;n
)
(equation (3.6)) as follows:

−
∫
In

∑
Tk∈Th

[∫
∂Tk

[
vh − v̂h

]T
σ̂
(
vh, v̂h,vh

,x;n
)
dx̂

]
dt

=

∫
In

∑
Tk∈Th

[ ∫
∂Tk

[
v̂h − vh

]T
ni M̃ij

(
vh
) [

vh
,xj

+ ηFl
rjFl

(
v̂h − vh;n

)]
dx̂

]
dt

+
1

2

∫
In

∑
Tk∈Th

[∫
∂Tk

[
v̂h − vh

]T
hσ
(
vh, v̂h;n

)
dx̂

]
dt.

(4.23)
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The first term on the RHS of (4.23) can be simplified by utilizing the expressions
for the element-based and face-based lifting operators (equations (3.2) and (3.3))
as follows:
(4.24)∫

In

∑
Tk∈Th

[ ∫
∂Tk

[
v̂h − vh

]T
ni M̃ij

(
vh
) [

vh
,xj

+ ηFl
rjFl

(
v̂h − vh;n

)]
dx̂

]
dt

=

∫
In

∑
Tk∈Th

[ ∫
Tk

Ri
(
v̂h − vh;n

)T
M̃ij

(
vh
)
vh
,xj

dx

]
dt

+

∫
In

∑
Tk∈Th

[ ∑
Fl∈∂Tk

ηFl

∫
Tk

riFl

(
v̂h − vh;n

)T
M̃ij

(
vh
)
rjFl

(
v̂h − vh;n

)
dx

]
dt.

The second term on the RHS of (4.23) can be expanded by setting hσ
(
vh, v̂h;n

)
= hσ

IP

(
vh, v̂h;n

)
(from (4.18)), as follows:

(4.25)
1

2

∫
In

∑
Tk∈Th

[∫
∂Tk

[
v̂h − vh

]T
hσ
(
vh, v̂h;n

)
dx̂

]
dt

=
1

2

∫
In

∑
Tk∈Th

[ ∑
Fl∈∂Tk

βFl

∫
Fl

[
v̂h − vh

]T
niM̃ij

(
vh
)
nj
[
v̂h − vh

]
dx̂

]
dt.

Upon combining (4.21), (4.22), (4.24), and (4.25), one obtains

(4.26)

N−1∑
n=0

[
Λvis

(
vh,vh; v̂h, v̂h

)]
=

N−1∑
n=0

(∫
In

∑
Tk∈Th

[∣∣∣∣∣∣vh
,x

∣∣∣∣∣∣2
˜M,Tk

]
dt

+ 2

∫
In

∑
Tk∈Th

[∫
Tk

[
vh
,xi

]T
M̃ij

(
vh
)
Rj
(
v̂h − vh;n

)
dx

]
dt

+

∫
In

∑
Tk∈Th

[ ∑
Fl∈∂Tk

ηFl

∣∣∣∣∣∣rFl

(
v̂h − vh;n

)∣∣∣∣∣∣2
˜M,Tk

]
dt

+
1

2

∫
In

∑
Tk∈Th

[ ∑
Fl∈∂Tk

βFl

∣∣∣∣∣∣n [v̂h − vh
]∣∣∣∣∣∣2

˜M,Fl

]
dt

)
,

where the second nonnegative function from Definition 4.9 has been used to simplify
the result.

Now, for stability purposes, the nonnegative terms on the RHS of (4.26) need to
dominate the element-based lifting operator term on the RHS. The element-based
lifting operator term itself is bounded as follows:

(4.27)

2
∑

Tk∈Th

[
Θabs

(
vh
,x,R

(
v̂h − vh;n

))
˜M,Tk

]

≤
∑

Tk∈Th

[
ε
∣∣∣∣∣∣vh

,x

∣∣∣∣∣∣2
˜M,Tk

+

(
1

ε

) ∣∣∣∣∣∣R (
v̂h − vh;n

)∣∣∣∣∣∣2
˜M,Tk

]
,
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where the Cauchy-Schwarz inequality and Young’s inequality have been used (on
the integrand), and the first nonnegative function in Definition 4.9 has been used.
Therefore, for stability, one requires that the nonnegative terms on the RHS of
(4.26) bound the RHS of (4.27) as follows:

(4.28)

N−1∑
n=0

(∫
In

∑
Tk∈Th

[
ε
∣∣∣∣∣∣vh

,x

∣∣∣∣∣∣2
˜M,Tk

+

(
1

ε

) ∣∣∣∣∣∣R (
v̂h − vh;n

)∣∣∣∣∣∣2
˜M,Tk

]
dt

)

≤
N−1∑
n=0

(∫
In

∑
Tk∈Th

[∣∣∣∣∣∣vh
,x

∣∣∣∣∣∣2
˜M,Tk

+
∑

Fl∈∂Tk

ηFl

∣∣∣∣∣∣rFl

(
v̂h − vh;n

)∣∣∣∣∣∣2
˜M,Tk

]
dt

+
1

2

∫
In

∑
Tk∈Th

[ ∑
Fl∈∂Tk

βFl

∣∣∣∣∣∣n [v̂h − vh
]∣∣∣∣∣∣2

˜M,Fl

]
dt

)
.

Here, it is clear that one requires that ε is chosen such that ε ≤ 1 (in addition to

requiring that ε > 0), so that the term containing
∣∣∣∣∣∣vh

,x

∣∣∣∣∣∣2
˜M,Tk

on the RHS bounds

the corresponding term on the LHS. In addition, one requires that ηFl
is chosen

such that the face-based lifting operator term on the RHS bounds the element-
based lifting operator term on the LHS. Towards this end, one should note that
by the Cauchy-Schwarz inequality (applied to the integrand of the element-based
lifting operator term), one obtains

(4.29)

∑
Tk∈Th

[∣∣∣∣∣∣R (v̂h − vh;n
)∣∣∣∣∣∣2

˜M,Tk

]

≤ NF
∑

Tk∈Th

[ ∑
Fl∈∂Tk

∣∣∣∣∣∣rFl

(
v̂h − vh;n

)∣∣∣∣∣∣2
˜M,Tk

]
,

where NF is the number of faces for each simplex element (i.e., NF = d + 1). In
light of (4.29), it follows that in order for the face-based lifting operator term on
the RHS of (4.28) to bound the element-based lifting operator term on the LHS,
one requires that each ηFl

≥ NF
ε . It is convenient to choose ε = 1 so that the

requirement becomes that ηFl
≥ NF instead of ηFl

	 NF as would be required for
smaller values of ε. With these choices for ηFl

and ε, (4.20) holds. This, in turn,
completes the proof of Theorem 4.10. �

Remark 4.11. There is an alternative approach to stabilizing the aforementioned
space-time HDG scheme. In particular, one may require that βFl

is chosen such
that the jump term on the RHS of (4.28) bounds the element-based lifting operator
term on the LHS. The resulting scheme is stable because the following holds true:

(4.30)

2

N−1∑
n=0

( ∑
Tk∈Th

[
Θabs

(
vh
,x,R

(
v̂h − vh;n

))
˜M,Tk×In

])

≤
N−1∑
n=0

( ∑
Tk∈Th

[∣∣∣∣∣∣vh
,x

∣∣∣∣∣∣2
˜M,Tk×In +

1

2

∑
Fl∈∂Tk

βFl

∣∣∣∣∣∣n [v̂h − vh
]∣∣∣∣∣∣2

˜M,Fl×In

])
for large enough values of βFl

(although the necessary minimum value of βFl
is

difficult to determine a priori). As a result of (4.30), (4.19) holds.
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This analysis demonstrates that if βFl
is chosen appropriately, ηFl

= 0 is accept-
able, and there is no need to form the face-based lifting operators.

5. Conclusion

This work has succeeded in constructing a mathematical proof for the entropy
stability of a space-time HDG scheme for the compressible NS equations. In partic-
ular, stability has been shown for the compressible NS equations when the boundary
conditions are chosen appropriately, the inviscid numerical flux is chosen to be a
mean-value flux or the Lax-Friedrichs flux, and the viscous numerical flux is chosen
to be a BR2-type flux (optionally accompanied by an IP-type flux). It is hoped
that the entropy stable HDG scheme along with its variants will serve as useful
tools in the toolbox of fluid dynamicists. This work is merely a preliminary step
in constructing these tools, and it is anticipated that future work will consist of
applying the schemes to practical problems, and extending the schemes to treat
complex boundary conditions, shock waves, and other phenomena that are likely
to arise in such problems.

Appendix A. Notation

This paper utilizes a mixture of index notation and vector notation. The notation

is best explained via an example. Consider the term
[
wh

,xi

]T
f i
(
vh
)
. This is

shorthand for the following when d = 3:[
wh

,xi

]T
f i
(
vh
)
=

[
∂wh

∂x1

]T
f1
(
vh
)
+

[
∂wh

∂x2

]T
f2
(
vh
)
+

[
∂wh

∂x3

]T
f3
(
vh
)
,

where the transpose allows for the standard dot product between two m-vectors
(say

[
wh

,x1

]
and f1

(
vh
)
), and the repeated index i allows for the standard Einstein

summation over d dimensions.

Appendix B. Supporting lemmas

Lemma B.1 (Trivial generalization of a result from Barth; [4], p. 221). The tem-
poral jumps in the solution are governed by the relation∑

Tk∈Th

[∫
Tk

[
−
[[
U
(
vh
)]]tb

ta
+
[
vh (tb)

]T ([[
u
(
vh
)]]tb

ta

)]
dx

]
=

∑
Tk∈Th

∥∥∥[[u (vh
)]]tb

ta

∥∥∥2
˜A−1
0 ,Tk

,(B.1)

where∥∥∥[[u (vh
)]]tb

ta

∥∥∥2
˜A−1
0 ,Tk

≡
∫
Tk

(∫ 1

0

[1− θ]
([[

u
(
vh
)]]tb

ta

)T
Ã−1

0 (u (θ))
[[
u
(
vh
)]]tb

ta
dθ

)
dx ≥ 0,

is a nonnegative function, and where

u (θ) ≡ u
(
vh (tb)

)
− θ

[[
u
(
vh
)]]tb

ta
,

(
vh
)T

= U,u

(
u
(
vh
))

, Ã−1
0 = U,u,u.

Proof. The proof appears in [4] with tn− and tn+ in place of ta and tb. A similar
argument is also presented in [55]. �
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Lemma B.2 (Trivial generalization of a result from Barth; [4], pp. 221–222). The
spatial jumps in the entropy flux are governed by the relation

(B.2)

F i (va)− F i (vb) +
1

2
[vb + va]

T [
f i (vb)− f i (va)

]
=

1

2

∫ 1

0

[1− θ] [vb − va]
T
[
Ãi

(
ˇ̌v (θ)

)
− Ãi (v̌ (θ))

]
[vb − va] dθ,

where

v̌ (θ) = vb − θ [vb − va] , ˇ̌v (θ) = va + θ [vb − va] .

Proof. Recall that F i = F i (v). On utilizing this fact in conjunction with Taylor’s
theorem, one can obtain the following:

(B.3)

F i (vb)−F i (va)−F i
,v (vb) [vb − va]

+

∫ 1

0

[1− θ] [vb − va]
T F i

,v,v (v̌ (θ)) [vb − va] dθ = 0,

(B.4)

F i (vb)−F i (va)−F i
,v (va) [vb − va]

−
∫ 1

0

[1− θ] [vb − va]
T F i

,v,v

(
ˇ̌v (θ)

)
[vb − va] dθ = 0.

Upon multiplying (B.3) and (B.4) by (1/2) and summing the results, one obtains

(B.5)

F i (vb)−F i (va)−
1

2

[
f i (vb) + f i (va)

]T
[vb − va]

=
1

2

∫ 1

0

[1− θ] [vb − va]
T
[
Ãi

(
ˇ̌v (θ)

)
− Ãi (v̌ (θ))

]
[vb − va] dθ,

where the fact that
[
f i
]T

= F i
,v and Ãi = F i

,v,v has been used. Setting (B.5) aside
for the moment, consider the following jump identity that derives from (2.16)

(B.6)

F i (vb)− F i (va) + F i (vb)−F i (va)

=
1

2
[vb + va]

T [
f i (vb)− f i (va)

]
+

1

2

[
f i (vb) + f i (va)

]T
[vb − va] .

Substituting (B.5) into (B.6) completes the proof of (B.2). This in turn, completes
the proof of Lemma B.2. �
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