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ADAPTIVE COMPRESSION OF LARGE VECTORS

STEFFEN BÖRM

Abstract. Numerical algorithms for elliptic partial differential equations fre-
quently employ error estimators and adaptive mesh refinement strategies in
order to reduce the computational cost.

We can extend these techniques to general vectors by splitting the vectors
into a hierarchically organized partition of subsets and using appropriate bases
to represent the corresponding parts of the vectors. This leads to the concept
of hierarchical vectors.

A hierarchical vector with m subsets and bases of rank k requires mk
units of storage, and typical operations like the evaluation of norms and inner
products or linear updates can be carried out in O(mk2) operations.

Using an auxiliary basis, the product of a hierarchical vector and an H2-
matrix can also be computed in O(mk2) operations, and if the result admits an
approximation with m̃ subsets in the original basis, this approximation can be
obtained in O((m+ m̃)k2) operations. Since it is possible to compute the cor-

responding approximation error exactly, sophisticated error control strategies
can be used to ensure the optimal compression.

Possible applications of hierarchical vectors include the approximation of
eigenvectors, optimal control problems, and time-dependent partial differential
equations with moving local irregularities.

1. Introduction

We consider the standard Poisson problem

−Δu(x) = f(x) for all x ∈ Ω,

u(x) = g(x) for all x ∈ ∂Ω,

where Ω is a Lipschitz domain with boundary ∂Ω, f : Ω → R and g : ∂Ω → R are
given and we are looking for the solution u : Ω → R.

If f , g and the boundary of Ω are sufficiently smooth, classical regularity theory
states that the solution u will also be smooth. If only f is smooth, interior regularity
results state that the solution u will at least be smooth in the interior of Ω, but
may have singularities at the boundary. If f is smooth in only part of the domain,
the solution u will still be smooth in the interior of this part.

Discretization schemes can take advantage of these properties to significantly
reduce computational work and storage requirements: a standard finite element
scheme can use fairly large elements to represent smooth parts of the solution
and refine the triangulation locally close to the non-smooth parts [2, 15, 17], and
sophisticated error estimation techniques [1, 9, 13, 14, 16, 18] have been developed
to automatically choose parts of the mesh that should be refined. A particularly
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elegant approach can be developed for wavelet techniques [8] by looking for the
“most important” among the (infinitely many) coefficients of the solution.

All of these techniques rely on special properties of the operators and spaces
involved in the computation, e.g., coercivity of bilinear forms or local approximation
estimates for finite element spaces.

Some of these requirements can be avoided by following a purely algebraic ap-
proach: instead of using a locally refined discretization, we rely on a uniform dis-
cretization that can represent all functions expected to appear in the algorithm
sufficiently well. For the sake of simplicity, we assume that the discretization cor-
responds to mesh points (xi)i∈I , where I is a finite index set, e.g., the set of nodal
points of a finite element discretization. Each function u ∈ Ω then corresponds to
a vector u ∈ R

I given by

ui = u(xi) for all i ∈ I.

Since we are using a uniform mesh, the dimension n = #I can be expected to
be very large, and working with vectors u ∈ R

I directly would take too long and
require too much storage.

We can significantly improve the efficiency by using data-sparse approximations
of vectors. The compression scheme takes its cue from H2-matrices [3, 5, 12]: if a
function u : Ω → R is smooth in a subdomain ω ⊆ Ω, e.g., due to interior regularity
properties, we can approximate u|ω by polynomials and obtain

u(x) ≈
k∑

ν=1

pν(x)ûν for all x ∈ ω,

where (pν)
k
ν=1 is a polynomial basis and û ∈ R

k is a matching coefficient vector.
For the corresponding vector u we have

ui = u(xi) ≈
k∑

ν=1

pν(xi)ûν for all i ∈ I with xi ∈ ω.

Introducing the subset

ω̂ := {i ∈ I : xi ∈ ω}
and the matrix V ∈ R

ω̂×k with

viν := pν(xi) for all i ∈ ω̂, ν ∈ [1 : k],

we can write the approximation result in the short form

u|ω̂ ≈ Vû.

This approximation is only valid for indices in the subset ω̂ ⊆ I. In order to
obtain an approximation for the entire vector u, we split the index set I into m
disjoint subsets ω̂1, . . . , ω̂m and approximate each subvector u|ω̂j

. The resulting
approximation of u requires mk coefficients, and if the function u is smooth in
large subdomains of Ω, we can expect mk � n.

Having a representation of u by mk coefficients at our disposal, we are of course
interested in performing algebraic operations with these representations, e.g., com-
puting linear combinations of compressed vectors, evaluating inner products and
norms, and multiplying compressed vectors by matrices. Under suitable assump-
tions, all of these operations can be carried out in O(mk) or O(mk2) operations.
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Compared to standard adaptive finite element methods, this approach has several
advantages:

• hierarchical vectors can be used with any matrix that can be approximated
by an H2-matrix, e.g., matrices arising in the boundary element method or
in the context of population dynamics,

• refining and coarsening a hierarchical vector only involves adding and re-
moving subtrees of a prescribed cluster tree, no special treatment of hanging
nodes or differing polynomial degrees is required,

• linear combinations and inner products of hierarchical vectors correspond-
ing to completely different subdivisions of the index set can be computed
efficiently, and

• the approximation error in all of these operations can be computed exactly.

The algorithm for the efficient multiplication of a hierarchical vector by an H2-
matrix requires certain precomputed auxiliary matrices, and in a simple implemen-
tation the setup of these matrices would require O(nk2) operations, making the
method only attractive in situations where a large number of matrix-vector multi-
plications have to be carried out with the same H2-matrix, e.g., for time-dependent
problems like the heat or wave equation, or for the approximation of eigenvectors
by a preconditioned inverse iteration.

This disadvantage can be overcome if the differential or integral operator under-
lying the matrix is translation-invariant, since this property implies that matrices
corresponding to translation-equivalent blocks are identical, and it can be expected
that computing the auxiliary matrices only once for each equivalence class reduces
the complexity to O(log(n)k2). Translation-invariance can even be exploited if it
is available only in a subdomain.

2. Hierarchical vectors

In order to be able to construct counterparts of local refinement and coarsening
of meshes, we introduce a hierarchy of subsets of I.

Definition 2.1 (Labeled tree). Let V be a finite set, let r ∈ V , let S : V → P(V )
be a mapping from V into the power set of V , and let ι : V → M be a mapping
from V into an arbitrary set M .

T = (V, r, S, ι) is called a (labeled) tree if for each v ∈ V there is exactly one
sequence v0, v1, . . . , v� ∈ V such that

v0 = r, V� = v, vi ∈ S(vi−1) for all i ∈ [1 : �].

In this case, r is called the root of T and denoted by root(T ), and S(v) are called
the sons of v ∈ V and denoted by sons(T , v).

For each v ∈ V , ι(v) ∈ M is called the label of v and denoted by v̂.

Definition 2.2 (Cluster tree). Let TI = (V, r, S, ι) be a labeled tree. We call it a
cluster tree for the index set I if

• r̂ = I, i.e., if the root is labeled with I,
• we have

t̂ =
⋃

t′∈sons(t)

t̂′ for all t ∈ V with sons(t) �= ∅,

i.e., the label of a cluster is contained in the union of the labels of its sons,
and
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• we have

t1 �= t2 ⇒ t̂1 ∩ t̂2 = ∅ for all t ∈ V, t1, t2 ∈ sons(t),

i.e., different sons of the same cluster are disjoint.

If TI is a cluster tree, we call the elements t ∈ V clusters and use the short notation
t ∈ TI for t ∈ V .

Definition 2.3 (Leaves). Let TI be a cluster tree. A cluster t ∈ TI is called a leaf
of TI if sons(TI , t) = ∅.

The set of all leaves is denoted by

LI := {t ∈ TI : sons(TI , t) = ∅}.

Remark 2.4 (Leaf partition). A simple induction yields that the set

{t̂ : t ∈ LI}
is a disjoint partition of I, so we can describe a vector x ∈ R

I uniquely by defining
its restrictions

x|t̂ ∈ R
t̂ for all t ∈ LI .

Cluster trees for arbitrary index sets I can be constructed by fairly general
algorithms usually based on recursively splitting a given subset into a number of
disjoint subsets. If the indices correspond to geometric objects, e.g., points in a
finite element mesh, these algorithms can ensure that clusters contain indices that
are “geometrically close” to each other [4, 10].

In practical applications, it may be necessary to use different cluster trees to
represent different vectors, e.g., to implement adaptive refinement towards moving
singularities. In order to keep the corresponding algorithms simple and still be able
to handle varying cluster trees, we use a reference tree TI that remains fixed and
choose subtrees Tx to represent vectors x ∈ R

I .

Definition 2.5 (Subtree). Let TI be a cluster tree for I. A second cluster tree Tx
for I is called a subtree of TI if

• root(Tx) = root(TI),
• we have

t ∈ TI for all t ∈ Tx, and

• we have

sons(Tx, t) �= ∅ ⇒ sons(Tx, t) = sons(TI , t) for all t ∈ Tx,
i.e., non-leaf clusters have the same sons in Tx and TI .

If Tx is a subtree of TI , we denote its leaves by Lx.

The smallest subtree Tx of TI consists only of the root r = root(TI), with the
root a leaf of Tx. The largest subtree is TI itself.

Due to Remark 2.4, the leaves of a subtree Tx also define a disjoint partition of
I, but this partition can be significantly coarser than the one corresponding to the
leaves of TI .

Given a partition of I, we now turn our attention to systems of bases that can be
used to represent the subvectors x|t̂ corresponding to the leaves t ∈ Tx of a cluster
tree.
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procedure refine(t, var x);
if sons(TI , t) �= ∅ then begin

Add sons(TI , t) as new leaves to Tx;
for t′ ∈ sons(TI , t) do
x̂t′ ← Et′ x̂t

end

Figure 1. Refining a hierarchical vector

In order to be able to “refine” a given hierarchical vector, i.e., to subdivide leaves
of the corresponding subtree, we require these bases to be nested, i.e., if x|t̂ can be
represented in the basis corresponding to the cluster t ∈ TI , it has to be possible
to represent x|t̂′ in the basis corresponding to its sons t′ ∈ sons(TI , t).

Definition 2.6 (Cluster basis). Let k ∈ N and let (Vt)t∈TI be a family of matrices

such that Vt ∈ R
t̂×k for all t ∈ TI .

If there is a family (Et)t∈TI of matrices satisfying

Vt|t̂′×k = Vt′Et′ for all t ∈ TI , t′ ∈ sons(TI , t),(2.1)

we call (V,E) a cluster basis of rank k for the cluster tree TI . The matrices
(Et)t∈TI are called transfer matrices. We use (Vt)t∈TI as an abbreviation for (V,E)
and introduce the transfer matrices explicitly if they are required.

Definition 2.7 (Hierarchical vector). Let Tx be a subtree of TI , let (V,E) be a
cluster basis for TI .

A vector x ∈ R
I is called a hierarchical vector corresponding to Tx and (V,E) if

there is a family (x̂t)t∈Tx
such that

x|t̂ = Vtx̂t for all t ∈ Lx.(2.2)

In this case, we call (x̂t)t∈Tx
the hierarchical coefficients for x.

In our setting, the leaves of the subtree Tx play the role of the mesh used to
represent a function. Locally refining the mesh corresponds to choosing a leaf
t ∈ Lx with sons(TI , t) �= ∅ and adding sons(TI , t) to the subtree. Due to (2.2) and
(2.1), we have

x|t̂′ = (Vtx̂t)|t̂′ = Vt|t̂′×kx̂t = Vt′Et′ x̂t for all t′ ∈ sons(TI , t),
so the equation

x̂t′ := Et′ x̂t for all t′ ∈ sons(TI , t)
provides us with hierarchical coefficients for the refined tree. The procedure is
summarized in Figure 1.

We can use this procedure to add a hierarchical vector x with subtree Tx to
another hierarchical vector y with a different subtree Ty, as long as Tx and Ty are
subtrees of TI : assume that a cluster t ∈ Tx ∩ Ty is given.

(1) If t ∈ Lx and t ∈ Ly holds, we can simply add x̂t and ŷt.
(2) If t �∈ Lx and t �∈ Ly, we consider sons(TI , t) = sons(Tx, t) = sons(Ty, t)

recursively.
(3) If t ∈ Lx and t �∈ Ly, we use (2.1) to obtain temporary coefficient vectors

x̂t′ = Et′ x̂t that can be added recursively to y.
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procedure add leaf(t, ẑt, var y);
if sons(Ty, t) = ∅ then
ŷt ← ŷt + ẑt

else
for t′ ∈ sons(Ty, t) do begin
ẑt′ ← Et′ ẑt;
add leaf(t′, ẑt′ , y)

end;

procedure add(t, α, x, var y);
if sons(Tx, t) = ∅ then
add leaf(t, αx̂t, y);

else begin
if sons(Ty, t) = ∅ then
refine(t, y);

for t′ ∈ sons(Tx, t) do
add(t′, α, x, y)

end

Figure 2. Adding a hierarchical vector x to a hierarchical vector
y, refining the tree Ty as required

(4) If t �∈ Lx and t ∈ Ly, we apply refine to y and proceed as in case (2).

Based on this approach, the update y ← y + αx can be performed by the recursive
algorithm given in Figure 2. The procedure add leaf is used to handle the cases (1)
and (3), while the procedure add takes care of the cases (2) and (4).

After the procedure add has been completed, Tx is a subtree of Ty and the sum
of αx and y is represented exactly by the, possibly refined, hierarchical vector y.

Remark 2.8 (Complexity). Since we only switch to the sons t′ ∈ sons(TI , t) of a
cluster t if either sons(Tx, t) or sons(Ty, t) are not empty, the procedure add given
in Figure 2 requires O(k2(#Tx + #Ty)) operations.

We can follow a similar approach to compute inner products and norms of hier-
archical vectors: let x, y ∈ R

I be hierarchical vectors with subtrees Tx and Ty. In
order to compute the inner product

〈x, y〉 =
∑
i∈I

xiyi,

we can split I into subsets and consider sub-products

〈x, y〉t :=
∑
i∈t̂

xiyi

corresponding to clusters t ∈ TI . For t = root(TI) = root(Tx) = root(Ty), we
obtain the full inner product 〈x, y〉.

Let t ∈ TI . If t ∈ Lx and t ∈ Ly, we have

x|t̂ = Vtx̂t, y|t̂ = Vtŷt,

and find

(2.3) 〈x, y〉t =
∑
i∈t̂

xiyi =
∑
i∈t̂

(Vtx̂t)i(Vtŷt)i = x̂∗
tV

∗
t Vtŷt.

The products Ct := V ∗
t Vt required to evaluate this expression are small k × k

matrices that can be prepared using the recursion

Ct =

{
V ∗
t Vt if sons(TI , t) = ∅,∑
t′∈sons(t) E

∗
t′Ct′Et′ otherwise,

for all t ∈ TI ,(2.4)

due to (2.1). With these matrices, the inner product (2.3) can be evaluated in
O(k2) operations.
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function dot leaf(t, ẑt, y) : real;
if sons(Ty, t) = ∅ then
return ẑ∗tCtŷt

else begin
γ ← 0;
for t′ ∈ sons(Ty, t) do begin
ẑt′ ← Et′ ẑt;
γ ← γ + dot leaf(t′, ẑt′ , y);

end;
return γ

end

function dot(t, x, y) : real;
if sons(Tx, t) = ∅ then
return dot leaf(t, x̂t, y)

else if sons(Ty, t) = ∅ then
return dot leaf(t, ŷt, x)

else begin
γ ← 0;
for t′ ∈ sons(Tx, t) do
γ ← γ + dot(t′, x, y);

return γ
end

Figure 3. Compute the inner product of two hierarchical vectors
x and y

If t �∈ Lx and t �∈ Ly, we can use Definition 2.2 to get

〈x, y〉t =
∑

t′∈sons(TI ,t)

〈x, y〉t′ ,

i.e., we can compute the products for the sons t′ ∈ sons(TI , t) by recursion and add
the results.

If t ∈ Lx and t ∈ Ty \ Ly, we can again use Definition 2.2 and (2.1) to obtain

〈x, y〉t =
∑

t′∈sons(Ty ,t)

〈x, y〉t′ =
∑

t′∈sons(Ty,t)

〈Vtx̂t, y〉t′

=
∑

t′∈sons(t)

〈Vt′Et′ x̂t, y〉t′ =
∑

t′∈sons(t)

〈Vt′ ẑt′ , y〉t′

with the auxiliary vectors ẑt′ = Et′ x̂t. We can repeat this procedure recursively
until we reach a leaf t ∈ Ly and then use Ct as before.

If t ∈ Tx \ Lx and t ∈ Ly, we can use the same approach with auxiliary vectors
ẑt′ = Et′ ŷt.

The resulting recursive algorithm is summarized in Figure 3. Due to ‖x‖ =√
〈x, x〉, we can also use this function to compute the norm of a hierarchical vector.

Remark 2.9 (Complexity). Preparing Ct for all t ∈ TI requires O(k2#I) operations
for the leaves and O(k3#TI) operations for the non-leaf clusters [3, Section 5.3].

Once these matrices have been prepared, the procedure dot given in Figure 3
requires O(k2(#Tx + #Ty)) operations.

3. Coarsening

Adding two hierarchical vectors x and y using the procedure add given in Figure 2
will yield a new vector with a refined cluster tree that contains both Tx and Ty as
subtrees. This tree may not be optimal, as can be seen by considering the extreme
example of adding x and −x and obtaining the zero vector that can obviously be
expressed by the minimal subtree of TI .

In order to keep the computational complexity as low as possible, we introduce
an algorithm that does the opposite of refining a subtree, i.e., coarsening the tree.
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Where the procedure refine given in Figure 1 splits a leaf into sons, the new
coarsen procedure merges sons into a new leaf.

If we would use this procedure only in situations where it does not change the
vector at all, it would be of very limited use. It makes more sense to consider
situations where coarsening yields a reasonably good approximation of the original
vector.

In order to devise a reliable algorithm, we have to investigate the approximation
errors introduced by hierarchical vectors. We are interested in nothing less but the
best approximation of a given vector, and this best approximation with respect to
the Euclidean norm is given by an orthogonal projection. These projections are
immediately available to us if we have an orthonormal basis at our disposal.

Definition 3.1 (Isometric cluster basis). A cluster basis (Qt)t∈TI is called isomet-
ric if we have

Q∗
tQt = I for all t ∈ TI .(3.1)

There is an efficient algorithm that can turn any cluster basis into an isometric
cluster basis without any change in its approximation properties [3, Section 5.4], so
requiring a cluster basis to be isometric is not a significant restriction.

For an isometric basis, a simple computation yields

‖x−Qty‖2 = ‖x−QtQ
∗
tx‖2 + ‖y −Q∗

tx‖2 for all t ∈ TI , x ∈ R
t̂, y ∈ R

k,(3.2)

and we conclude that QtQ
∗
tx is the best approximation of x in the range of Qt.

Just as refine splits a given leaf cluster t into its sons t′ ∈ sons(TI , t), we are
looking for an algorithm that merges the sons t′ ∈ sons(TI , t) into the father t. We
assume that t ∈ Tx is given in such a way that all of its sons t′ ∈ sons(Tx, t) are
leaves of Tx. To keep the presentation simple, we consider only the case of a binary
tree, i.e., # sons(Tx, t) = 2 and sons(Tx, t) = {t1, t2}. Since the sons are assumed
to be leaves of Tx, Definition 2.7 yields

x|t̂ =

(
x|t̂1
x|t̂2

)
=

(
Qt1 x̂t1

Qt2 x̂t2

)
.

We want t to become a leaf, so we have to find a coefficient vector x̂t with x|t̂ ≈ Qtx̂t.
Due to (3.2), the best choice is given by the orthogonal projection, i.e.,

(3.3) x̂t := Q∗
tx|t̂.

Computing x̂t by this equation would be very inefficient, since it would require us
to first construct the entire vector x|t̂ and then approximate it again. In order to
reduce the number of operations, we rely on the nested structure (2.1) of the cluster
basis: denoting the transfer matrices for (Qt)t∈TI by (Ft)t∈TI , we have

Qt =

(
Qt1Ft1

Qt2Ft2

)
and find

x̂t = Q∗
tx|t̂ =

(
F ∗
t1
Q∗

t1
F ∗
t2
Q∗

t2

)(Qt1 x̂t1

Qt2 x̂t2

)
=

(
F ∗
t1

F ∗
t2

)(Q∗
t1Qt1 x̂t1

Q∗
t2Qt2 x̂t2

)
=

(
F ∗
t1

F ∗
t2

)(x̂t1

x̂t2

)
= F ∗

t1 x̂t1 + F ∗
t2 x̂t2 .

Using this equation, we can compute the optimal x̂t given by (3.3) efficiently. The
coarsening procedure is summarized in Figure 4.
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procedure coarsen(t, var x);
if t′ ∈ Lx for all t′ ∈ sons(Tx, t) then begin
x̂t ← 0;
for t′ ∈ sons(TI , t) do begin
x̂t ← x̂t + F ∗

t′ x̂t′ ;
Remove t′ from Tx

end
end

Figure 4. Coarsening a hierarchical vector

Remark 3.2 (Complexity). If there is a constant Csn such that # sons(TI , t) ≤
Csn holds for all t ∈ TI , the procedures refine and coarsen require only O(k2)
operations.

In order to obtain an adaptive algorithm, we have to be able to control the error
introduced by coarsening steps. We define

Q̂t :=

(
Ft1

Ft2

)
∈ R

(2k)×k

and find that (2.1) takes the form

Qt =

(
Qt1

Qt2

)
Q̂t.

The error can be written as

x|t̂ −QtQ
∗
tx|t̂ =

(
Qt1 x̂t1

Qt2 x̂t2

)
−
(
Qt1

Qt2

)
Q̂tQ̂

∗
t

(
Q∗

t1
Q∗

t2

)(
Qt1 x̂t1

Qt2 x̂t2

)
=

(
Qt1

Qt2

)[(
x̂t1

x̂t2

)
− Q̂tQ̂

∗
t

(
x̂t1

x̂t2

)]
.

Since Qt1 and Qt2 are isometric matrices, they leave the Euclidean norm unchanged
and we conclude

‖x|t̂ −QtQ
∗
tx|t̂‖ =

∥∥∥∥(x̂t1

x̂t2

)
− Q̂tQ̂

∗
t

(
x̂t1

x̂t2

)∥∥∥∥ .
In theory, this equation allows us to evaluate the error explicitly in O(k2) opera-
tions. In practice, however, we are subtracting two vectors with, hopefully, very
similar entries, so we have to expect rounding errors to influence the result signifi-
cantly.

We can avoid this problem by introducing a suitable auxiliary matrix: since Qt,
Qt1 and Qt2 are isometric, we have

I = Q∗
tQt = Q̂∗

t

(
Q∗

t1
Q∗

t2

)(
Qt1

Qt2

)
Q̂t = Q̂∗

t Q̂t,

so the matrix Q̂t is also isometric. This means that we can extend it to an or-

thonormal basis, i.e., we can find an isometric matrix P̂t ∈ R
(2k)×k such that

(3.4)
(
Q̂t P̂t

)
∈ R

(2k)×(2k)



218 STEFFEN BÖRM

is orthogonal and square, e.g., by computing the Householder factorization of Q̂t

and accumulating the elementary reflections. This implies

I =
(
Q̂t P̂t

)(
Q̂∗

t

P̂ ∗
t

)
= Q̂tQ̂

∗
t + P̂tP̂

∗
t , I − Q̂tQ̂

∗
t = P̂tP̂

∗
t ,

and we conclude (
x̂t1

x̂t2

)
− Q̂tQ̂

∗
t

(
x̂t1

x̂t2

)
= P̂tP̂

∗
t

(
x̂t1

x̂t2

)
.

Since P̂t is isometric, the first factor on the right-hand side does not influence the
norm and we have proven the following result:

Theorem 3.3 (Coarsening error). The matrices (P̂t)t∈TI\LI defined by (3.4) satisfy

‖x|t̂ −QtQ
∗
tx|t̂‖ =

∥∥∥∥P̂ ∗
t

(
x̂t1

x̂t2

)∥∥∥∥ for all t ∈ TI \ LI , x|t̂ =

(
Qt1 x̂t1

Qt2 x̂t2

)
.(3.5)

Remark 3.4 (Implementation and complexity). To obtain a fast and robust algo-

rithm, we can construct P̂t in (3.4) by applying k Householder reflections P1, . . . , Pk

to triangularize Q̂t, i.e., to obtain PkPk−1 . . . P1Q̂t = R with an upper triangular

matrix R ∈ R
2k×k. Now P̂t consists of the last k columns of P ∗

1 P
∗
2 . . . P ∗

k . If we
compute

(3.6) PkPk−1 . . . P1

(
x̂t1

x̂t2

)
,

we find the error vector in the last k rows of the result.
By choosing the signs in the construction of the Householder vectors correctly,

it is possible to ensure that the first k columns of P ∗
1 P

∗
2 . . . P ∗

k coincide with Q̂t. In
this case, we can find the coefficient vector x̂t = Q∗

tx|t̂ in the first k components of
(3.6) without any additional work.

If we assume that constructing a Householder vector of dimension n ∈ N and
applying the corresponding reflection takes not more than Cqrn operations, finding

the k Householder reflections for triangularizing the (2k) × k-matrix Q̂t takes not

more than Cqr(2k)k2 = 2Cqrk
3 operations and applying P̂ ∗

t to a vector takes not
more than Cqr(2k)k = 2Cqrk

2.
In the general case, i.e., if we do not assume TI to be a binary tree, we get

Cqrk
3# sons(TI , t) and Cqrk

2# sons(TI , t)
operations, respectively, and we can conclude that preparing the matrices P̂t for
the entire cluster tree takes not more than Cqrk

3#TI operations, while coarsening
a hierarchical vector with a subtree Tx takes not more than Cqrk

2#Tx operations.

4. H2
-matrices

We have developed algorithms for adding hierarchical vectors, for computing
norms and inner products, and for refining and coarsening the corresponding sub-
trees.

Now we consider the multiplication of a hierarchical vector by a matrix. Let TI
and TJ be cluster trees for the index sets I and J . We are looking for an algorithm
that takes a matrix A ∈ R

I×J and a hierarchical vector x ∈ R
J corresponding to a

subtree Tx of TJ and computes a new hierarchical vector y ∈ R
I such that y = Ax,

and we would like this computation to take only O(k2#Tx) operations.
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This is obviously not possible for general matrices A, so we have to restrict our
attention to a suitable subset of matrices. H2-matrices [3,5,12] have the necessary
properties.

Just like a hierarchical vector is based on a cluster tree TI that describes a
hierarchical splitting of the index set I, an H2-matrix is based on a block tree that
describes a hierarchical splitting of I × J .

Definition 4.1 (Block tree). Let TI×J = (V, r, S, ι) be a labeled tree. We call it a
block tree for the cluster trees TI and TJ if

• for each b ∈ V there are t ∈ TI and s ∈ TJ such that b = (t, s) and b̂ = t̂× ŝ,
• root(TI×J ) = (root(TI), root(TJ )),
• if b = (t, s) ∈ V is not a leaf, we have sons(TI×J , b) = sons(TI , t) ×

sons(TJ , s).

If TI×J is a block tree for TI and TJ , we call the elements b ∈ V blocks and use
the short notation b ∈ TI×J for b ∈ V . We denote its leaves by LI×J .

It is easy to see that a block tree TI×J for TI and TJ is a special cluster tree
for the index set I × J , and Remark 2.4 yields that

{t̂× ŝ : b = (t, s) ∈ LI×J }
is a disjoint partition of I ×J , so we can describe a matrix A ∈ R

I×J uniquely by
defining its restrictions A|t̂×ŝ for all b = (t, s) ∈ LI×J . An H2-matrix represents
these submatrices by a three-term factorization using cluster bases.

Definition 4.2 (H2-matrix). Let TI×J be a block tree for TI and TJ . Let (Vt)t∈TI

and (Ws)s∈TJ be cluster bases for TI and TJ , respectively.
We call a matrix A ∈ R

I×J an H2-matrix with respect to TI×J , (Vt)t∈TI and
(Ws)s∈TJ if for each b = (t, s) ∈ LI×J we can find Sb ∈ R

k×k such that

(4.1) A|t̂×ŝ = VtSbW
∗
s .

In this case, the matrices Sb are called coupling matrices, the cluster basis (Vt)t∈TI

is called the row cluster basis, and the cluster basis (Ws)s∈TJ is called the column
cluster basis.

Remark 4.3 (Special case). A more general definition of H2-matrices is commonly
found in the literature [3, 5, 12]. Our definition is equivalent if

• all leaves of the cluster trees TI and TJ appear on the same level, and
• for all leaves t ∈ LI and s ∈ LJ , the matrices Vt and Ws have full rank.

The first assumption allows us to avoid special cases in the construction of the block
tree, the second assumption allows us to express all leaf blocks in the form (4.1),
even if they do not satisfy the admissibility conditions that are usually employed
to determine approximability.

We make both assumptions only to keep the presentation simple, all algorithms
and theoretical arguments in the following can be extended to the general case by
handling a moderate number of special cases.

5. Matrix-vector multiplication and induced bases

Let x ∈ R
J be a hierarchical vector for a subtree Tx of TJ and an isometric

cluster basis (Qt)t∈TI .
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Let A ∈ R
I×J be an H2-matrix for the block tree TI×J , the row cluster basis

(Vt)t∈TI and the column cluster basis (Ws)s∈TJ . We assume that both bases have
rank kA, while we keep using k to denote the rank used by the hierarchical vectors.

We want to compute the matrix-vector product y := Ax ∈ R
I efficiently, i.e.,

the number of operations should be in O((kA + k)2Tx).
If x was a vector without hierarchical structure, we could split A recursively into

submatrices according to the block tree and evaluate the contributions of the leaves
to the result. Since x is a hierarchical vector, we have to modify the procedure and
stop splitting as soon as we reach a leaf of the subtree Tx describing the structure
of x: let b = (t, s) ∈ TI×J with s ∈ Tx. We consider the problem of evaluating
A|t̂×ŝx|ŝ.

(1) If sons(TI×J , b) = ∅, we have A|t̂×ŝx|ŝ = VtSbW
∗
s x|ŝ and can compute the

product explicitly.
(2) If sons(TI×J , b) �= ∅ and sons(Tx, s) �= ∅, consider all submatrices A|t′×s′

with b′ = (t′, s′) ∈ sons(TI×J , b) by recursion.
(3) If sons(TI×J , b) �= ∅ and sons(Tx, s) = ∅, we have no choice but to compute

A|t̂×ŝx|ŝ directly.

Case (2) is straightforward, we only have to ensure that the result y has a hier-
archical structure that matches the recursion. This can be easily accomplished by
using the procedure refine.

Case (1) can be handled as for standard H2-matrices: we prepare auxiliary vec-
tors x̄s = W ∗

s x|ŝ for all s ∈ Tx in advance by a backward transformation, accumulate
all contributions to a row cluster t ∈ TI in an auxiliary vector ȳt, and finally add
Vtȳt to the result using a forward transformation.

Let us first consider the backward transformation. If s ∈ Tx is a leaf, we have
x|ŝ = Qsx̂s by definition and need to compute

x̄s = W ∗
s Qsx̂s.

If we have the auxiliary matrices

Ds := W ∗
s Qs ∈ R

kA×k for all s ∈ TJ
at our disposal, we can evaluate x̄s = Dsx̂s in O(kAk) operations. In order to
prepare these matrices, we can follow a similar approach as in (2.4): denoting the
transfer matrices for the column basis (Ws)s∈TJ by (EW,s)s∈TJ and the transfer
matrices for the vector basis (Qs)s∈TJ by (Fs)s∈TJ , we can use (2.1) to get

Ds =

{
W ∗

s Qs if sons(TJ , s) = ∅,∑
s′∈sons(TJ ,s) E

∗
W,s′Ds′Fs′ otherwise,

for all s ∈ TJ ,(5.1)

and this allows us to compute all of these matrices in O(kA(kA + k)k#TJ ) opera-
tions.

If s ∈ Tx is not a leaf, we can again use (2.1) to find

x̄s = W ∗
s x|ŝ =

∑
s′∈sons(Ty,x)

Ws|∗s′×kx|ŝ′ =
∑

s′∈sons(Ty,x)

E∗
W,s′W

∗
s′x|ŝ′

=
∑

s′∈sons(Ty,x)

E∗
W,s′ x̄s′ for all s ∈ Ty, sons(Ty, s) �= ∅.

The resulting algorithm is called the forward transformation and is given as the
procedure forward in Figure 5.
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procedure forward(s, x, var (x̄s)s∈Tx);
if sons(Tx, s) = ∅ then

x̄s ← Dsx̂s

else begin
x̄s ← 0;
for s′ ∈ sons(Tx, s) do begin
forward(s′, x, (x̄s)s∈Tx);
x̄s ← x̄s + E∗

W,s′ x̄s′

end
end

procedure backward(t, var (ȳt)t∈Ty , y);
if sons(Ty, t) = ∅ then

ŷt ← ŷt + ȳt
else

for t′ ∈ sons(Ty, t) do begin
ȳt′ ← ȳt′ + EV,t′ ȳt;
backward(t′, (ȳt)t∈Ty , y)

end

Figure 5. Perform forward and backward transformations for hi-
erarchical vectors

If our recursive algorithm encounters a leaf b = (t, s) ∈ LI×J , it looks up
x̄s = W ∗

s x|ŝ among the vectors prepared by the forward transformation, multiplies
it by Sb, and adds it to an auxiliary vector ȳt that collects all contributions to a
row cluster t. As mentioned in the discussion of case (2), we assume that a subtree
Ty is created by the recursive procedure that ensures t ∈ Ty, so we only need the
auxiliary vectors for these clusters.

In a last step, we have to take care of these temporary results, i.e., we have to
add Vtȳt to the final result for all t ∈ Ty. If we represent the result y ∈ R

I as
a hierarchical vector with the cluster basis (Vt)t∈TI , we can handle leaves t ∈ Ly

directly by adding ȳt to the corresponding coefficient vector ŷt. If t ∈ Ty \Ly is not
a leaf, we can use (2.1) again to find

(Vtȳt)|t̂′ + Vt′ ȳt′ = Vt|t̂′×kȳt + Vt′ ȳt′ = Vt′(EV,t′ ȳt + ȳt′) for all t′ ∈ sons(Ty, t),
i.e., instead of adding Vtȳt to y|t̂ directly, we can also add EV,t′ ȳt to ȳt′ and handle
the son clusters t′ ∈ sons(Ty, t) by recursion. The resulting algorithm is called the
backward transformation and is given as the procedure backward in Figure 5.

While the cases (1) and (2) can be handled essentially as in the case of standard
H2-matrices, the case (3) requires special treatment: if we encounter a leaf s ∈ Lx

and a block (t, s) ∈ TI×J that is not a leaf of the block tree, we cannot afford to
subdivide s further, since we are aiming for an algorithm with only O((k2+k2A)#Tx)
operations. We have to find a way to add

A|t̂×ŝx|ŝ = A|t̂×ŝQsx̂s

to the subvector y|t̂ of the result y.
We can face this challenge by using induced cluster bases [3, Section 7.8]: instead

of representing the result y in the row cluster basis (Vt)t∈TI , we use a cluster

basis that also contains the products A|t̂×ŝQs ∈ R
t̂×k for all t ∈ TI with (t, s) ∈

TI×J \ LI×J .
To define the induced cluster basis, we introduce

row−(t) := {s ∈ TJ : (t, s) ∈ TI×J \ LI×J } for all t ∈ TI .(5.2)

This set contains all column clusters s ∈ TJ that appear in non-leaf blocks with the
row cluster t. These are the blocks that have to be handled by the induced basis.
We let βt := # row−(t) and fix st,1, . . . , st,βt

∈ TJ such that

row−(t) = {st,1, . . . , st,βt
} for all t ∈ TI .
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procedure coupling(b = (t, s), x, (x̄s)s∈Tx
, var y, (ȳt)t∈Ty

);
if sons(TI×J , b) = ∅ then
ȳt ← ȳt + Sbx̄s

else if sons(Tx, s) = ∅ then
ȳt,s ← ȳt,s + x̂s

else begin
if sons(Ty, t) = ∅ then begin
refine(t, y);
for t′ ∈ sons(TI , t) do ȳU,t′ ← 0

end;
for t′ ∈ sons(TI , t), s′ ∈ sons(TJ , s) do
coupling(b′ = (t′, s′), x, (x̄s)s∈Tx

, y, (ȳt)t∈Ty
)

end

Figure 6. Evaluating all couplings between row and column clusters

Definition 5.1 (Induced cluster basis). Let A ∈ R
I×J be an H2-matrix for TI×J

with row cluster basis (Vt)t∈TI , and let (Qs)s∈TJ be another cluster basis.
We define �t := kA + kβt and

Ut :=
(
Vt A|t̂×ŝt,1

Qst,1 . . . A|t̂×ŝt,βt
Qst,βt

)
∈ R

t̂×�t for all t ∈ TI(5.3)

and call (Ut)t∈TI the induced cluster basis corresponding to the H2-matrix A and
the input cluster basis (Qs)s∈TJ .

Remark 5.2 (Nested). Calling the induced cluster basis (Ut)t∈TI a cluster basis is
justified, since it is nested [3, Lemma 7.22], i.e., it satisfies (2.1) for suitable transfer
matrices EU,t′ ∈ R

�t′×�t .

If we use the induced cluster basis to represent the result y, case (3) can be han-
dled by simply adding x̂s to the appropriate portion of the corresponding coefficient
vector. To keep the notation simple, we denote these coefficient vectors by

ŷU,t =

⎛⎜⎜⎜⎝
ŷt

ŷt,st,1
...

ŷt,st,βt

⎞⎟⎟⎟⎠ ∈ R
�t , ȳU,t =

⎛⎜⎜⎜⎝
ȳt

ȳt,st,1
...

ȳt,st,βt

⎞⎟⎟⎟⎠ ∈ R
�t .

Now the cases (1) and (3) can be handled almost in the same way. Figure 6
summarizes the recursive procedure coupling that handles all three cases.

To complete our algorithm for the matrix-vector multiplication, we require the
backward transformation for the induced cluster basis. In order to generalize the
algorithm backward given in Figure 5, we require an understanding of how the
transfer matrices for the induced cluster basis act on vectors.

In order to keep the presentation simple, we again assume that the cluster tree
TJ is binary and that for each cluster s ∈ TJ \LJ its sons are given by sons(TJ , s) =
{s1, s2}.

The first block of (5.3) is straightforward: for t ∈ TI and t′ ∈ sons(TI , t), we
have

Vt|t̂′×k = Vt′Et′
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procedure induced backward(t, var (ȳU,t)t∈Ty
, y);

if sons(Ty, t) = ∅ then
ŷU,t ← ŷU,t + ȳU,t

else
for t′ ∈ sons(Ty, t) do begin
ȳt′ ← ȳt′ + EV,t′ ȳt;
for s ∈ row−(t), s′ ∈ sons(TJ , s) do begin
b′ ← (t′, s′);
if sons(TI×J , b′) = ∅ then
ȳt′ ← ȳt′ + Sb′Ds′Fs′ ȳt,s

else
ȳt′,s′ ← ȳt′,s′ + Fs′ ȳt,s

end;
induced backward(t′, (ȳU,t)t∈Ty

, y)
end

Figure 7. Backward transformation for the induced cluster basis

procedure eval(A, x, var y);
rI ← root(TI); rJ ← root(TJ );
Let Ty be the minimal subtree of TI containing only rI ;
ȳU,rI ← 0; ŷU,rI ← 0;
forward(rJ , x, (x̄s)s∈Tx

);
coupling(b = (rI , rJ ), x, (x̄s)s∈Tx

, y, (ȳt)t∈Ty
);

induced backward(rI , (ȳU,t)t∈Ty
, y)

Figure 8. Matrix-vector multiplication, result represented in the
induced cluster basis

by (2.1). The following blocks are a little more involved. Let s ∈ row−(t). The
definition (5.2) yields b := (t, s) ∈ TI×J \ LI×J , and with Definition 4.1 we obtain
sons(TI×J , b) = sons(t) × sons(s). Restricting to t′ and using (2.1) gives us

(A|t̂×ŝQs)|t̂′×k = A|t̂′×ŝQs =
(
A|t̂′×ŝ1

A|t̂′×ŝ2

)(Qs1Fs1

Qs2Fs2

)
=

(
A|t̂′×ŝ1

Qs1 A|t̂′×ŝ2
Qs2

)(Fs1

Fs2

)
.

Let s′ ∈ sons(TJ , s). If b′ := (t′, s′) is a leaf of TI×J , we have

A|t̂′×ŝ′Qs′Fs′ ȳt,s = Vt′Sb′W
∗
s′Qs′Fs′ ȳt,s = Vt′Sb′Ds′Fs′ ȳt,s,

and we can express the product by the first block in (5.3).
On the other hand, if b′ := (t′, s′) is not a leaf of TI×J , we have s′ ∈ row−(t′) by

definition and can express the product A|t̂′×ŝ′Qs′Fs′ using one of the other blocks
in (5.3). The resulting backward transformation for the induced cluster basis is
summarized as the procedure induced backward in Figure 7.

Combining the forward transformation given in Figure 5, the coupling step in
Figure 6, and the backward transformation for the induced basis in Figure 7 yields
the matrix-vector multiplication algorithm given in Figure 8.
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Our goal is now to prove that this algorithm requires not more than
O((k2A + k2)#Tx) operations. In order to establish a connection between the num-
ber of clusters and the number of blocks, we require a standard assumption: the
block tree has to be sparse [10, 11].

Definition 5.3 (Sparse). Let TI×J be a block tree for TI and TJ . We define

row(TI×J , t) := {s ∈ TJ : (t, s) ∈ TI×J } for all t ∈ TI ,
col(TI×J , s) := {t ∈ TI : (t, s) ∈ TI×J } for all s ∈ TJ .

Let Csp ∈ N. A block tree TI×J is called Csp-sparse if

# row(TI×J , t) ≤ Csp, # col(TI×J , s) ≤ Csp for all t ∈ TI , s ∈ TJ .

Lemma 5.4 (Forward transformation). The forward transformation forward given
in Figure 5 requires O(kA(kA + k)#Tx) operations.

Proof. We first note that the function forward is only called for clusters s ∈ Tx.
If s is a leaf, the multiplication by Ds requires 2kAk operations.
If s is not a leaf, the function performs a multiplication by Es′ for each of the

sons s′ ∈ sons(Tx, s). This takes 2k2A operations.
Since each cluster has at most one father, not more than 2kA(kA +k) operations

are required for each cluster. �

Lemma 5.5 (Coupling step). Let TI×J be Csp-sparse.
The coupling step coupling given in Figure 6 requires O(CspkA(kA + k)#Tx)

operations.
If Ty is the minimal subtree of TI containing only the root prior to calling

coupling, it will satisfy

#Ty ≤ Csp#Tx
after completion of the algorithm.

Proof. The procedure coupling is only called recursively if sons(TI×J , b) �= ∅ and
sons(Tx, s) �= ∅ hold. In this case, we have sons(TI×J , b) = sons(TI , t)× sons(TJ , s)
and sons(Tx, s) = sons(TJ , s) by definition, and therefore (t′, s′) ∈ TI×J and s′ ∈
Ty for all t′ ∈ sons(TI) and s′ ∈ sons(TJ ). Since coupling is first called with
t = root(TI) and s = root(TJ ), we can guarantee that for each call to coupling

we have b = (t, s) ∈ TI×J and s ∈ Tx.
This implies t ∈ col(TI×J , s), and since the block tree TI×J is Csp-sparse, we

have # col(TI×J , s) ≤ Csp.
In each call to coupling, we perform either 2k2A operations to multiply x̄s by

Sb, or k ≤ 2kAk operations to add x̂s to ȳt,s.
We conclude that the total number of arithmetic operations is bounded by∑
s∈Tx

∑
t∈col(TI×J ,s)

2kA(kA + k) ≤
∑
s∈Tx

2CspkA(kA + k) = 2CspkA(kA + k)#Tx.

The procedure refine is only called to extend the tree Ty if sons(TI×J , b) �= ∅ and
sons(Tx, s) �= ∅. We have already seen that in this case we have (t′, s′) ∈ TI×J
and s′ ∈ Tx for all t′ ∈ sons(TI , t) and s′ ∈ sons(TJ , s). In particular, for each
t′ ∈ sons(TI , t) added by refine, we can find a cluster s′ ∈ sons(Tx, s) ⊆ Tx with
t′ ∈ col(TI×J , s′).
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Since we start the procedure with a minimal subtree Ty containing only the root
of TI , we can conclude that t ∈ Ty implies t ∈ col(TI×J , s) for an s ∈ Tx. The
Csp-sparsity of TI×J yields

Ty ⊆
⋃

s∈Tx

col(TI×J , s), #Ty ≤
∑
s∈Tx

# col(TI×J , s) ≤ Csp#Tx.

�

Lemma 5.6 (Backward transformation). Let TI×J be Csp-sparse.
The ranks of the induced cluster basis are bounded by

�t ≤ kA + Cspk for all t ∈ TI ,

and the backward transformation induced backward for it given in Figure 7 requires
O(Csp(k

2
A + k2)#Ty) operations.

Proof. We first note that we have

# row−(TI×J , t) ≤ # row(TI×J , t) ≤ Csp for all t ∈ TI .

By definition (5.3), this implies

�t ≤ kA + Cspk for all t ∈ TI .

Let us now consider the number of operations required by induced backward for a
cluster t ∈ Ty.

If t is a leaf, ȳU,t is added to ŷU,t, and due to (5.3), this requires

kA + k# row−(t) ≤ kA + k# row(t)

operations.
If t is not a leaf, the multiplication of ȳt with EV,t′ takes 2k2A operations, and for

all s ∈ row−(t) and s′ ∈ sons(TJ , s) we perform either one multiplication with Fs′ or
three multiplications with Sb′ , Ds′ , and Fs′ , so not more than 2k2A + 2kAk + 2k2 ≤
3(k2A + k2) operations are required. Due to t′ ∈ sons(Ty, t), s ∈ row−(t) and
s′ ∈ sons(TJ , s), we have (t′, s′) ∈ TI×J and therefore s′ ∈ row(TI×J , t′). Since
each s′ has only one father s, we conclude that not more than

2k2A +
∑

s∈row−(TI×J ,t)

∑
s′∈sons(TJ ,s)

3(k2A + k2) = 2k2A +
∑

s′∈row(TI×J ,t′)

3(k2A + k2)

= 2k2A + 3(k2A + k2)# row(t′)

operations are required. The total number of operations is now bounded by∑
t∈Ty

2k2A + 3(k2A + k2)# row(t) ≤
∑
t∈Ty

2k2A + 3(k2A + k2)Csp

≤ (2 + 3Csp)(k
2
A + k2)#Ty.

�

Theorem 5.7 (Complexity, matrix-vector multiplication). Let the block tree TI×J
be Csp-sparse.

The algorithm eval given in Figure 8 requires O(C2
sp(k

2
A + k2)#Tx) operations.



226 STEFFEN BÖRM

Proof. Lemma 5.4 yields that the forward transformation requires

O(kA(kA + k)#Tx) ⊆ O((k2A + k2)#Tx)

operations.
Lemma 5.5 yields that the coupling step requires O(CspkA(kA + k)#Tx) ⊆

O(Csp(k
2
A + k2)#Tx) operations and that Ty will subsequently satisfy #Ty ≤

Csp#Tx.
Lemma 5.6 yields that the backward transformation requires O(Csp(k

2
A+k2)#Ty)

operations, and due to the estimate #Ty ≤ Csp#Tx, the number of operations is
also in O(C2

sp(k
2
A + k2)#Tx).

Setting up the initial vector y requires no arithmetic operations. �

6. Adaptive conversion

We have seen that the matrix-vector multiplication algorithm presented in Fig-
ures 5, 6, 7 and 8 computes the exact result of the matrix-vector multiplication
y = Ax for a hierarchical vector x in O(C2

sp(k
2
A + k2)#Tx) operations.

Unfortunately, the algorithm yields a result that does not use a cluster basis of
our choosing, but the somewhat artificial induced cluster basis. This is particularly
undesirable since the rank of the induced cluster basis can become quite large.

We address this problem by developing an algorithm that approximates a given
hierarchical vector by another hierarchical vector using a different basis.

Let x ∈ R
I be a hierarchical vector corresponding to a subtree Tx and a cluster

basis (Vt)t∈TI . Our goal is to represent it by a hierarchical vector y ∈ R
I corre-

sponding to a subtree Ty and a second cluster basis (Qt)t∈TI . We have already
seen that isometric cluster bases are useful for purposes like this, so we assume that
(Qt)t∈TI is isometric.

Consider a leaf t ∈ Lx. We have x|t̂ = Vtx̂t, and we could simply employ the
orthogonal projection corresponding to Qt to obtain the approximation

x|t̂ = Vtx̂t ≈ QtQ
∗
tVtx̂t,

but we are faced with the question if this approximation is sufficiently accurate.
Assume that we know that it is not. In this case, we split t into its sons and try

to approximate the subvectors x|t̂′ by the projections Qt′Q
∗
t′x|t̂′ corresponding to

the sons t′ ∈ sons(TI , t). If the resulting errors are still too large, we keep splitting
recursively until we are satisfied. Since we have (2.1) at our disposal, this procedure
can be carried out efficiently and provides us with the required hierarchical vector
y and subtree Ty.

Although Ty is now guaranteed to be fine enough to satisfy our accuracy re-
quirements, it may be too fine. Fortunately, we have the procedure coarsen (cf.
Figure 4) at our disposal to reduce the cluster tree again while ensuring that the
error stays below a given bound.

The resulting algorithm convert is given in Figure 9, but it is still incomplete:
how can the algorithm judge whether an approximation error is “small enough”?

For the second case, i.e., the coarsening of the vector y given in the isometric
basis (Qt)t∈TI , we have already solved this problem: we can construct the auxiliary
matrices (Pt)t∈TI introduced in (3.4) and use (3.5) to compute the error norm
explicitly and robustly.
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procedure convert leaf(t, x̂t, var y);
if ‖Vtx̂t −QtQ

∗
tVtx̂t‖ small enough then

ŷt ← Q∗
tVtx̂t

else begin
refine(t,y)
for t′ ∈ sons(TI , t) do begin

x̂t′ ← Et′ x̂t;
convert leaf(t′, x̂t′ , y)

end
end

procedure convert(t, x, var y);
if sons(Tx, t) = ∅ then
convert leaf(t, x̂t, y)

end else begin
for t′ ∈ sons(Tx, t) do
convert(t′, x, y);

if ‖y|t̂ −QtQ
∗
t y|t̂‖ small enough then

coarsen(t, y)
end

Figure 9. Conversion from one cluster basis to another with
adaptively constructed subtree

We still have to consider the first case: a leaf t ∈ Tx is given and we have to
compute the projection error

‖Vtx̂t −QtQ
∗
tVtx̂t‖.

We can solve this problem by generalizing the approach used for the coarsening
error: we construct k × k matrices (Zt)t∈TI and isometric matrices (Pt)t∈TI such
that

Vt −QtQ
∗
tVt = PtZt for all t ∈ TI ,(6.1a)

P ∗
t Pt = I for all t ∈ TI ,(6.1b)

P ∗
t Qt = 0 for all t ∈ TI .(6.1c)

The first property (6.1a) states that PtZt is a representation of the projection error,
the second property (6.1b) simply restates that Pt is isometric. The third property
(6.1c) is used in the construction of the families (Zt)t∈TI and (Pt)t∈TI .

Combining (6.1a) and (6.1b) yields

‖Vtx̂t −QtQ
∗
tVtx̂t‖2 = ‖PtZtx̂t‖2 = ‖Ztx̂t‖2 for all t ∈ TI , x̂t ∈ R

k,

and since Zt is small, we can evaluate the right-hand side efficiently.
We construct the families (Zt)t∈TI and (Pt)t∈TI by recursion. Let t ∈ TI .

Leaf cluster. If t is a leaf of TI , we have Vt and Qt at our disposal. We can use
a Householder factorization to extend Qt to an isometric matrix, i.e., to find an

isometric matrix P̃t such that

Q̃t :=
(
Qt P̃t

)
∈ R

t̂×t̂

is orthogonal, i.e., quadratic and isometric. This means

Vt = Q̃tQ̃
∗
tVt =

(
Qt P̃t

)(
Q∗

t

P̃ ∗
t

)
Vt = QtQ

∗
tVt + P̃tP̃

∗
t Vt,

which is equivalent to

Vt −QtQ
∗
tVt = P̃tP̃

∗
t Vt.

If k � #t̂, the matrix P̃ ∗
t Vt will have a large number of rows. Since it has only k

columns, we use a thin Householder factorization

(6.2) P̃ ∗
t Vt = P̂tZt,
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where Zt is a k × k upper triangular matrix and P̂t is isometric. We let

Pt := P̃tP̂t

and observe

Vt = QtQ
∗
tVt + P̃tP̃

∗
t Vt = QtQ

∗
tVt + P̃tP̂tZt = QtQ

∗
tVt + PtZt,

P ∗
t Pt = P̂ ∗

t P̃
∗
t P̃tP̂t = P̂ ∗

t P̂t = I,

P ∗
t Qt = P̂ ∗

t P̃
∗
t Qt = P̂ ∗

t 0 = 0.

Non-leaf cluster. If t is not a leaf of TI , we cannot use Vt and Qt, since they
are only given implicitly via the corresponding transfer matrices. For the sake of
simplicity, we assume # sons(t) = 2 and sons(t) = {t1, t2}. We have

Vt =

(
Vt1Et1

Vt2Et2

)
, Qt =

(
Qt1Ft1

Qt2Ft2

)
=

(
Qt1

Qt2

)
Q̂t,

where we let

Q̂t :=

(
Ft1

Ft2

)
.

Assuming that Pt1 , Zt1 , Pt2 and Zt2 have already been computed by recursion, we
find

Vt −QtQ
∗
tVt =

(
Vt1Et1

Vt2Et2

)
−
(
Qt1

Qt2

)
Q̂tQ̂

∗
t

(
Q∗

t1
Q∗

t2

)(
Vt1Et1

Vt2Et2

)
=

(
Vt1Et1

Vt2Et2

)
−
(
Qt1

Qt2

)
Q̂tQ̂

∗
t

(
Q∗

t1
Vt1Et1

Q∗
t2Vt2Et2

)
=

(
Vt1Et1

Vt2Et2

)
−
(
Qt1Q

∗
t1Vt1Et1

Qt2Q
∗
t2Vt2Et2

)
+

(
Qt1Q

∗
t1Vt1Et1

Qt2Q
∗
t2Vt2Et2

)
−
(
Qt1

Qt2

)
Q̂tQ̂

∗
t

(
Q∗

t1Vt1Et1

Q∗
t2Vt2Et2

)
=

(
(Vt1 −Qt1Q

∗
t1Vt1)Et1

(Vt2 −Qt2Q
∗
t2
Vt2)Et2

)
+

(
Qt1

Qt2

)[(
Q∗

t1Vt1Et1

Q∗
t2Vt2Et2

)
− Q̂tQ̂

∗
t

(
Q∗

t1Vt1Et1

Q∗
t2Vt2Et2

)]
.

For the first term, our assumption yields

(6.3)

(
(Vt1 −Qt1Q

∗
t1Vt1)Et1

(Vt2 −Qt2Q
∗
t2Vt2)Et2

)
=

(
Pt1Zt1Et1

Pt2Zt2Et2

)
.

For the second term, we introduce

V̂t :=

(
Q∗

t1Vt1Et1

Q∗
t2Vt2Et2

)
and obtain (

Q∗
t1V

∗
t1Et1

Q∗
t2V

∗
t2Et2

)
− Q̂tQ̂

∗
t

(
Q∗

t1V
∗
t1Et1

Q∗
t2V

∗
t2Et2

)
= V̂t − Q̂tQ̂

∗
t V̂t.

As before, we extend Q̂t to a square isometric matrix

Q̃t :=
(
Q̂t P̃t

)
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and obtain

(6.4) V̂t − Q̂tQ̂
∗
t V̂t = P̃tP̃

∗
t V̂t.

Combining the equations (6.3) and (6.4) yields

Vt −QtQ
∗
tVt =

(
Pt1Zt1Et1

Pt2Zt2Et2

)
+

(
Qt1

Qt2

)
P̃tP̃

∗
t V̂t

=

(
Pt1 Qt1

Pt2 Qt2

)⎛⎝I
I

P̃t

⎞⎠⎛⎝Zt1Et1

Zt2Et2

P̃ ∗
t V̂t

⎞⎠ ,

where it is important to keep in mind that P̃t has 2k rows, so the dimensions of the
first and second factor match.

To obtain the final result, we compute a thin Householder factorization

(6.5)

⎛⎝Zt1Et1

Zt2Et2

P̃ ∗V̂t

⎞⎠ = P̂tZt

with a k × k upper triangular matrix Zt and let

Pt :=

(
Pt1 Qt1

Pt2 Qt2

)⎛⎝I
I

P̃t

⎞⎠ P̂t.

Since it is a product of three isometric matrices, Pt is also isometric, so (6.1b) holds.
By our construction, we have

Vt −QtQ
∗
tVt =

(
Pt1 Qt1

Pt2 Qt2

)⎛⎝I
I

P̃t

⎞⎠ P̂tZt = PtZt,

so (6.1a) holds, too.
Since (6.1c) holds for the sons t1 and t2, we have

P ∗
t Qt = P̂ ∗

t

⎛⎝I
I

P̃ ∗
t

⎞⎠
⎛⎜⎜⎝
P ∗
t1

P ∗
t2

Q∗
t1

Q∗
t2

⎞⎟⎟⎠(
Qt1Ft1

Qt2Ft2

)

= P̂ ∗
t

⎛⎝I
I

P̃ ∗
t

⎞⎠
⎛⎜⎜⎝
P ∗
t1Qt1Ft1

P ∗
t2
Qt2Ft2

Ft1

Ft2

⎞⎟⎟⎠ = P̂ ∗
t

⎛⎝I
I

P̃ ∗
t

⎞⎠⎛⎝ 0
0

Q̂t

⎞⎠ .

We have constructed P̃t by extending Q̂t to an orthogonal basis, so we have P̃ ∗
t Q̂t =

0 and conclude

P ∗
t Qt = P̂ ∗

t

⎛⎝I
I

P̃ ∗
t

⎞⎠⎛⎝ 0
0

Q̂t

⎞⎠ = P̂ ∗
t

⎛⎝0
0
0

⎞⎠ = 0,

i.e., (6.1c) holds also for t. The construction is complete, and we have proven the
following result.
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Theorem 6.1 (Projection error). The matrices (Zt)t∈TI defined by (6.2) and (6.5),
respectively, satisfy

‖Vtx̂t −QtQ
∗
tVtx̂t‖ = ‖Ztx̂t‖ for all t ∈ TI , x̂t ∈ R

k.

Remark 6.2 (Complexity). The matrices Pt appearing in our construction are only
required for the proof, but not for the practical algorithm. As in Remark 3.4, we
assume that there is a constant Cqr such that a Householder vector of dimension
n ∈ N can be constructed and applied in not more than Cqrn operations.

For a leaf cluster t ∈ TI , we first apply k Householder reflections to construct

P̃t. This takes not more than Cqr(#t̂)k2 operations. Applying the reflections to

compute the matrix P̃ ∗
t Vt takes Cqr(#t̂)k2 operations. This matrix has (#t̂)−k rows

and k columns, so computing its Householder factorization requires Cqr(#t̂− k)k2

operations. We obtain a total of

3Cqr(#t̂)k2

operations for leaf clusters.

For a non-leaf cluster t ∈ TI , the construction of P̃t as a product of k Householder
reflections takes Cqr(2k)k2 operations. Setting up the matrix⎛⎝Zt1Et1

Zt2Et2

P̃ ∗
t V̂t

⎞⎠
takes 2k3 operations for both the first and second block and Cqr(2k)k2 for the third.
The matrix has not more than 4k rows and k columns, so the final Householder
factorization takes not more than Cqr(4k)k2 operations. We obtain a total of

Cqr(2k + 4k)k2 + 4k3 = (6Cqr + 4)k3

operations for non-leaf clusters. In the general case, i.e., if TI is not necessarily a
binary tree, we obtain the bound

(3Cqr + 2)k3# sons(TI , t).

Adding the operations for all clusters and taking Remark 2.4 into account, we
conclude that preparing (Zt)t∈TI for all clusters takes not more than

3Cqrk
2#I + (3Cqr + 2)k3#TI

operations. Under the assumptions of Remark 4.3, the first term vanishes, since the
matrices Qt have full rank in leaves, therefore no approximation error can occur.
In this case, the computational work for preparing all matrices (Zt)t∈TI\LI is in

O(k3#TI).

Remark 6.3 (Application to induced basis). If we apply the conversion algorithm
to obtain an efficient procedure for the matrix-vector multiplication, the cluster
basis V is the induced basis, and the rank of the induced basis can be bounded by
kA+Cspk ≤ Csp(kA+k). For large clusters, we get a complexity of O(C3

sp(kA+k)3).

Fortunately, for the majority of small clusters, we have #t̂ ≤ kA + Cspk, so the
matrix Zt is smaller than our worst-case estimate suggests and the entire algorithm
is still reasonably efficient.
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Figure 10. Runtime of the inverse iteration using standard and
hierarchical vectors for different mesh resolutions

7. Numerical experiments

We consider the application of hierarchical vectors to the task of computing
eigenvectors of a matrix corresponding to a partial differential equation. In our
case, we use a simple finite difference discretization of Poisson’s equation on the
L-shaped domain (0, 1) × (0, 1) \ [1/2, 1] × [1/2, 1]. The inverse is computed by
standard hierarchical matrix methods [10] and then converted into an H2-matrix
[3, Section 6.5]. The accuracy for inversion and conversion is chosen like O(1/n) in
order to compensate for the growing condition number.

We use a variable-order polynomial basis [6] for the representation of the hier-
archical vectors, where we use bicubic polynomials in the leaf clusters. The order
in each coordinate direction is increased if the ratio of the extents of the bounding
boxes of father and son are less than 3/5. This approach ensures that the order
used in the root cluster increases by one each time the mesh is refined.

The standard Lagrange basis is orthogonalized [3, Section 5.4] and the matri-

ces (P̂t)t∈TI and (Zt)t∈TI for computing the coarsening and projection error are
constructed. The implementation currently constructs the entire induced basis and
applies the standard backward transformation given in Figure 5 instead of the op-
timized version given in Figure 7. This choice may lead to a loss in performance for
the matrix-vector multiplication algorithm, but it allows us to use standard func-
tions to deal with the induced basis instead of implementing specialized versions
for all required operations. The theoretical estimates, particularly Theorem 5.7,
remain valid.

Once the setup is complete, we perform 20 steps of the inverse iteration using the
H2-matrix approximation of the inverse and measure the corresponding runtime.
For different refinement levels ranging from 64 to 1024 intervals per coordinate
direction, corresponding to 2977 to 784897 degrees of freedom, the times are repre-
sented in Figure 10. we can see that hierarchical vectors are faster than standard
vectors even for relatively small problems, and that they are faster by a factor of
more than five for the largest problem.

The error tolerance for the hierarchical vector compression starts at ε = 10−5

and is approximately halved each time the mesh is refined The accuracy of the
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Figure 11. Accuracy of the hierarchical vector for different mesh resolutions

Figure 12. Leaf partitions for error tolerances 5 × 10−7 and 5 × 10−10

approximation is computed by converting the hierarchical vector to a standard
vector and finding the Euclidean norm of the difference. Surprisingly, the results
represented in Figure 11 show that the error seems to converge at a rate of O(1/n),
while the given error tolerance decreases like O(1/

√
n).

Next we investigate the influence of the chosen error tolerance. We fix the mesh
with 784897 degrees of freedom and consider a scale of error tolerances between
5 × 10−10 and 5 × 10−7. The leaf partitions (corresponding to Lx) constructed by
the conversion algorithm (cf. Figure 9) in combination with the adaptive coarsening
(cf. Figure 4) are displayed in Figure 12. We can see that they display the typical
behaviour of adaptively refined meshes: very small clusters are only used close to
the singularity, while most of the domain is covered by a few large clusters. While
the algorithm requires only #Tx = 86 clusters to reach the tolerance 5 × 10−7, it
takes #Tx = 480 clusters to reach the very high tolerance 5 × 10−10. Since we are
using the standard Euclidean norm in a space of dimension 784897, the latter is
already fairly close to machine precision.
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Figure 13. Computing time in relation to the number m = #Tx
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Figure 14. Number of clusters #Tx in relation to the accuracy

Figure 13 shows the computing time for 20 steps of the inverse iteration in
relation to the number of clusters in Tx. The results confirm the prediction of
Theorem 5.7: the runtime is directly proportional to m = #Tx.

Finally, Figure 14 shows the relation between the error tolerance and the number
of clusters in the resulting subtree Tx. The number of clusters seems to grow like
O(| log(ε)|3) depending on the error tolerance ε.

8. Conclusion and extensions

Hierarchical vectors provide us with a purely algebraic counterpart of adaptively
refined meshes: clusters of indices correspond to patches of the mesh, a cluster
tree corresponds to a refinement hierarchy, cluster bases play the role of local trial

spaces, and the error matrices (P̂t)t∈TI and (Zt)t∈TI are used instead of local error
estimators.
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These error matrices provide us with the exact error instead of just an estimate,
allowing us, e.g., to compute best approximations, either by minimizing the number
of terms required for a given accuracy or by minimizing the error for a given number
of terms.

The method can be applied to any operator that can be represented as an H2-
matrix, e.g., to integral operators of positive or negative order and to partial dif-
ferential operators or the corresponding solution operators.

The complexity of the algorithms can be bounded under the standard assump-
tion that the block tree TI×J used for the H2-matrix is sparse. We have seen that
in this case O(k2#Tx) operations are required to perform a matrix-vector multipli-
cation with a hierarchical vector corresponding to a cluster tree Tx. The numerical
experiments (cf. Figure 13) confirm this estimate.

In order to obtain optimal error control, our technique relies on the projection
error matrices (Zt)t∈TI used to adaptively convert the intermediate solution given
in the induced cluster basis into the cluster basis (Qt)t∈TI prescribed by the appli-
cation. With the direct approach presented in this paper, these matrices require
O(k2#TI) units of storage, and constructing these matrices requires O(k3#TI) op-
erations. Since #TI is typically quite large compared to #Tx, the setup phase of
the algorithm will take far more time than the actual matrix-vector multiplications.

• A long setup phase is acceptable if a very large number of matrix-vector
multiplications are performed, e.g., if we are using a timestepping scheme
or if we apply an iterative method to compute eigenvectors or solve opti-
mization problems.

• If we only require an upper bound for the error, we can construct small
local error matrices for each matrix block instead of the global error matri-
ces (Zt)t∈TI , or we can even just compute a bound for the norm of these
matrices by a simple power iteration.

• If we are using a regular mesh, we can construct a cluster tree such that
all clusters on a given level are identical up to translation. In this case, all
transfer matrices and coupling matrices will also be identical on a level, so it
suffices to carry out each step of the setup only once per level instead of once
per cluster. Under typical assumptions, this reduces the setup complexity
to O(k3 log #TI).

The experiments presented in the current paper use an H2-matrix approximation
of the inverse. In order to improve the performance, it might make sense to replace
the direct evaluation of the inverse by an iterative scheme with a preconditioner
based on an H2-LR or H2-Cholesky factorization [7]. This approach would require
us to compute the residual r = b−Ax of the linear system, and this residual will in
general not be as smooth as the solution, so the strict accuracy conditions imposed
by our algorithm would lead to the subtree Tr corresponding to r becoming very
large. Since the residual is only used to improve an approximate solution x, it might
be possible to relax the accuracy conditions, e.g., by ensuring that Tr is constructed
from Tx by refining each leaf cluster at most once.
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[1] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations,
SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR0483395

http://www.ams.org/mathscinet-getitem?mr=0483395


ADAPTIVE COMPRESSION OF LARGE VECTORS 235
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