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SYMMETRIC CANONICAL QUINCUNX TIGHT FRAMELETS

WITH HIGH VANISHING MOMENTS AND SMOOTHNESS

BIN HAN, QINGTANG JIANG, ZUOWEI SHEN, AND XIAOSHENG ZHUANG

Abstract. In this paper, we propose an approach to construct a family of
two-dimensional compactly supported real-valued quincunx tight framelets
{φ;ψ1, ψ2, ψ3} in L2(R2) with symmetry property and arbitrarily high or-
ders of vanishing moments. Such quincunx tight framelets are associated with
quincunx tight framelet filter banks {a; b1, b2, b3} having increasing orders of
vanishing moments, possessing symmetry property, and enjoying the additional
double canonical properties:

b1(k1, k2) = (−1)1+k1+k2a(1− k1,−k2),

b3(k1, k2) = (−1)1+k1+k2b2(1− k1,−k2),
∀ k1, k2 ∈ Z.

Moreover, the supports of all the high-pass filters b1, b2, b3 are no larger than
that of the low-pass filter a. For a low-pass filter a which is not a quincunx
orthogonal wavelet filter, we show that a quincunx tight framelet filter bank
{a; b1, . . . , bL} with b1 taking the above canonical form must have L ≥ 3 high-
pass filters. Thus, our family of double canonical quincunx tight framelets with
symmetry property has the minimum number of generators. Numerical calcu-
lation indicates that this family of double canonical quincunx tight framelets
with symmetry property can be arbitrarily smooth. Using one-dimensional
filters having linear-phase moments, in this paper we also provide a second
approach to construct multiple canonical quincunx tight framelets with sym-
metry property. In particular, the second approach yields a family of 6-multiple
canonical real-valued quincunx tight framelets in L2(R2) and a family of double
canonical complex-valued quincunx tight framelets in L2(R2) such that both of
them have symmetry property and arbitrarily increasing orders of smoothness
and vanishing moments. Several examples are provided to illustrate our gen-
eral construction and theoretical results on canonical quincunx tight framelets

in L2(R2) with symmetry property, high vanishing moments, and smooth-
ness. Quincunx tight framelets with symmetry property constructed by both
approaches in this paper are of particular interest for their applications in
computer graphics and image processing due to their polynomial preserving
property, full symmetry property, short support, and high smoothness and
vanishing moments.
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1. Introduction and motivations

In this paper we study quincunx tight framelets having full symmetry property,
short support, high vanishing moments and smoothness. We say that a d×d matrix
M is a dilation matrix if M is an integer matrix having all of its eigenvalues greater
than one in modulus. In dimension two, typical and important dilation matrices
M include

(1.1) 2I2 :=

[
2 0
0 2

]
, M√

2 :=

[
1 1
1 −1

]
, N√

2 :=

[
1 −1
1 1

]
,

where M√
2 and N√

2 are called quincunx dilation matrices. For functions φ, ψ1,

. . ., ψL in L2(R
d), we say that {φ;ψ1, . . . , ψL} is a tight M -framelet for L2(R

d) if
the affine system AS({φ;ψ1, . . . , ψL}) is a normalized tight frame of L2(R

d); that
is, for all f ∈ L2(R

d),

(1.2) ‖f‖2L2(Rd) =
∑
k∈Zd

|〈f, φ(·−k)〉|2+
∞∑
j=0

L∑
�=1

∑
k∈Zd

|〈f, | det(M)|j/2ψ�(M
j ·−k)〉|2,

where the affine system generated by the functions φ, ψ1, . . . , ψL is defined to be

AS({φ;ψ1, . . . ,ψL}) := {φ(· − k) : k ∈ Zd}
∪ {| det(M)|j/2ψ�(M

j · −k) : j ∈ N ∪ {0}, k ∈ Zd, 1 ≤ � ≤ L},

〈f, g〉 :=
∫
Rd f(x)g(x)dx is the inner product, and ‖f‖L2(Rd) :=

√
〈f, f〉 is the

L2-norm. If AS({φ;ψ1, . . . , ψL}) is an orthonormal basis of L2(R
d), then the set

{φ;ψ1, . . . , ψL} of functions is called an orthonormal M -wavelet. It is known in
[27, Proposition 4] that if AS({φ;ψ1, . . . , ψL}) is a normalized tight frame (or an or-
thonormal basis) for L2(R

d), then the homogeneous affine system AS({ψ1, . . . , ψL})
must be a normalized tight frame (or an orthonormal basis) for L2(R

d) as well,
where

(1.3) AS({ψ1, . . . , ψL}) := {| det(M)|j/2ψ�(M
j · −k) : j ∈ Z, k ∈ Zd, 1 ≤ � ≤ L}.

Tight M -framelets and orthonormal M -wavelets are often derived from M -refinable
functions. By l0(Z

d) we denote the set of all finitely supported sequences u =
{u(k)}k∈Zd on Zd. For u ∈ l0(Z

d), its Fourier series (or symbol) û is a 2πZd-
periodic trigonometric polynomial defined by û(ω) :=

∑
k∈Zd u(k)e−ik·ω, ω ∈ Rd.

For a, b1, . . . , bL ∈ l0(Z
d) such that â(0) =

∑
k∈Zd a(k) = 1, the following functions

(1.4) φ̂(ω) :=

∞∏
j=1

â((M−�)jω), ψ̂�(ω) := b̂�(M
−�ω)φ̂(M−�ω), � = 1, . . . , L,

for ω ∈ Rd, are well defined ([8]). In the spatial domain, φ satisfies the following
refinement equation

φ = | det(M)|
∑
k∈Zd

a(k)φ(M · −k)

and φ is called the M -refinable function/distribution associated with the filter/mask
a. For the functions φ, ψ1, . . ., ψL defined in (1.4) through the filters a, b1, . . . , bL ∈
l0(Z

d) satisfying â(0) = 1, {φ;ψ1, . . . , ψL} is a tight M -framelet for L2(R
d) if and
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only if {a; b1, . . . , bL} is a tight M -framelet filter bank ; that is,

(1.5)

{
|â(ω)|2 +

∑L
�=1 |b̂�(ω)|2 = 1,

â(ω)â(ω + 2πξ) +
∑L

�=1 b̂�(ω)b̂�(ω + 2πξ) = 0,
ξ ∈ ΩM\{0},

where ΩM is a set of representatives of the distinct cosets of the quotient group
[(M�)−1Zd]/Zd and is given by

(1.6) ΩM := [(M�)−1Zd] ∩ [0, 1)d.

As observed in [19, 22], the equations in (1.5) for a tight M -framelet filter bank
only depend on the lattice MZd instead of M itself. That is, for two d× d integer
matrices M and N satisfying

(1.7) MZd = NZd,

{a; b1, . . . , bL} is a tight M -framelet filter bank if and only if it is a tight N -framelet
filter bank. This simple observation in [19, 22] comes from the fact that (1.7)
is equivalent to M = NE for some integer matrix E with | det(E)| = 1, which
trivially implies (M�)−1Zd = (N�)−1Zd. For example, the two quincunx dilation
matrices in (1.1) satisfy M√

2Z
2 = N√

2Z
2, which is the quincunx lattice {(j, k) ∈

Z2 : j + k is even}.
When (1.5) holds, it was proved in [45] that the corresponding homogeneous

affine system AS({ψ1, . . . , ψL}) forms a normalized tight frame in L2(R
d), which

is called the unitary extension principle. Under various conditions on φ, ψ1, . . . , ψL

and a, b1, . . . , bL, tight framelets have been studied in [6, 9, 18, 45] and references
therein. Under the natural and necessary condition â(0) = 1, the above one-to-one
correspondence between a tight M -framelet {φ;ψ1, . . . , ψL} and a tight M -framelet
filter bank {a; b1, . . . , bL} has been presented in [22, Lemma 2.1, Theorems 2.2 and
2.3] or more generally, [27, Corollary 12 and Theorem 17] for fully nonstationary
tight framelets. In particular, if {a; b1, . . . , bL} is a tight M -framelet filter bank with
â(0) = 1, then the functions φ, ψ1, . . . , ψL defined in (1.4) must be square integrable
functions in L2(R

d) (see [22, Lemma 2.1]). Due to this one-to-one correspondence
between tight M -framelets and tight M -framelet filter banks, in this paper we
shall concentrate on tight M -framelet filter banks. Wavelets and framelets using
the quincunx dilation matrices in (1.1) are called quincunx wavelets or quincunx
framelets in this paper.

For some applications such as computer graphics and computer aided geometric
design, symmetry property of framelets and wavelets is highly desired. There are
many different types of symmetries for filters and functions in multiple dimensions.
Let us now discuss the general symmetry property of a filter. Let G be a finite set
of d× d integer matrices that forms a group under the usual matrix multiplication.
We say that a filter a ∈ l0(Z

d) is G-symmetric about a point c ∈ Rd if

(1.8) a(E(k − c) + c) = a(k), ∀k ∈ Zd and ∀E ∈ G.

Similarly, we say that a filter a ∈ l0(Z
d) is G-antisymmetric about a point c ∈ Rd if

(1.9) a(E(k − c) + c) = −a(k), ∀k ∈ Zd and ∀E ∈ G.

Generally, for simplicity, we say that a filter a is symmetric (or antisymmetric) if
(1.8) (or (1.9)) holds for a nontrivial group G (i.e., G 
= {Id}). Quite often we do not
want to tell/specify whether a filter is symmetric or antisymmetric. Therefore, for
convenience of discussion in this paper, we say that a filter has symmetry property
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if it is either symmetric or antisymmetric. We say that a filter bank or a set of filters
has symmetry property if each of its elements is either symmetric or antisymmetric.

However, the symmetry property of a low-pass filter a does not automatically
guarantee the symmetry property of the M -refinable function φ defined in (1.4).
As discussed in [19, 20, 24], some compatibility condition is needed. We say that
a dilation matrix M is compatible with a symmetry group G if MEM−1 ∈ G for
all E ∈ G. If M is compatible with a symmetry group G, then φ in (1.4) is G-
symmetric about cφ := (M − Id)

−1c (i.e., φ(E(· − cφ) + cφ) = φ for all E ∈ G) if
and only if a is G-symmetric about c (see [24, Proposition 2.1] and [19, 20]). One
of the commonly used two-dimensional symmetry groups in computer graphics is
the dihedral group D4 given by

(1.10) D4 :=

{
±
[
1 0
0 1

]
,±

[
1 0
0 −1

]
,±

[
0 1
1 0

]
,±

[
0 1
−1 0

]}
.

Note that M√
2 is compatible with the symmetry group D4 and its subgroup

{I2,−I2}, but it is not compatible with the symmetry group

D+
4 := {±diag(1, 1),±diag(1,−1)}.

A matrix N is G-equivalent to M if N = EMF for some E,F ∈ G. Note that
N√

2 in (1.1) is D4-equivalent to M√
2. It is of interest to point out here that

[23, Theorem 2] shows that every 2 × 2 matrix M compatible with D4 must be
D4-equivalent to either M = cI2 or M = cM√

2 for some c ∈ Z. This makes the
quincunx dilation matrices M√

2 and N√
2 particularly interesting for constructing

tight framelets having the full symmetry D4. For a low-pass D4-symmetric filter a,
since N√

2 is D4-equivalent toM√
2, we shall see in this paper that the N√

2-refinable
function is just a shifted version of the M√

2-refinable function. However, the M√
2-

refinable function and the N√
2-refinable function associated with a low-pass filter

a without symmetry could be completely different ([7,19]). Because we are mainly
interested in quincunx tight framelet filter banks with symmetric low-pass filters,
as a consequence, there are no essential differences for using either M√

2 or N√
2.

Therefore, for simplicity, we mainly discuss the dilation matrix M√
2 in this paper.

A tight M -framelet filter bank {a; b1, . . . , bL} with L = | det(M)| − 1 is called
an orthogonal M -wavelet filter bank. It is a simple consequence of the equations in
(1.5) (by rewriting the equations in (1.5) in a matrix form) that the low-pass filter
a in a tight M -framelet filter bank must satisfy

(1.11)
∑

ξ∈ΩM

|â(ω + 2πξ)|2 ≤ 1, ∀ω ∈ Rd.

If the above inequality becomes an identity for all ω ∈ Rd, then the low-pass fil-
ter a is called an orthogonal M -wavelet filter. If {a; b1, . . . , bL} is an orthogonal
M -wavelet filter bank, then a must be an orthogonal M -wavelet filter and its cor-
responding {φ;ψ1, . . . , ψL} in (1.4) is a tight M -framelet for L2(R

d) but it may fail
to be an orthonormal M -wavelet for L2(R

d) ([8]). For a filter bank {a; b1, . . . , bL}
with L = | det(M)| − 1 and â(0) = 1, {φ;ψ1, . . . , ψL} in (1.4) is an orthonormal
M -wavelet for L2(R

d) if and only if {a; b1, . . . , bL} is an orthogonal M -wavelet filter
bank and sm(a,M) > 0, where the technical quantity sm(a,M) is defined in (2.5).
See [1,7,8,20,21,24,26,43,44] and references therein for orthonormal wavelets. For
a d× d dilation matrix M , it is trivial to see that | det(M)| ≥ 2. For | det(M)| = 2,
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an orthogonal M -wavelet filter bank {a; b1, . . . , bL} with L = | det(M)|−1 has only
one high-pass filter b1 which is derived from the low-pass filter a by

(1.12) b̂1(ω) := e−iω·γ â(ω + 2πξ), ω ∈ Rd with γ ∈ Zd\[MZd], ξ ∈ ΩM\{0}.

Therefore, for a dilation matrix M with | det(M)| = 2, an orthonormal M -wavelet
{φ;ψ1, . . . , ψL} with L = | det(M)| − 1 has only one wavelet function ψ1. Hence, it
is of interest in both theory and application to consider dilation matrices M with
| det(M)| = 2. This is another motivation for us to consider the quincunx dilation
matrices in (1.1).

Due to the importance of high dimensional problems, multivariate wavelets and
framelets have been studied for many years now. For example, quincunx orthonor-
mal wavelets have been investigated in [7, 19] and quincunx biorthogonal wavelets
have been studied in [7,33,38]. Using the dilation matrix M√

2 and perturbation of
the Daubechies orthonormal wavelets, a family of quincunx orthonormal wavelets
with arbitrarily smoothness orders has been reported in [1]. However, compactly
supported continuous quincunx orthonormal wavelets cannot have symmetry prop-
erties (see [7] and [24, Proposition 2.2]). Moreover, it still remains unknown so far
whether there exists a C1 compactly supported orthonormal N√

2-refinable func-
tion ([7] and [19, Example 3.6]). In fact, if the dilation matrix M√

2 is changed into
N√

2 for the family of quincunx wavelet filter banks in [1], as a known phenomenon
observed in [7], their smoothness orders are no more than one and decrease to zero.
The quincunx biorthogonal wavelets constructed in some literature such as [33,38]
have nice smoothness and/or full D4-symmetry. However the biorthogonal wavelets
usually have large supports and the corresponding wavelet transforms have large
condition numbers. Pairs of quincunx dual frames have been obtained in [15, Corol-
lary 3.4] having only three wavelet functions without symmetry property. Due to
the difficulty in constructing multivariate wavelets with desirable properties such as
symmetry property, short support and high vanishing moments (see [7,8,19,24,26]
and references therein), the current interest has been focusing on the construc-
tion of tight M -framelets with various dilation matrices and properties. Tight
M -framelets have been studied and constructed in many articles. For example,
the topic of wavelet frames has been investigated in [6, 8, 9, 18, 27, 44, 45] and ref-
erences therein. The theory and construction of one-dimensional tight 2-framelets
are quite complete so far; for example, see [5,6,9,12,13,29,31,32,34,36,42,45] and
many references therein. In particular, if a is {1,−1}-symmetric, the construction
of 2-framelet filter bank {a; b1, . . . , bL} with L = 2 or L = 3 having symmetry
property and short support have been completely solved in [29,31,34] with efficient
algorithms. The construction of multivariate tight framelets has been reported
in [17–19, 22, 30, 37, 39, 41, 46] and references therein. The applications of tight
framelets to various applications such as image restoration have been investigated
in [13, 35, 47, 48]. Recently, wavelet frames have been used for surface processing
[10, 40]. Furthermore, the connections of the wavelet frame based, especially the
spline tight wavelet frame based, approach for image restoration to PDE based
methods have been established in [2] for the total variational method and extended
in [11] for the nonlinear diffusion partial differential equation based methods, as
well as in [3] for variational models on the space of piecewise smooth functions.

We now explain our motivations to study quincunx tight framelets and quin-
cunx tight framelet filter banks. From the viewpoint of theory and application
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for particular areas such as computer aided geometric design and image process-
ing, the following are some key desirable features of a tight M -framelet filter bank
{a; b1, . . . , bL}:

(i) The high-pass filters b1, . . . , bL have desired high orders of vanishing mo-
ments.

(ii) The low-pass filter a has full symmetry property and all the high-pass filters
b1, . . . , bL possess desired symmetry property.

(iii) The number L of high-pass filters should be relatively small for computa-
tional efficiency.

(iv) The low-pass filter a should have short support, while the supports of all
high-pass filters b1, . . . , bL should not be larger than the support of the
low-pass filter a.

(v) The smoothness exponent sm(a,M) (see (2.5)) can be arbitrarily large.

Let {φ;ψ1, . . . , ψL} be its associated tight M -framelet for L2(R
d), where φ, ψ1, . . .,

ψL are defined in (1.4). Item (i) implies that all the wavelet generators ψ1, . . . , ψL

have high orders of vanishing moments. The high order of vanishing moments in
item (i) is closely related to sparse approximation by tight framelets and necessarily
requires that the low-pass filter a should have high order of sum rules. Item (v)
implies that the smoothness exponents of all the functions φ, ψ1, . . . , ψL can be
arbitrarily large since sm(φ) ≥ sm(a,M) and sm(ψ1) = · · · = sm(ψL) = sm(φ)
(see (2.3)). The definitions of vanishing moments vm(a), sum rules sr(a,M), and
smoothness exponents sm(φ) and sm(a,M) will be defined in Section 2. High orders
of vanishing moments in item (i) and smoothness in item (v) are of theoretical
interest and importance for characterizing function spaces by framelets. Item (ii)
implies that all the functions φ, ψ1, . . . , ψL have symmetry property. The symmetry
property in item (ii) is indispensable for applications of tight framelets to certain
areas such as computer graphics and is often strongly desired in areas such as
image processing for better visual quality. Item (iv) implies that all φ, ψ1, . . . , ψL

have shortest possible support. Items (iii) and (iv) are important in applications for
computational efficiency. We also point out here that because different applications
require different desirable properties of framelets and wavelets, it is not surprising
that the above outlined desirable properties in items (i)–(v) may not be needed or
should be changed accordingly for a particular application. For example, instead
of high orders of vanishing moments in item (i), consecutive orders of vanishing
moments starting from vanishing moment one are found to be very useful in image
processing [2,13,47]. To achieve directionality in [28,35] for applications of complex
tight framelets in image/video denoising, symmetry property of the high-pass filters
in item (ii) is sacrificed (but the low-pass filter is symmetric and the high-pass filters
have pairwise symmetry). Nevertheless, the outlined properties in items (i)–(v) are
highly desired for applications in computer graphics, computer aided geometric
design as well as other applications.

Despite numerous efforts by many researchers on constructions of multivariate
tight M -framelets and tight M -framelet filter banks in many papers, none of them
can really achieve all the above desirable properties in items (i)–(v). For example,
tight M -framelet filter banks with short supports have been constructed in [17,46]
from a special class of almost separable low-pass filters. For a d-dimensional filter
a ∈ l0(Z

d), we say that a is an almost separable filter if its symbol is a finite product
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of symbols of one-dimensional filters as follows:

(1.13) â(ω) =
K∏
�=1

â�(γ� · ω), ω ∈ Rd with a� ∈ l0(Z), γ� ∈ Zd.

Because the one-dimensional filters a� used in [17,46] are Haar type low-pass filters
with sum rule order one, it is not surprising that all the constructed tight framelets
in [17, 46] have only one vanishing moment. For every d × d dilation matrix M ,
tight M -framelet filter banks with arbitrarily high vanishing moments have been
reported in [19, 22] by employing the simple observation in (1.7) on the role of a
dilation matrixM in a tightM -framelet filter bank. Note that every dilation matrix
M can be written as M = EΛF (see [19, 22]), where E,Λ, F are integer matrices
such that | det(E)| = | det(F )| = 1 and Λ is diagonal. This allows [22, Theorem 1.1
and Lemma 3.1] and [19, Corollary 3.4] to trivially have a tight Λ-framelet (or
orthonormal Λ-wavelet) filter bank {a; b1, . . . , bL} with arbitrarily high vanishing
moments and short support through tensor product of one-dimensional ones and
consequently, {a(E·); b1(E·), . . . , bL(E·)} is a tight M -framelet (or orthogonal M -

wavelet) filter bank. Note that a(E·) is an almost separable filter by â(E·)(ω) =
â((E�)−1ω). Tight M -framelet filter banks derived from almost separable low-pass
filters can be also trivially constructed in [30] through projecting tensor product
tight framelet filter banks. In particular, tight 2Id-framelet filter banks for every
box spline filter having at least order one sum rule can be painlessly constructed
(see [30, Theorem 2.5]). In fact, all the constructions in [17, 19, 22, 30, 46] can be
regarded as various special cases of the projection method developed in [30]. Using
sum of squares, for a (two-dimensional) low-pass filter a satisfying (1.11), a general
method has been proposed in [4, 41]. From any box-spline filter a having at least
order one sum rules, recently [16] constructs a tight 2Id-framelet filter bank whose
high-pass filters have short support as that of the low-pass filter a and the number
L − 1 is equal to the number of nonzero coefficients in a. But all the constructed
tight 2Id-framelet filter banks in [16] cannot have more than one vanishing moment,
since the method in [16] requires a low-pass filter to have nonnegative coefficients.
However, all the constructed tight framelets in [4,16,17,19,22,30,41,46] either lack
symmetry property or have a very large number L of high-pass filters, while the
supports of the constructed high-pass filters in [41] could be much larger than the
support of the low-pass filter. Beyond the above constructions of multivariate tight
M -framelet filter banks, particular examples of tight M -framelet filter banks have
been given in [37,39] and other references. However, it remains unclear whether one
can construct a family of tight M -framelet filter banks (in particular, for M = M√

2

due to [23, Theorem 2] on all dilation matrices compatible with the symmetry group
D4) achieving all the desirable properties in items (i)–(v).

By (1.5), the equations for a tight M√
2-framelet filter bank {a; b1, . . . , bL} be-

come

|â(ω)|2 + |b̂1(ω)|2 +
L∑

�=2

|b̂�(ω)|2 = 1,(1.14)

â(ω)â(ω + (π, π)) + b̂1(ω)b̂1(ω + (π, π)) +
L∑

�=2

b̂�(ω)b̂�(ω + (π, π)) = 0.(1.15)
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If in addition the following relation (which is a special case of (1.12)) holds:

(1.16) b̂1(ω) = e−iω·(1,0)â(ω + (π, π)), ω ∈ R2,

we call {a; b1, . . . , bL} a canonical quincunx tight framelet filter bank. Moreover, if
{a; b1, . . . , b2s−1} is a tight M√

2-framelet filter bank satisfying (1.16) and

(1.17) b̂2�+1(ω) = e−iω·(1,0)b̂2�(ω + (π, π)), � = 1, . . . , s− 1, ω ∈ R2,

then it is called an s-multiple canonical quincunx tight framelet filter bank. In
particular, for s = 2, it is called a double canonical quincunx tight framelet filter
bank. Note that the particular vector (1, 0) in (1.16) and (1.17) can be replaced by
any vector from Z2\[M√

2Z
2]. Also note that (1.16) is equivalent to

b1(k1, k2) = (−1)1+k1+k2a(1− k1,−k2), k1, k2 ∈ Z,

and (1.17) is equivalent to

b2�+1(k1, k2) = (−1)1+k1+k2b2�(1− k1,−k2), k1, k2 ∈ Z, � = 1, . . . , s− 1.

The goal of this paper is to construct a family of quincunx tight framelet filter
banks achieving all the above desirable properties in items (i)–(v) with the addi-
tional canonical property in (1.16) and (1.17). For an s-multiple canonical quincunx
tight framelet filter bank {a; b1, . . . , b2s−1}, the conditions in (1.16) and (1.17) au-
tomatically imply (1.15) with L = 2s− 1. Hence, {a; b1, . . . , b2s−1} is an s-multiple
canonical quincunx tight framelet filter bank if and only if

(1.18)

s−1∑
�=1

[
|b̂2�(ω)|2 + |b̂2�(ω + (π, π))|2

]
= 1− |â(ω)|2 − |â(ω + (π, π))|2,

which is simply a problem of sum of squares. If {a; b1, . . . , bL} is a canonical quin-
cunx tight framelet filter bank satisfying (1.16) and if a is not an orthogonal M√

2-
wavelet filter, then it is quite trivial to show that L ≥ 3. Indeed, if L = 1, then
{a; b1} must be an orthogonal M√

2-wavelet filter bank and, consequently, a must
be an orthogonal M√

2-wavelet filter, which is a contradiction to our assumption on
a; hence, L ≥ 2. Suppose that L = 2. By (1.16), the equation in (1.15) with L = 2

becomes b̂2(ω)b̂2(ω + (π, π)) = 0, from which we must have b2 = 0. This implies
L = 1, a contradiction. Therefore, we must have L ≥ 3. On the other hand, as
shown in [29, 34], there is a very restrictive necessary and sufficient condition for
a tight 2-framelet filter bank {a; b1, . . . , bL} with L = 2 and symmetry property.
For similar reasons, it is natural that L = 3 is the smallest possible number of
high-pass filters for a quincunx tight framelet filter bank {a; b1, . . . , bL} with sym-
metry property. One of the main goals of this paper is to construct a family of
double canonical quincunx tight framelet filter banks {a; b1, b2, b3} with symmetry
property, short supports, and increasing orders of vanishing moments achieving all
the desirable properties in items (i)–(v).

The structure of the paper is as follows. In Section 2, we shall first introduce
a family of minimally supported two-dimensional symmetric low-pass filters with
arbitrarily high sum rule orders and linear-phase moments. Then we shall employ
such symmetric low-pass filters to construct a family of compactly supported tight
framelets with double canonical quincunx tight framelet filter banks {a; b1, b2, b3}
with symmetry property and arbitrarily high orders of vanishing moments. Nu-
merical calculation also indicates that the smoothness exponents of this family of
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compactly supported tight framelets can be arbitrarily large. In Section 3, we
shall generalize the particular construction in Section 2 and propose a general con-
struction of double canonical quincunx tight framelet filter banks with symmetry
property and vanishing moments which are derived from one-dimensional filters
with linear-phase moments. A few illustrative examples of such double canonical
quincunx tight framelet filter banks {a; b1, b2, b3} are given in Sections 2 and 3. In
Section 4, we shall take another approach by studying multiple canonical quincunx
tight framelet filter banks with symmetry property using almost separable low-
pass filters. In particular, we present a family of compactly supported 6-multiple
canonical real-valued quincunx tight framelets and a family of compactly supported
double canonical complex-valued quincunx tight framelets such that both of them
have symmetry property and arbitrarily high orders of smoothness exponents and
vanishing moments. We complete this paper by providing a detailed proof to The-
orems 2.1 and 4.2 in Appendix A.

2. Double canonical quincunx tight framelets with symmetry

property and minimal support

In this section we shall first discuss how to construct a family of minimally sup-
ported symmetric low-pass filters with increasing orders of sum rules and linear-
phase moments. Such a family of symmetric low-pass filters is of particular interest
in their applications to computer graphics and computer aided geometric design,
due to their polynomial preservation property, short support and high smoothness.
Then we shall use such symmetric low-pass filters to build double canonical quin-
cunx tight framelet filter banks with symmetry property and increasing order of
vanishing moments.

For an integer j such that 1 ≤ j ≤ d, by ∂j we denote the partial derivative
with respect to the jth coordinate of Rd. Define N0 := N ∪ {0}. For any μ =
(μ1, . . . , μd) ∈ Nd

0, we define |μ| := |μ1| + · · · + |μd| and ∂μ the differentiation
operator ∂μ1

1 · · · ∂μd

d . For a nonnegative integer m and two smooth functions f, g,
we shall use the following big O notation

(2.1) f(ω) = g(ω) +O(‖ω − ω0‖m), ω → ω0,

to mean the following relation:

(2.2) ∂μf(ω0) = ∂μg(ω0), ∀ μ ∈ Nd
0 satisfying |μ| < m.

For smooth functions, as shown in [26, Lemma 1], using the big O notation in (2.1)
to mean (2.2) agrees with the commonly accepted big O notation in the literature.

In the following we introduce several quantities that are frequently used in this
paper, in particular, sum rule order sr(a,M), vanishing moment order vm(a),
linear-phase moment order lpm(a), smoothness exponents sm(a,M), smp(a,M) and
sm(φ).

Let a ∈ l0(Z
d) be a filter. We say that the filter a has order m sum rules

with respect to a dilation matrix M if â(0) = 1 and â(ω + 2πξ) = O(‖ω‖m)
as ω → 0 for all ξ ∈ ΩM\{0}. In particular, we define sr(a,M) := m with m
being the largest such integer. We say that the filter a has order n vanishing
moments if â(ω) = O(‖ω‖n) as ω → 0. In particular, we define vm(a) := n
with n being the largest such integer. We say that a filter a ∈ l0(Z

d) has order n
linear-phase moments with phase c ∈ Rd if â(ω) = e−ic·ω + O(‖ω‖n) as ω → 0.
In particular, we define lpm(a) := n with n being the largest such integer. The
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notion of linear-phase moments has been introduced in [25] for studying symmetric
complex orthonormal 2-wavelets and plays a central role in the construction of
complex symmetric orthonormal wavelets, subdivision schemes with polynomial
preservation property in computer graphics, and symmetric tight framelets with
vanishing moments (see [12, 14, 25, 26, 28]).

For a function φ ∈ L2(R
d), its Sobolev smoothness exponent sm(φ) is defined to

be

(2.3) sm(φ) := sup
{
τ ∈ R :

∫
Rd

|φ̂(ω)|2(1 + ‖ω‖2)τdω < ∞
}
.

If φ is an M -refinable function associated with a filter a ∈ l0(Z
d), then the smooth-

ness exponent sm(φ) is closely linked to a quantity sm(a,M) introduced in [21].
For u ∈ l0(Z

d) and μ = (μ1, . . . , μd) ∈ Nd
0, we define

(2.4) ∇ku := u− u(· − k), k ∈ Zd and ∇μ := ∇μ1
e1 · · · ∇μd

ed
,

where ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd has its only nonzero entry 1 at the jth
coordinate. By δ we denote the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for
all k ∈ Zd\{0}. For a ∈ l0(Z

d) and a d × d dilation matrix M , let m := sr(a,M).
For 1 ≤ p ≤ ∞, the smoothness exponent smp(a,M) (see [21]) is defined to be

(2.5) smp(a,M) := d
p − d log| det(M)| ρm(a,M)p and sm(a,M) := sm2(a,M),

where

(2.6) ρm(a,M)p := sup
{

lim
n→∞

‖∇μSn
a,Mδ‖1/n

lp(Zd)
: μ ∈ Nd

0, |μ| = m
}

and the subdivision operator Sa,M is defined to be

(2.7) [Sa,Mv](n) := | det(M)|
∑
k∈Zd

v(k)a(n−Mk), n ∈ Zd.

The quantity sm(a,M) can be computed by [20, Algorithm 2.1]. We say that M is
isotropic if M is similar to a diagonal matrix diag(λ1, . . . , λd) with |λ1| = · · · = |λd|.
Note that the two quincunx matrices M√

2 and N√
2 in (1.1) are isotropic. For an

isotropic dilation matrix M , we have sm(φ) ≥ sm(a,M) and if in addition the

integer shifts of φ are stable (i.e.,
∑

k∈Zd |φ̂(ω + 2πk)|2 
= 0 for all ω ∈ Rd), then
sm(φ) = sm(a,M) (e.g., see [20, 21] and many references therein).

Suppose that {a; b1, . . . , bL} is a tight M -framelet filter bank. Through the
equations in (1.5) and assuming that â(0) = 1, it is shown (see e.g. [9, 28]) that

(2.8) min(vm(b1), . . . , vm(bL)) = min(sr(a,M), 12 lpm(a ∗ a�)),

where â ∗ a�(ω) := |â(ω)|2. It is straightforward to see that lpm(a ∗ a�) ≥ lpm(a).

If the low-pass filter a is symmetric about a point c ∈ Rd: a(2c− k) = a(k) for all
k ∈ Zd, it has been shown in [28, Proposition 5.3] that lpm(a ∗ a�) = lpm(a) and
for a tight M -framelet filter bank {a; b1, . . . , bL} with â(0) = 1,

(2.9) min(vm(b1), . . . , vm(bL)) = min(sr(a,M), 12 lpm(a)).

Therefore, to construct quincunx tight framelet filter banks with symmetry property
and high vanishing moments, it is necessary to have low-pass filters having high
orders of sum rules and linear-phase moments.

The following result presents a family of minimally supported D4-symmetric
low-pass filters having increasing orders of sum rules and linear-phase moments.
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Theorem 2.1. For every positive integer n, there exists a unique two-dimensional
filter a2D2n,2n such that a2D2n,2n is supported inside [1− n, n]2 ∩ Z2, has order 2n sum
rules with respect to M√

2 and order 2n linear-phase moments with phase c :=
(1/2, 1/2). Moreover,

(i) the filter a2D2n,2n is real-valued and is given by

(2.10) â2D2n,2n(ω1, ω2) =
1

2
[û(ω1 + ω2) + û(ω1 − ω2)e

−iω2 ],

where û(ω) := (âI2n(ω/2)− âI2n(ω/2+π))e−iω/2 and aI2n is the interpolatory
2-wavelet filter given by

(2.11) âI2n(ω) := cos2n(ω/2)

n−1∑
j=0

(
n− 1 + j

j

)
sin2j(ω/2), ω ∈ R;

(ii) the filter a2D2n,2n is D4-symmetric about the point c = (1/2, 1/2);

(iii) φN√
2 = φM√

2(·+(1, 1)) and φM√
2 is real-valued with the following symmetry

property:

(2.12) φM√
2(E(· − cφ) + cφ) = φM√

2 , ∀E ∈ D4,

with cφ := (M√
2 − I2)

−1c = (3/2, 1/2), where φM√
2 and φN√

2 are the
refinable functions associated with the filter a and the dilation matrices
M√

2, N
√
2 in (1.1), respectively, and are defined in the frequency domain

through

(2.13)

⎧⎨⎩φ̂M√
2(ω) :=

∏∞
j=1 â

2D
2n,2n((M

�√
2
)−jω),

φ̂N√
2(ω) :=

∏∞
j=1 â

2D
2n,2n((N

�√
2
)−jω),

ω ∈ R2.

The proof of Theorem 2.1 is given in Appendix A. We now derive double canon-
ical quincunx tight framelet filter banks with symmetry property from the low-pass
filters a2D2n,2n constructed in Theorem 2.1.

Theorem 2.2. Let a = a2D2n,2n with n ∈ N be the filter constructed in (2.10) of
Theorem 2.1. Define a high-pass filter b2 by

(2.14) b̂2(ω1, ω2) :=
1

2
[v̂(ω1 + ω2) + v̂(ω1 − ω2)e

−iω2 ]

with v̂(ω) := 2âDn (ω/2)âDn (ω/2 + π), and define high-pass filters b1, b3 as in (1.16)
and (1.17), where aDn ∈ l0(Z) is a real-valued Daubechies orthogonal 2-wavelet filter

satisfying |âDn (ω)|2 = âI2n(ω). Then {a; b1, b2, b3} is a double canonical quincunx
tight framelet filter bank satisfying

(i) all high-pass filters b1, b2, b3 have real coefficients and the following symme-
try property:

(2.15) b1(E(k − c̊) + c̊) = det(E)b1(k), ∀ k ∈ Z2, E ∈ D4 with c̊ := (1/2,−1/2)

and

(2.16) b2(k1, 1− k2) = b2(k1, k2) and b3(k1,−1− k2) = −b3(k1, k2), ∀ k1, k2 ∈ Z;

(ii) all high-pass filters b1, b2, b3 have at least order n vanishing moments;
(iii) the supports of b1, b2, b3 are no larger than that of the low-pass filter a.
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Moreover, {φM√
2 ;ψ1, ψ2, ψ3} is a tight M√

2-framelet in L2(R
2) such that φM√

2 has
the symmetry property in (2.12),

(2.17) ψ1(E(· − c1) + c1) = det(E)ψ1, ∀E ∈ D4 with c1 := (1, 1),

and

(2.18) ψ2(x2 + 1, x1 − 1) = ψ2(x1, x2), ψ3(x2, x1) = −ψ3(x1, x2),

where φM√
2 is defined in (2.13) and ψ̂�(ω) := b̂�((M

�√
2
)−1ω)φ̂M√

2((M�√
2
)−1ω) for

� = 1, 2, 3.

Proof. Let û(ω) = (âI2n(ω/2)− âI2n(ω/2+π))e−iω/2 = (2âI2n(ω/2)−1)e−iω/2, where

we use âI2n(ω/2) + âI2n(ω/2 + π) = 1. By the definition of a = a2D2n,2n in (2.10), we
have

(2.19) |â(ω1, ω2)|2 + |â(ω1 + π, ω2 + π)|2 =
1

2

[
|û(ω1 + ω2)|2 + |û(ω1 − ω2)|2

]
.

Similarly, by the definition of b2, we have

(2.20) |b̂2(ω1, ω2)|2 + |b̂2(ω1 + π, ω2 + π)|2 =
1

2

[
|v̂(ω1 + ω2)|2 + |v̂(ω1 − ω2)|2

]
.

Since |âDn (ω)|2 = âI2n(ω), we have

1− |û(ω)|2 = 1− |2âI2n(ω/2)− 1|2 = 1− 4(âI2n(ω/2))
2 + 4âI2n(ω/2)− 1

= 4âI2n(ω/2)(1− âI2n(ω/2)) = 4âI2n(ω/2)â
I
2n(ω/2 + π) = |v̂(ω)|2.

Consequently, (1.18) holds with s = 2. Therefore, {a; b1, b2, b3} is a double canonical
quincunx tight framelet filter bank.

Since a is D4-symmetric about the point c = (1/2, 1/2), (1.8) is equivalent to

(2.21) â(E�ω) = ei(I2−E)c·ω â(ω), ω ∈ R2, E ∈ D4.

For E ∈ D4, we have (I − E)(1, 1) ∈ 2Z2 and by the definition of b1,

b̂1(E
�ω) = e−iω·E(1,0)â(E�ω + (π, π)) = e−iω·E(1,0)â(E�(ω + (π, π)))

= e−iω·E(1,0)e−i(I−E)c·(ω+(π,π))â(ω + (π, π)) = det(E)ei(I−E)̊c·ω b̂1(ω).

This proves (2.15). By the definitions of b2 and b̂3(ω) = e−iω1 b̂2(ω + (π, π)), we
have

b̂2(ω1,−ω2) = b̂2(ω1, ω2)e
iω2 and b3(ω1,−ω2) = −b̂3(ω1, ω2)e

−iω2 ,

which are equivalent to (2.16). Therefore, item (i) holds.
Item (ii) follows directly from

min(vm(b1), vm(b2), vm(b3)) = min(sr(a,M√
2),

1

2
lpm(a)) = n

due to sr(a,M√
2) = lpm(a) = 2n. Item (iii) can be directly checked.

By [24, Proposition 2.1], the identity in (2.17) follows directly from (2.12) and
(2.15), while the identities in (2.18) follow directly from (2.12) and (2.16). �
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Table 1. The smoothness exponents of the quincunx low-pass
filters a2D2n,2n in (2.10) and of interpolatory 2-wavelet filters aI2n in
(2.11) for n = 1, . . . , 10, computed by [20, Algorithm 2.1]. Note
that sm(a2D2n,2n, N

√
2) = sm(a2D2n,2n,M

√
2).

n 1 2 3 4 5 6 7 8 9 10

sm(a2D
2n,2n,M

√
2) 2.0 3.037 3.546 4.027 4.497 4.966 5.435 5.904 6.371 6.837

sm(aI
2n, 2) 1.5 2.441 3.175 3.793 4.344 4.862 5.363 5.853 6.335 6.812

The smoothness exponents sm(a2D2n,2n,M
√
2) and sm(aI2n, 2) for n = 1, . . . , 10 in

Table 1 are calculated by [20, Algorithm 2.1] using D4 symmetry group. Note that
sm(a,N√

2) = sm(a,M√
2) since a is D4-symmetric.

We complete this section by presenting two examples to illustrate the results in
Theorems 2.1 and 2.2.

Example 2.1. Take n = 1 in Theorems 2.1 and 2.2. Then a = a2D2,2 in (2.10) with
n = 1 is given by

â(ω1, ω2) =
1

4
(1 + e−iω1)(1 + e−iω2)

and

b̂1(ω) := e−iω1 â(ω + (π, π)) =
1

4
(1− e−iω1)(eiω2 − 1).

By âD1 (ω) := 1
2 (1 + e−iω), we have v̂(ω) := 2âD1 (ω/2)âD1 (ω/2 + π) = 1

2 (1 − e−iω).
Then

b̂2(ω1, ω2) :=
1

2
(v̂(ω1 + ω2) + v̂(ω1 − ω2)e

−iω2) =
1

4
(1− e−iω1)(1 + e−iω2)

and

b̂3(ω) := e−iω1 b̂2(ω + (π, π)) =
1

4
(1 + e−iω1)(1− eiω2).

The double canonical quincunx tight framelet filter bank {a; b1, b2, b3} is given by

a =
1

4

[
1 1

1 1

]
[0,1]2

, b1 =
1

4

[
−1 1

1 −1

]
[0,1]×[−1,0]

,

b2 =
1

4

[
1 −1

1 −1

]
[0,1]2

, b3 =
1

4

[
1 1
−1 −1

]
[0,1]×[−1,0]

.

Note that sr(a,M√
2) = 2, lpm(a) = 2, and sm(a,M√

2) = sm(a,N√
2) = 2. The

filter a is D4-symmetric about ( 12 ,
1
2 ), while b1 has the symmetry property in (2.15)

and b2, b3 have the symmetry property in (2.16) with vm(b1) = 2 and vm(b2) =
vm(b3) = 1. Let φ, ψ1, ψ2, ψ3 be defined as in (1.4) with M = M√

2, L = 3

and a = a2D2,2 . Then {φ;ψ1, ψ2, ψ3} is a tight M√
2-framelet in L2(R

2) such that
φ, ψ1, ψ2, ψ3 have symmetry property as in (2.12), (2.17), and (2.18).
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Example 2.2. Take n = 2 in Theorems 2.1 and 2.2. Then a = a2D4,4 in (2.10) with
n = 2 is given by

â(ω1, ω2) =
1

32

(
9 + 9e−iω1 + 9e−iω2 + 9e−i(ω1+ω2)−ei(ω1+ω2) − ei(ω2−2ω1)

−ei(ω1−2ω2) − e−i2(ω1+ω2)
)
.

By b̂1(ω) := e−iω1 â(ω + (π, π)), the filters a and b1 are given by

a =
1

32

⎡⎢⎢⎣
−1 0 0 −1
0 9 9 0

0 9 9 0
−1 0 0 −1

⎤⎥⎥⎦
[−1,2]2

, b1 =
1

32

⎡⎢⎢⎣
1 0 0 −1

0 −9 9 0

0 9 −9 0
−1 0 0 1

⎤⎥⎥⎦
[−1,2]×[−2,1]

.

Let aD2 be the Daubechies orthogonal 2-wavelet filter given by

(2.22) âD2 (ω) =
1

8

(
(1−

√
3)eiω + (3−

√
3) + (3 +

√
3)e−iω + (1 +

√
3)e−i2ω

)
.

Define v̂(ω) := 2âD2 (ω/2)âD2 (ω/2 + π). Then b̂2(ω1, ω2) := 1
2 (v̂(ω1 + ω2) +

v̂(ω1 − ω2)e
−iω2) is given by

b2 =
1

32

⎡⎢⎢⎢⎣
√
3− 2 0 0 2 +

√
3

0 −
√
3 + 6 −

√
3− 6 0

0 −
√
3 + 6 −

√
3− 6 0√

3− 2 0 0 2 +
√
3

⎤⎥⎥⎥⎦
[−1,2]2

.

By b̂3(ω) := e−iω1 b̂2(ω + (π, π)), the filter b3 is given by

b3 =
1

32

⎡⎢⎢⎢⎣
−2−

√
3 0 0

√
3− 2

0
√
3 + 6 −

√
3 + 6 0

0 −
√
3− 6

√
3− 6 0

2 +
√
3 0 0 2−

√
3

⎤⎥⎥⎥⎦
[−1,2]×[−2,1]

.

Note that sr(a,M√
2) = 4, lpm(a) = 4, and sm(a,M√

2) = sm(a,N√
2) ≈ 3.03654.

Hence φM√
2 , φN√

2 ∈ C2(R2). The filter a is D4-symmetric about (1/2, 1/2), while
b1 has the symmetry property in (2.15) and b2, b3 have the symmetry property in
(2.16) with vm(b1) = 4 and vm(b2) = vm(b3) = 2. The filter bank {a; b1, b2, b3} is
a double canonical quincunx tight frame filter bank. Let φ, ψ1, ψ2, ψ3 be defined
in (1.4) with M = M√

2, L = 3 and a = a2D4,4 . Then {φ;ψ1, ψ2, ψ3} is a tight M√
2-

framelet in L2(R
2) such that all φ, ψ1, ψ2, ψ3 have symmetry property as in (2.12),

(2.17), and (2.18).

3. Double canonical quincunx tight framelets with symmetry

property derived from one-dimensional filters

Motivated by the special form in (2.10) for the two-dimensional quincunx low-
pass filters a2D2n,2n, we now further generalize the construction and results in Sec-
tion 2 for building double canonical quincunx tight framelets with symmetry prop-
erty from one-dimensional filters.
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Theorem 3.1. Let u ∈ l0(Z) be a one-dimensional finitely supported filter with
û(0) = 1. Define a two-dimensional filter a2D by

(3.1) â2D(ω1, ω2) =
1

2
[û(ω1 + ω2) + û(ω1 − ω2)e

−iω2 ].

Then

(i) a2D has order n sum rules with respect to M√
2 if and only if u has n

linear-phase moments with phase 1/2, i.e.,

(3.2) û(ω) = e−iω/2 +O(|ω|n), ω → 0.

(ii) a2D has order n linear-phase moments with phase (1/2, 1/2) if and only if
u has n linear-phase moments with phase 1/2, i.e., (3.2) holds.

(iii) a2D is D4-symmetric about the point (1/2, 1/2) if and only if u is symmetric
about the point 1/2, that is, u(1− k) = u(k) for all k ∈ Z.

Proof. The claim in item (iii) can be directly checked. We now prove items (i) and
(ii). If (3.2) holds, then

â2D(ω + (π, π)) =
1

2
(û(ω1 + ω2)− û(ω1 − ω2)e

−iω2)

=
1

2
(e−i(ω1+ω2)/2 − e−i(ω1−ω2)/2e−iω2) +O(‖ω‖n)

= O(‖ω‖n)
as ω → 0. Hence, (3.2) implies that a2D has order n sum rules with respect to
M√

2.

Conversely, suppose that a2D has order n sum rules with respect to M√
2. Then

1

2
(û(ω1 + ω2)− û(ω1 − ω2)e

−iω2) = â2D(ω + (π, π)) = O(‖ω‖n), ω → 0,

from which we deduce that

(3.3) v̂(ω1 + ω2) = v̂(ω1 − ω2) +O(‖ω‖n), ω → 0 with v̂(ω) := û(ω)eiω/2.

By û(0) = 1, we have v̂(0) = 1. Now (3.3) implies

v̂(j)(0) = ∂j
2[v̂(ω1 + ω2)]|ω1=0,ω2=0 = ∂j

2 [v̂(ω1 − ω2)]|ω1=0,ω2=0 = (−1)j v̂(j)(0),

for all 0 ≤ j ≤ n− 1 and

v̂(j+1)(0) = ∂1∂
j
2[v̂(ω1 + ω2)]|ω1=0,ω2=0

= ∂1∂
j
2[v̂(ω1 − ω2)]|ω1=0,ω2=0

= (−1)j v̂(j+1)(0)

for all 0 ≤ j ≤ n− 2. From the above identities, it is easy to deduce that we must
have v̂(0) = 1 and v̂(j)(0) = 0 for all j = 1, . . . , n− 1. That is, v̂(ω) = 1 +O(|ω|n)
as ω → 0. Consequently, by v̂(ω) = û(ω)eiω/2, (3.2) must hold. This proves item
(i).

Similarly, if (3.2) holds, then

â2D(ω) =
1

2
(û(ω1 + ω2) + û(ω1 − ω2)e

−iω2)

=
1

2
(e−i(ω1+ω2)/2 + e−i(ω1−ω2)/2e−iω2) +O(‖ω‖n)

= e−i(ω1+ω2)/2 +O(‖ω‖n)
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as ω → 0. Hence, (3.2) implies that a2D has order n linear-phase moments with
phase (1/2, 1/2). Conversely, if a2D has order n linear-phase moments with phase
(1/2, 1/2), then we must have

v̂(ω1 + ω2) = −v̂(ω1 − ω2) +O(‖ω‖n), ω → 0 with v̂(ω) = û(ω)eiω/2.

A similar proof as in the proof of item (i) shows that (3.2) must hold. This proves
item (ii). �

For the filter u in Theorem 3.1, we also have the following result.

Proposition 3.1. For a finitely supported filter u ∈ l0(Z) with û(0) = 1 such that
u is symmetric about the point 1/2, lpm(u) must be an even integer. Moreover, the
filter u is symmetric about the point 1/2 and u has 2n linear-phase moments with
phase 1/2 if and only if u takes the form

(3.4) û(ω) =
1 + e−iω

2

(
sin2n(ω/2)R(sin2(ω/2)) + 1 +

n−1∑
j=1

(2j − 1)!!

(2j)!!
sin2j(ω/2)

)
for some polynomial R, where (2j − 1)!! = (2j − 1)(2j − 3) · · · (3)(1) and (2j)!! =
(2j)(2j − 2) · · · (2). In particular, the two-dimensional filter a2D defined in (3.1)
using the filter u in (3.4) with R = 0 is the same filter a2D2n,2n in (2.10).

Proof. Note that u is symmetric about the point 1
2 if and only if û(ω) = e−iωû(−ω),

that is, eiω/2û(ω) = e−iω/2û(−ω). Moreover, the symmetry of u also implies that∑
k∈Z

u(k)k = 1/2. Thus, it is trivial to see that [eiω/2û(ω)](2j−1)(0) = 0 for all
j ∈ N. Consequently, by the definition of linear-phase moments with phase 1/2,
lpm(u) must be an even integer.

Since u is symmetric about 1/2, we must have û(ω) = 2−1(1+e−iω)P (sin2(ω/2))
for some polynomial P . Therefore, eiω/2û(ω) = cos(ω/2)P (sin2(ω/2)). Now u has
order 2n linear-phase moments with phase 1/2 if and only if

cos(ω/2)P (sin2(ω/2)) = eiω/2û(ω) = 1 +O(|ω|2n), ω → 0,

which, by considering x = sin2(ω/2), is further equivalent to P (x) = (1− x)−1/2 +
O(xn) as x → 0. Considering the Taylor expansion of (1 − x)−1/2 at x = 0, we
must have

P (x) = xnR(x) +

n−1∑
j=0

(
−1/2

j

)
(−x)j = xnR(x) + 1 +

n−1∑
j=1

(2j − 1)!!

(2j)!!
xj ,

for some polynomial R.
When R = 0, the filter u in (3.4) is supported inside [1 − n, n]. Define v̂(ω) :=

(âI2n(ω/2) − âI2n(ω/2 + π))e−iω/2. Since aI2n is an interpolatory 2-wavelet filter, it

is trivial to see that v̂(ω) = (1 − 2âI2n(ω/2 + π))e−iω/2. By sr(aI2n, 2) = 2n, it is
trivial to see that

v̂(ω) = e−iω/2 +O(|ω|2n), ω → 0.

That is, lpm(v) ≥ 2n. Since aI2n is supported inside [1−2n, 2n−1], we deduce that
v is supported inside [1− n, n]. By the uniqueness of u, we must have v = u. This
proves a2D = a2D2n,2n in (2.10). �

We now construct double canonical quincunx tight framelet filter banks from the
low-pass filters in (3.1).
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Theorem 3.2. Let u ∈ l0(Z) be a finitely supported filter such that

(3.5) |û(ω)| ≤ 1, ω ∈ R.

Define a2D as in (3.1), b̂1(ω) := e−iω1 â2D(ω + (π, π)), and

(3.6) b̂2(ω) :=
1

2
[v̂(ω1 + ω2) + v̂(ω1 − ω2)e

−iω2 ], b̂3(ω) := e−iω1 b̂2(ω + (π, π)),

where v ∈ l0(Z) is a filter obtained from Fejér-Riesz lemma satisfying |v̂(ω)|2 =
1 − |û(ω)|2. Then {a2D; b1, b2, b3} is a double canonical quincunx tight framelet
filter bank.

Proof. By the definitions of a = a2D in (3.1) and b2 in (3.6), as proved in the proof
of Theorem 2.2, (2.19) and (2.20) must hold. Since |û(ω)|2+ |v̂(ω)|2 = 1, it is trivial
to see that (1.18) holds with s = 2. Hence, {a2D; b1, b2, b3} is a double canonical
quincunx tight framelet filter bank. �

By the same proof of Theorem 3.2, we have the following generalized result of
Theorem 3.2.

Theorem 3.3. Let u, v ∈ l0(Z) be finitely supported filters such that

(3.7) |û(ω)|2 + |v̂(ω)|2 = 1, ω ∈ R.

Let M be a d× d integer matrix such that | det(M)| = 2. Define

âdD(ω) :=
1

2
[û(γ1 · ω) + û(γ2 · ω)e−iγ3·ω], b̂1(ω) := e−iγ4·ω âdD(ω + 2πξ)

and

(3.8) b̂2(ω) :=
1

2
[v̂(γ1 · ω) + v̂(γ2 · ω)e−iγ3·ω], b̂3(ω) := e−iγ4·ω b̂2(ω + 2πξ),

where ω ∈ Rd, ξ ∈ ΩM\{0}, γ1, γ2 ∈ MZd\{0}, and γ3, γ4 ∈ Zd\[MZd]. Then
{adD; b1, b2, b3} is a double canonical tight M -framelet filter bank.

For a real-valued symmetric filter u satisfying

(3.9) u(1− k) = u(k), for all k ∈ Z,

it is of interest to ask whether there exists a finitely supported real-valued filter
v satisfying (3.7) with certain symmetry property so that the constructed high-
pass filters b2 and b3 in Theorem 3.2 will have better symmetry property as in
Example 2.1, where better symmetry property here means a larger group of integer
matrices used in the definition of G-symmetric filters in (1.8) or G-antisymmetric
filters in (1.9). This is negatively answered by the following result.

Theorem 3.4. Let u, v ∈ l0(Z) be two finitely supported real-valued filters. Then
(3.7) and (3.9) hold,

∑
k∈Z

u(k) = 1, and v has some symmetry property (i.e., v is
either symmetric or antisymmetric) if and only if

(3.10) û(ω) = 2−1(eijω + e−i(j+1)ω) and v̂(ω) = 2−1e−ikω(eijω − e−i(j+1)ω)

for some j, k ∈ Z.

Proof. The sufficient part is trivial, since (3.10) implies (3.7) and v is antisymmetric.
We now prove the necessity part. Since u has the symmetry property in (3.9),

we can write û(ω) = 2−1(1 + e−iω)P (sin2(ω/2)) for some polynomial P with real
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coefficients. Since û(0) = 1, we must have P (0) = 1. Consequently, we have
|û(ω)|2 = cos2(ω/2)(P (sin2(ω/2)))2 = (1− x)(P (x))2 with x := sin2(ω/2).

Since v has some symmetry property and there are essentially four different types
of symmetries, we must have

v̂(ω) = e−ikωQ(sin2(ω/2)),

v̂(ω) = e−ikω2−1(1 + e−iω)Q(sin2(ω/2)),

v̂(ω) = e−ikω2−1(eiω − e−iω)Q(sin2(ω/2))

(3.11)

or

(3.12) v̂(ω) = e−ikω2−1(1− e−iω)Q(sin2(ω/2))

for some k ∈ Z and some polynomial Q with real coefficients. We now show that
v must have the symmetry property in (3.12). Otherwise, v must take one of the
three forms in (3.11). Then |v̂(ω)|2 = (Q(x))2, (1− x)(Q(x))2, or x(1− x)(Q(x))2,
respectively. Now by |û(ω)|2+|v̂(ω)|2 = 1, we will have (1−x)(P (x))2+(Q(x))2 = 1,
(1−x)(P (x))2+(1−x)(Q(x))2 = 1, or (1−x)(P (x))2+x(1−x)(Q(x))2 = 1. The
last two identities cannot hold due to the factor 1− x, while the first identity must
fail by considering x → −∞ and noting P 
≡ 0. Thus, v must have the symmetry
property in (3.12).

By (3.9) and (3.12), we see that both eiω/2û(ω) and iei(k+1/2)ω v̂(ω) are real-
valued. Therefore,

eiω
[
û(ω) + eikω v̂(ω)

][
û(ω)− eikω v̂(ω)

]
=
[
eiω/2û(ω) + ei(k+1/2)ω v̂(ω)

][
eiω/2û(ω)− ei(k+1/2)ω v̂(ω)

]
= |û(ω)|2 + |v̂(ω)|2 = 1.

Hence, the first two nontrivial factors in the above identities must be monomial,
that is,

û(ω) + eikω v̂(ω) = λeijω, û(ω)− eikω v̂(ω) = e−i(j+1)ω/λ

for some j ∈ Z and λ ∈ R\{0}. From the above identities, we have û(ω) =
[λeijω + e−i(j+1)ω/λ]/2. By (3.9), we must have λ = 1 and (3.10) holds. �

By Theorem 3.4, we can conclude that except for the Haar-type double canon-
ical quincunx tight framelet filter bank that is similar to Example 2.1, there is no
other real-valued double canonical quincunx tight framelet filter bank with better
symmetry property. Moreover, due to Proposition 3.1, it is quite easy to observe
that the real-valued low-pass filter u constructed in (3.10) can have no more than
two linear-phase moments and therefore, the tight framelet filter banks constructed
in Theorem 3.2 can have no more than one vanishing moment. This shortcoming
can be easily remedied by using complex-valued filters. As shown in [25, Theorem 1
and Algorithm 2], there are finitely supported complex-valued low-pass orthogonal
2-wavelet filters a such that a(1 − k) = a(k) for all k ∈ Z with arbitrarily high
orders of sum rules and linear-phase moments. Take u = a. Then we can easily
obtain complex-valued double canonical quincunx tight framelet filter banks with
symmetry property and arbitrarily high orders of vanishing moments. For the con-
venience of the reader, we provide an example here by combining [25, Algorithm 1]
and Proposition 3.1.
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Note that M√
2 is not compatible with the symmetry group

D+
4 := {±diag(1, 1),±diag(1,−1)}.

But we have

M√
2D

+
4 M

−1√
2
:=

{
M√

2EM−1√
2
: E ∈ D+

4

}
=

{
±
[
1 0
0 1

]
,±

[
0 1
1 0

]}
=: D−

4

and M√
2D

−
4 M

−1√
2
= D+

4 .

Example 3.1. Take n = 3 and R = 0 in (3.4) of Proposition 3.1. Then P (x) =
1 + 1

2x+ 3
8x

2 and

Q̃(x) :=
1− (1− x)(P (x))2

x
=

x2(9x2 + 15x+ 40)

64
≥ 0, ∀ x ∈ R.

Then Q(x) := 3
8x(x+ 5+i3

√
15

6 ) satisfies |Q(x)|2 = Q̃(x) for all x ∈ R. Define filters
u and v by

û(ω) = 2−1(1 + e−iω)P (sin2(ω/2)), v̂(ω) = 2−1(1− e−iω)Q(sin2(ω/2)).

Then lpm(u) = 6 with phase c = 1/2,

û(ω) =
1

256
(150(1 + e−iω)− 25(eiω + e−2iω) + 3(e2iω + e−3iω))

and

v̂(ω) =
1

256
((60+ i18

√
15)(1− e−iω)− (25+ i6

√
15)(eiω − e−2iω)+3(e2iω − e−3iω)).

The filters u and v satisfy u(k) = u(1 − k) and v(k) = −v(1 − k) for k ∈ Z; that
is, u is symmetric about 1/2 while v is antisymmetric about 1/2. Note that the

real-valued filter v in Theorem 2.2 defined by v̂(ω) = 2âDn (ω/2)âDn (ω/2 + π) does
not have symmetry property.

Define a = a2D as in (3.1). Then, the filter a satisfies a = a2D = a2D6,6 in (2.10)

due to P (x) = (1− x)−1/2 +O(x4) and a is supported on [−2, 3]2. The canonical

high-pass filter b1 of a is given by b̂1(ω) = e−iω1 â(ω + (π, π)). The filters a and b1
are given by

a =
1

512

⎡⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 3
0 −25 0 0 −25 0
0 0 150 150 0 0

0 0 150 150 0 0
0 −25 0 0 −25 0
3 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦
[−2,3]2

,

b1 =
1

512

⎡⎢⎢⎢⎢⎢⎢⎣

−3 0 0 0 0 3
0 25 0 0 −25 0

0 0 −150 150 0 0

0 0 150 −150 0 0
0 −25 0 0 25 0
3 0 0 0 0 −3

⎤⎥⎥⎥⎥⎥⎥⎦
[−2,3]×[−3,2]

.

Note that a = a2D6,6 is real-valued and D4-symmetric about c = (1/2, 1/2) while b1
has the symmetry property given by (2.15). Define high-pass filters b2 and b3 by
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(3.6). Then, the high-pass filter b2 is supported on [−2, 3]2 and is given by

b2 =
1

512

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 −3

0 −25 − 6 i
√
15 0 0 25 + 6 i

√
15 0

0 0 60 + 18 i
√
15 −60 − 18 i

√
15 0 0

0 0 60 + 18 i
√
15 −60 − 18 i

√
15 0 0

0 −25 − 6 i
√
15 0 0 6 25 + i

√
15 0

3 0 0 0 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[−2,3]2

.

The canonical high-pass filter b3 of b2 is supported on [−2, 3]× [−3, 2] and is given
by

b3 =
1

512

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 3

0 6 i
√
15 − 25 0 0 6 i

√
15 − 25 0

0 0 60 − 18 i
√
15 60 − 18 i

√
15 0 0

0 0 −60 + 18 i
√
15 −60 + 18 i

√
15 0 0

0 25 − 6 i
√
15 0 0 25 − 6 i

√
15 0

−3 0 0 0 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[−2,3]×[−3,2]

.

The high-pass filters b2 and b3 are complex-valued and have the following symmetry
properties:

b2(E(k − c) + c) = E1,1b2(k), ∀k ∈ Z2, E ∈ D+
4 with c = (1/2, 1/2),

b3(E(k − c̊) + c̊) = E2,2b3(k), ∀k ∈ Z2, E ∈ D+
4 with c̊ = (1/2,−1/2),

where Ei,j is the (i, j)-entry of E.
The filter bank {a; b1, b2, b3} is a double canonical quincunx tight framelet filter

bank with vm(b1) = 6 and vm(b2) = vm(b3) = 3. Let φ, ψ1, ψ2, ψ3 be defined in
(1.4) with M = M√

2, L = 3 and a = a2D6,6 . Then {φ;ψ1, ψ2, ψ3} is a tight M√
2-

framelet in L2(R
2) such that φ, ψ1 have symmetry property as in (2.12), (2.17).

ψ2, ψ3 are of complex value and have the following symmetry properties:

ψ2(E(· − c2) + c2) = [MEM−1]1,1ψ2,

ψ3(E(· − c3) + c3) = [MEM−1]2,2ψ3,
∀E ∈ D−

4 ,

where c2 = (3/2, 1/2) and c3 = (1, 1).

4. Multiple canonical quincunx tight framelet filter banks

with symmetry proprety

In this section we study multiple canonical quincunx tight framelet filter banks
with symmetry property derived from one-dimensional filters.

As discussed in Section 1, for every d×d dilation matrix M , compactly supported
tight M -framelets {φ;ψ1, . . . , ψL} with arbitrarily high vanishing moments and
smoothness can be easily constructed (e.g. [22, Theorem 1.1]) but at the cost of a
large number L of wavelet/framelet functions. The key idea to construct such and
similar compactly supported tight M -framelets in [17, 19, 22, 30, 46] is to use the
almost separable low-pass filters in (1.13). For example, for two one-dimensional
tight 2-framelet filter banks {b0; b1, . . . , bJ} and {u0;u1, . . . , uL} one can trivially
verify (see [22, Lemma 3.2] and [46]) that

(4.1) {bj ⊗ uk : 0 ≤ j ≤ J, 0 ≤ k ≤ L},
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is a quincunx tight framelet filter bank derived from the separable low-pass filter

b0 ⊗ u0, where ̂bj ⊗ uk(ω1, ω2) := b̂j(ω1)ûk(ω2). Moreover, every one-dimensional
tight 2-framelet filter bank {b0; b1, . . . , bJ} is automatically a quincunx tight framelet
filter bank by identifying Z with either Z×{0} or {0}×Z so that a one-dimensional
filter can be regarded as a two-dimensional filter ([19]). Such tight framelet filter
banks are particular instances of the tight framelet filter banks constructed via the
projection method in [30]. In fact, one can directly check that if {b0; b1, . . . , bJ} is a
one-dimensional tight 2-framelet filter bank and if the filters u0, u1, . . . , uL satisfy

(4.2) |û0(ω)|2 + |û1(ω)|2 + · · ·+ |ûL(ω)|2 = 1,

then the filter bank in (4.1) is still a quincunx tight framelet filter bank. Note
that (4.2) is weaker than requiring {u0;u1, . . . , uL} to be a tight 2-framelet filter
bank. For every pair of finitely supported low-pass filters b0 and u0 satisfying

|b̂0(ω)|2 + |b̂0(ω + π)|2 ≤ 1 and |û0(ω)|2 ≤ 1, one can always construct ([9]) a
finitely supported tight 2-framelet filter bank {b0; b1, b2}, and by Fejér-Riesz lemma,
there always exists a finitely supported filter u1 such that (4.2) holds with L = 1.
Consequently, the quincunx tight framelet filter bank in (4.1) with J = 2 and
L = 1 has only five high-pass filters derived from the given low-pass b0 ⊗ u0, and
{b0; b1, b2} is a quincunx tight framelet filter bank with only two high-pass filters.
However, such quincunx tight framelet filter banks often lack symmetry property
and are not necessarily a multiple canonical quincunx tight framelet filter bank.
By modifying (4.1) slightly, we next show that multiple canonical quincunx tight
frame filter banks can be easily obtained from one-dimensional tight framelet filter
banks as long as {b0; b1, . . . , bJ} has the multiple canonical property.

Theorem 4.1. Let s, L be positive integers. Suppose that {b0; b1, . . . , b2s−1} is a
one-dimensional finitely supported s-multiple canonical tight 2-framelet filter bank

having the canonical property: b̂2j+1(ω) = e−iω b̂2j(ω + π), j = 0, . . . , s−1. Suppose
that u0, u1, . . . , uL ∈ l0(Z) are one-dimensional filters satisfying (4.2). Then {b2Dj,k :

j = 0, . . . , 2s − 1; k = 0, . . . , L} is an s(L + 1)-multiple canonical quincunx tight
framelet filter bank, where

(4.3)

{
b̂2D2j,k(ω) := b̂2j(ω1)ûk(ω2),

b̂2D2j+1,k(ω) := b̂2j+1(ω1)ûk(ω2 + π),
ω = (ω1, ω2) ∈ R2,

for j = 0, . . . , s− 1 and k = 0, . . . , L.

Proof. By the canonical property in (1.16) and (1.17), it follows directly from the
definition of b2Dj,k that the two-dimensional filter bank {b2Dj,k : j = 0, . . . , 2s− 1; k =

0, . . . , L} has the desired s(L+1)-multiple canonical property. On the other hand,
we have
2s−1∑
j=0

L∑
k=0

|b̂2Dj,k (ω)|2 =

s−1∑
j=0

L∑
k=0

|b̂2D2j,k(ω)|2 +
s−1∑
j=0

L∑
k=0

|b̂2D2j+1,k(ω)|2

=

s−1∑
j=0

|b̂2j(ω1)|2
L∑

k=0

|ûk(ω2)|2 +
s−2∑
j=0

|b̂2j+1(ω1)|2
L∑

k=0

|ûk(ω2 + π)|2

=
2s−1∑
�=0

|b̂�(ω1)|2 = 1.
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The fact
2s−1∑
j=0

L∑
k=0

b̂2Dj,k (ω)b̂2Dj,k (ω + (π, π)) = 0

can be proved similarly. Thus {b2Dj,k : j = 0, . . . , 2s− 1; k = 0, . . . , L} is a quincunx
tight framelet filter bank. �

Before applying Theorem 4.1 to construct multiple canonical quincunx tight
framelets, let us look at the smoothness exponent of the low-pass filter b0 ⊗ u0 in
Theorem 4.1.

Theorem 4.2. Let 1 ≤ p ≤ ∞. The following statements hold.

(i) For a ∈ l0(Z) with â(0) = 1, sr(a,M√
2) = sr(a,N√

2) = sr(a, 2); if
smp(a, 2) ≥ 0, then smp(a,M√

2) = smp(a, 2), where a is also regarded

as a 2D filter by identifying Z with Z× {0} in Z2.
(ii) For u, v ∈ l0(Z

d) with û(0) = v̂(0) = 1 and for any d × d dilation matrix
M , sr(u∗v,M) ≥ sr(u,M)+sr(v,M) and sm(u∗v,M) ≥ sm∞(u∗v,M) ≥
sm(u,M) + sm(v,M), where û ∗ v(ω) := û(ω)v̂(ω).

(iii) For u, v ∈ l0(Z) with û(0) = v̂(0) = 1, sr(u ⊗ v,M√
2) = sr(u ⊗ v,N√

2) ≥
sr(u, 2) + sr(v, 2); if sm(u, 2) ≥ 0 and sm(v, 2) ≥ 0, then sm(u⊗ v,M√

2) ≥
sm∞(u⊗ v,M√

2) ≥ sm(u, 2) + sm(v, 2).

The proof to Theorem 4.2 is given in Appendix A. For item (i), sm(a,N√
2) =

sm(a, 2) often fails. In fact, as Daubechies showed in [8] that limn→∞ sm(aI2n, 2) =
∞, while numerical calculation in [7] observed that limn→∞ sm(aI2n, N

√
2) = 0.

Moreover, as we shall see in the proof of Theorem 4.2 in Appendix A, the condition
smp(a, 2) ≥ 0 in item (i) cannot be removed to guarantee smp(a,M√

2) = smp(a, 2).

Let aDn with n ≥ 1 be the Daubechies orthogonal filter with 2n-nonzero coeffi-
cients. Let b0 = aDn , u0 = aDm and define b1 and u1 by

b̂1(ω) = e−iωâDn (ω + π), û1(ω) = âDm(ω + π), ω ∈ R,

then we have double canonical quincunx tight framelet filter banks based on the
Daubechies orthogonal filters as summarized in the following corollary.

Corollary 4.1. Let aDn and aDm be the Daubechies orthogonal filters. Define

b̂2D0 (ω) := âDn (ω1)âDm(ω2), b̂2D1 (ω) := e−iω1 b̂2D0 (ω + (π, π)),

b̂2D2 (ω) := âDn (ω1)âDm(ω2 + π), b̂2D3 (ω) := e−iω1 b̂2D2 (ω + (π, π)).

Then {b2D0 ; b2D1 , b2D2 , b2D3 } is a double canonical quincunx tight framelet filter bank
such that

min(vm(b2D1 ), vm(b2D2 ), vm(b2D3 )) ≥ min(m,n)

and
sm(b2D0 ,M√

2) ≥ sm(aDn , 2) + sm(aDm, 2) → ∞, m+ n → ∞.

The Daubechies orthogonal filter-based double canonical quincunx tight framelet
filter bank {b2D0 ; b2D1 , b2D2 , b2D3 } does not have any symmetry property. In this pa-
per we are interested in multiple/double canonical quincunx tight framelet filter
banks with symmetry property. We immediately conclude from Theorem 4.1 that
all nontrivial real-valued canonical quincunx tight framelet filter banks with sym-
metry property of the form in (4.3) must have multiplicity at least 6. In fact, if we
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require both {b0; b1, . . . , b2s−1} and {u0;u1, . . . , uL} in Theorem 4.1 to be of real-
valued filters with symmetry property, then s ≥ 2 and L ≥ 2 due to the well-known
fact that except the Haar-type filter banks, there is no real-valued dyadic orthog-
onal wavelet filter bank with symmetry property. Consequently, the multiplicity
of a nontrivial canonical quincunx tight framelet filter bank with real-valued filters
and with symmetry property satisfies s(L + 1) ≥ 6. That is, {b0; b1, . . . , b2s−1}
need to be at least double canonical tight 2-framelet filter bank {a, b1, b2, b3} while
{u0;u1, . . . , uL} need to be at least {u0;u1, u2}.

We now discuss double canonical tight 2-framelet filter bank {a; b1, b2, b3} with
symmetry property satisfying

(4.4) b̂1(ω) = e−iω â(ω + π), b̂3(ω) = e−iω b̂2(ω + π).

It follows trivially from the above relations in (4.4) that

â(ω)â(ω + π) + b̂1(ω)b̂1(ω + π) = 0, b̂2(ω)b̂2(ω + π) + b̂3(ω)b̂3(ω + π) = 0.

Consequently, every double canonical tight 2-framelet filter bank with symmetry
property is a special case of type I tight 2-framelet filter banks {a; b1, b2, b3} with
symmetry property discussed in [31]. Moreover, Algorithm 1 in [31] can be used to
find all possible such type I tight 2-framelet filter banks {a; b1, b2, b3} with symmetry
property from any given symmetric low-pass filter. For simplicity, we only discuss
real-valued filters here. As a special case of [31, Algorithm 1], the following result
constructs all possible double canonical tight 2-framelet filter banks with symmetry
property.

Theorem 4.3. Let a ∈ l0(Z) be a real-valued low-pass filter which is symmetric
and satisfies

(4.5) v̂(2ω) := 1− |â(ω)|2 − |â(ω + π)|2 ≥ 0, ∀ ω ∈ R.

Define a finitely supported real-valued high-pass filter b2 by either of the following
two cases:

(1) Obtain a real-valued filter u ∈ l0(Z) through Fejér-Riesz lemma by |û(ω)|2 =
v̂(ξ) and define

b̂2(ω) := (û(2ω) + εe−iωcb û(2ω))/2

with ε ∈ {−1, 1} and cb being an odd integer.
(2) If in addition multiplicity of any zero inside (0, 1) of the Laurent polynomial∑

k∈Z
v(k)zk is even, then one can always construct finitely supported real-

valued filters u1, u2 with symmetry such that

|û1(ω)|2 + |û2(ω)|2 = v̂(ξ) with
Sû1(ω)

Sû2(ω)
= e−iω,

where Sû1(ω) :=
û1(ω)
û1(−ω) records the symmetry type of the filter u1. Define

b̂2(ω) := (û1(2ω) + e−iωû2(ω))/
√
2.

Define the filters b1 and b3 as in (4.4). Then {a; b1, b2, b3} is a double canonical tight
2-framelet filter bank such that all the filters have symmetry property (i.e., either
symmetric or antisymmetric). Moreover, all finitely supported canonical tight 2-
framelet filter banks with symmetry property can be obtained by the above procedure.
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The construction of real-value filters {u0;u1, u2} satisfying (4.2) and having sym-
metry property has been completely solved in [29, Theorem 2.7] and [34, Lemma 2.4].

Now we have the main result in this paper on 6-multiple canonical quincunx
tight framelet filter banks with symmetry property and vanishing moments.

Theorem 4.4. Let a ∈ l0(Z) be a real-valued low-pass filter satisfying the condition
in (4.5) such that â(0) = 1 and a is symmetric. Then we can always construct
by Theorem 4.3 a finitely supported real-valued double canonical tight 2-framelet
filter bank {a; b1, b2, b3} with symmetry property and by [29, Theorem 2.7] finitely
supported real-valued filters u1 and u2 with symmetry property such that

(4.6) |â(ω)|2 + |û1(ω)|2 + |û2(ω)|2 = 1.

Define two-dimensional filters b2D�,k as in (4.3) of Theorem 4.1 for � = 0, . . . , 3 and

k = 0, 1, 2 with b0 := a and u0 := a. Define a2D := b2D0,0. Then

(4.7) {a2D; b2D1,0 , b
2D
2,0 , b

2D
3,0 , b

2D
0,1 , b

2D
1,1 , b

2D
2,1 , b

2D
3,1 , b

2D
0,2 , b

2D
1,2 , b

2D
2,2 , b

2D
3,2}

is a 6-multiple canonical quincunx tight framelet filter bank such that the real-valued
low-pass filter a2D is D4-symmetric, with

sr(a2D,M√
2) = sr(a2D, N√

2) ≥ 2 sr(a, 2),

sm(a2D,M√
2) = sm(a2D, N√

2) ≥ 2 sm(a, 2),

and all the eleven high-pass filters are real-valued and have symmetry property with
at least order min(2 sr(a, 2), lpm(a)/2) vanishing moments. In particular, if we take
a = aI2n with n ∈ N, then we have a 6-multiple canonical quincunx tight framelet
filter bank in (4.7) such that

(i) all the high-pass filters have symmetry property (i.e., either symmetric or
antisymmetric) and at least order n vanishing moments;

(ii) the low-pass a2D = aI2n ⊗ aI2n is D4-symmetric such that

sr(aI2n ⊗ aI2n,M
√
2) = sr(aI2n ⊗ aI2n, N

√
2) ≥ 4n

and

lim
n→∞

sm(aI2n ⊗ aI2n,M
√
2) = ∞, lim

n→∞
sm(aI2n ⊗ aI2n, N

√
2) = ∞;

(iii) the tight M√
2-framelet (or tight N√

2-framelet) {φ;ψ1, . . . , ψL} with L = 11

in L2(R
2) have symmetry property and arbitrarily high orders of vanishing

moments and smoothness, where φ, ψ1, . . . , ψL is defined in (1.4).

Proof. Since a is D4-symmetric, by definition of smoothness exponent, we can di-
rectly verify that smp(a

2D,M√
2) = smp(a

2D, N√
2) for all 1 ≤ p ≤ ∞ (also see

Theorem 2.1 and [19, 24]). It is known in [8] that limn→∞ sm(aI2n, 2) = ∞. By
Theorem 4.2, we have sm(a2D,M√

2) = sm(aI2n ⊗ aI2n,M
√
2) ≥ 2 sm(aI2n, 2). Con-

sequently, we have limn→∞ sm(aI2n ⊗ aI2n,M
√
2) = ∞. All other claims follow from

the results and discussion before Theorem 4.4. �

As proved in [25, Theorem 1 and (2.15)], there are finitely supported complex-
valued orthogonal 2-wavelet filters with symmetry property and arbitrarily high
orders of sum rules. As a consequence, if we relax the constraint on real-valued
filters and allow complex-valued filter banks, we can have double canonical quincunx
tight framelet filter banks with the symmetry property of form in (4.3).
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Corollary 4.2. For n ∈ N, let an ∈ l0(Z) be the finitely supported symmetric
complex-valued orthogonal 2-wavelet filter with sr(an, 2) = 2n− 1 as constructed in
[25, Theorem 1]. Define

â2D(ω1, ω2) := ân(ω1)ân(ω2), b̂2(ω1, ω2) := ân(ω1)ân(ω2 + π)

and

b̂1(ω1, ω2) := e−iω1 â2D(ω1 + π, ω2 + π), b̂3(ω1, ω2) := e−iω1 b̂2(ω1 + π, ω2 + π).

Then {a2D; b1, b2, b3} is a double canonical quincunx tight framelet filter bank such
that a2D is D4-symmetric, with sr(a2D,M√

2) ≥ 2n and

sm(a2D,M√
2) = sm(a2D, N√

2) ≥ 2 sm(an, 2) → ∞, as n → ∞,

and all the high-pass filters b1, b2, b3 have symmetry property and at least order n
vanishing moments.

We conclude this section by presenting two examples of 6-multiple canonical
quincunx real-valued tight framelet filter banks to illustrate the result in Theo-
rem 4.4.

Example 4.1. Consider a = aI2 = {− 1
32 , 0,

9
32 ,

1
2 , 9

32 , 0,−
1
32}[−3,3] with sr(a, 2) =

4 and lpm(a) = 4. Then

1− |â(ω)|2 − |â(ω + π)|2 = − 1

64
(cos3(2x)− 9 cos2(2x) + 15 cos(2x)− 7) ≥ 0.

By the Fejér-Riesz lemma, we can obtain u ∈ l0(Z) such that |û(2ω)|2 = 1 −
|â(ω)|2 − |â(ω + π)|2 as follows:

û(ω) =

√
2

32
eiω(t0 + t1e

−iω + t2e
−i2ω + t3e

−i3ω),

where t0 = 2−
√
3, t1 = −6 +

√
3, t2 = 6 +

√
3, t3 = −2−

√
3. Define b1, b2, b3 by

(4.8)

⎧⎪⎨⎪⎩
b̂1(ω) = e−iωâ(ω + π),

b̂2(ω) = (û(2ω) + e−iωû(2ω))/2,

b̂3(ω) = e−iω b̂2(ω + π).

Then,

b̂1(ω) = e−iω

(
1

2
− 9

32
(eiω + e−iω) +

1

32
(ei3ω + e−i3ω)

)
,

b̂2(ω) =

√
2

64

(
t3(e

i3ω + e−i4ω) + t0(e
i2ω + e−i3ω) + t2(e

iω + e−i2ω) + t1(1 + e−iω)
)
,

b̂3(ω) = −
√
2

64

(
t3(e

i3ω − e−i4ω)− t0(e
i2ω − e−i3ω) + t2(e

iω − e−i2ω)− t1(1− e−iω)
)
.

Note that b1 is symmetric about 1 and supported on [−2, 4], b2 is symmetric about
1/2 and supported on [−3, 4], b3 is antisymmetric about 1/2 and supported on
[−3, 4]. The filter bank {a; b1, b2, b3} forms a double canonical tight 2-framelet filter
bank. See [31, Examples 4 and 9] for other tight 2-framelet filter banks {a; b1, b2, b3}
with symmetry property derived from the interpolatory low-pass filter a = aI2.

Next, define v̂(ω) := 1− |â(ω)|2. Then,

v̂(ξ) =
∣∣∣1− e−iω

2

∣∣∣4∣∣∣e−iω + 2−
√
3√

4− 2
√
3

∣∣∣2(6 + 3 cos(x)− cos3(x)

4

)
.
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By the Fejér-Riesz lemma, we can obtain u0 such that |û0(ω)|2 = v(ω) as follows:

û0(ω) = ei3ω
(1− e−iω

2

)2(e−iω + 2−
√
3√

4− 2
√
3

)(e−iω − r1

2
√
2r1

) (e−2iω + (r2 + r2)e
−iω + |r2|2)

2|r2|
,

where

r1 := c0 −
√
c20 − 1, r2 := c1 −

√
c21 − 1,

with

t = (3 + 2
√
2)1/3, c0 := t+

1

t
, c1 :=

c0
2

−
√
3

2
i(t− 1/t).

Define u1, u2 by

û1(ω) = (û0(ω) + e−iωû0(ω))/2, û2(ω) = (û0(ω)− e−iωû0(ω))/2.

Then, u1 is symmetric about 1/2 with support [−3, 4] ∩ Z, u2 is antisymmetric
about 1/2 with support [−3, 4], and |â(ω)|2 + |û1(ω)|2 + |û2(ω)|2 = 1.

Finally, we can define

{a2D; b2D1,0 , b
2D
2,0 , b

2D
3,0 , b

2D
0,1 , b

2D
1,1 , b

2D
2,1 , b

2D
3,1 , b

2D
0,2 , b

2D
1,2 , b

2D
2,2 , b

2D
3,2}

as in Theorem 4.4, which gives a 6-multiple canonical quincunx tight framelet filter
bank. a2D has at least order 4 sum rules and is D4-symmetric about the origin.
All the eleven high-pass filters are real-valued and have some symmetry properties
with at least order 2 vanishing moments.

Example 4.2. Consider a = {− 3
64 ,

5
64 ,

15
32 , 15

32 ,
5
64 ,−

3
64}[−2,3] with sr(a, 2) = 3 and

lpm(a) = 4. Then

1− |â(ω)|2 − |â(ω + π)|2 = − 15

256
(1− cos(2x))2 ≥ 0.

Then û(ω) :=
√
15
32 (2 − e−iω − eiω) satisfies 1 − |â(ω)|2 − |â(ω + π)|2 = |û(2ω)|2.

Define b1, b2, b3 as in (4.8). Then,

b̂1(ω) =
15

32
(−1 + e−iω) +

5

64
(eiω − e−i2ω) +

3

64
(ei2ω − e−i3ω),

b̂2(ω) =

√
15

64

(
2(1 + e−iω)− (eiω + e−i2ω)− (ei2ω + e−i3ω)

)
,

b̂3(ω) =

√
15

64

(
2(−1 + e−iω)− (eiω − e−i2ω) + (ei2ω − e−i3ω)

)
.

Note that high-pass filter b1 is antisymmetric about 1/2 and supported on [−2, 3],
the high-pass filter b2 is symmetric about 1/2 and supported on [−2, 3], and the
high-pass filter b3 is antisymmetric about 1/2 and supported on [−2, 3]. The fil-
ter bank {a; b1, b2, b3} forms a double canonical tight 2-framelet filter bank with
vm(b1) = 3, vm(b2) = 2, and vm(b3) = 3. See [29, Example 3] for a tight 2-
framelet filter bank {a; b1, b2} with symmetry property derived from the low-pass
filter a.

Next, define v̂(ω) := 1 − |â(ω)|2 = − 1
128 (cos(x) − 1)2(9 cos3(x) + 3 cos2(x) −

53 cos(x)− 79). Then,

v̂(ξ) =
∣∣∣1− e−iω

2

∣∣∣4 9(cos(x)− c0)(cos(x)− c1)(cos(x)− c1)

−32
,

where

c0 = t1+t2−1/9, c1 = −(t1+t2+2/9−
√
3i(t1−t2))/2, t1 = 8

3
√
10/9, t2 = 2

3
√
100/9.
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Consequently, we can obtain u0 such that |û0(ω)|2 = v(ω) as follows:

û0(ω) = 3ei2ω
(1− e−iω

2

)2(e−iω − r0
2
√
r0

)e−2iω − (r1 + r1)e
−iω + |r1|2

8|r1|
,

where r0 = c0 −
√
c20 − 1 and r1 = c1 −

√
c21 − 1. Define u1, u2 by

û1(ω) = (û0(ω) + e−iωû0(ω))/2, û2(ω) = (û0(ω)− e−iωû0(ω))/2.

Then, u1 is symmetric about 1/2 with support [−2, 3] ∩ Z, u2 is antisymmetric
about 1/2 with support [−2, 3] ∩ Z, and |â(ω)|2 + |û1(ω)|2 + |û2(ω)|2 = 1. We also
have vm(u1) = 2 and vm(u2) = 3.

Finally, we can define

{a2D; b2D1,0 , b
2D
2,0 , b

2D
3,0 , b

2D
0,1 , b

2D
1,1 , b

2D
2,1 , b

2D
3,1 , b

2D
0,2 , b

2D
1,2 , b

2D
2,2 , b

2D
3,2}

as in Theorem 4.4, which gives a 6-multiple canonical quincunx tight frame filter
bank. a2D has at least order 6 sum rule and is D4-symmetric about the origin. All
the eleven high-pass filters are real-valued and have certain symmetry properties
with at least 2 vanishing moments.

We remark that other 6-multiple canonical quincunx tight framelet filter banks
with high orders of vanishing moments can be obtained by considering other low-
pass filters and following the above procedure.

Appendix A. Proofs of Theorems 2.1 and 4.2

Proof of Theorem 2.1. The existence of such a filter a2D2n,2n has been proved in

Proposition 3.1. Let a be such a filter a2D2n,2n. We now prove the uniqueness of
such a filter a satisfying all the properties in Theorem 2.1.

The filter a having orders 2n sum rules with respect to M = M√
2 is equivalent

to

(A.1)
∑
k∈Z2

a(Mk + (1, 0))(Mk + (1, 0))μ =
∑
k∈Z2

a(Mk)(Mk)μ, ∀|μ| < 2n,

and a having order 2n linear-phase moments with phase c = (1/2, 1/2) is equivalent
to

(A.2)
∑
k∈Z2

a(k)kμ = cμ ∀ |μ| < 2n,

where μ = (μ1, μ2) ∈ N2
0. It is easily seen that (A.1) and (A.2) are equivalent to

(A.3)

⎧⎪⎨⎪⎩
∑

k∈Z2 a(Mk + (1, 0))(Mk + (1, 0))μ = 1
2c

μ,

∑
k∈Z2 a(Mk)(Mk)μ = 1

2c
μ,

|μ| < 2n.

Define

Λ0 := {k = (k1, k2) ∈ Z2 : k1 + k2 even, k ∈ [−n+ 1, n]2},
Λ1 := {k = (k1, k2) ∈ Z2 : k1 − k2 odd, k ∈ [−n+ 1, n]2}.

Then, #Λ0 = #Λ1 = 2n2, Λ0 ∩Λ1 = ∅, and Λ0 ∪Λ1 = [−n+1, n]2 ∩Z2. Moreover,
Λ0 = MZ2 ∩ [−n + 1, n]2 and Λ1 = (MZ2 + (1, 0)) ∩ [−n + 1, n]2. On the other
hand, consider the index set

Γn := {μ ∈ N2
0 : |μ| < 2n, μ2 < 2n− 1} \ {(0, 2j − 1) : j = 1, . . . , n− 1}.



374 BIN HAN, QINGTANG JIANG, ZUOWEI SHEN, AND XIAOSHENG ZHUANG

Then, it is easy to show that #Λ0 = #Λ1 = #Γn = 2n2. Using this notation and
noting that Γn is a subset of {μ ∈ N2

0 : |μ| < 2n}, (A.3) implies that a must also
satisfy the following conditions:

(A.4)
∑
k∈Λε

a(k)kμ =
1

2
cμ, μ ∈ Γn, ε ∈ {0, 1}.

Note that

#
(
Λ0 ∩ {x = (x1, x2) ∈ R2 : x1 + x2 = 2j}

)
= 4− |2j − 1|, j = −n+ 1, . . . , n

and

#
(
Λ1 ∩ {x = (x1, x2) ∈ R2 : x1 − x2 = 2j + 1}

)
= 4− |2j + 1|, j = −n, . . . , n− 1.

By [33, Lemma 3.1], The matrices (kμ)k∈Λε, μ∈Γn
,ε = 0, 1 are nonsingular. Conse-

quently, a must be unique.

Item (i) follows from Proposition 3.1. For item (ii), notice that â2D2n,2n(ω) =̂̊a(ω)e−ic·ω, where

(A.5) ̂̊a(ω) := âI2n

(
ω1 + ω2

2

)
+ âI2n

(
ω1 − ω2

2

)
− 1.

One can easily show that ̂̊a satisfies ̂̊a(E�·) = ̂̊a for all E ∈ D4 due to the fact that

aI2n satisfies âI2n(−ω) = âI2n(ω) for ω ∈ R. Consequently,

â2D2n,2n(E
�ω) = ̂̊a(E�ω)e−ic·E�ω = â2D2n,2n(ω)eic·(I2−E�)ω, ω ∈ R2,

which is equivalent to (1.8), i.e., a2D2n,2n is D4-symmetric about c = (1/2, 1/2).
Item (iii) is a direct consequence of [24, Proposition 2.1] (also see [19, Theo-

rem 2.3]). In fact, by N√
2 = EM√

2 with E =

[
0 1
1 0

]
, N√

2 is D4-equivalent to

M√
2. Thus, by [24, Proposition 2.1], φN√

2 = φM√
2(· + c̊), where c̊ :=

(M√
2−I2)

−1c−(N√
2−I2)

−1c = (1, 1). (2.12) follows from [24, Proposition 2.1]. �

Proof of Theorem 4.2. By the definition of sum rules and M√
2Z

2 = N√
2Z

2, it is
straightforward to check that sr(a,M√

2) = sr(a,N√
2) = sr(a, 2). We now prove

smp(a,M√
2) = smp(a, 2). Let M = M√

2. By the definition of the subdivision
operator in (2.7), we have

(A.6) Ŝn
a,Mv(ω) = | det(M)|nv̂((M�)nω)â(ξ) · · · â((M�)n−1ω).

In particular, noting that M2 = 2I2, we have

Ŝn
a,Mδ(ω) = 2nâ(ω) · · · â((M�)n−1ω) = Ŝn1

a,2δ(ω1)Ŝn2
a,2δ(ω1 + ω2),

where

(A.7) n1 := �n+ 1

2
�, n2 := n− n1.

Therefore, for μ1, μ2 ∈ N0 := N ∪ {0}, we deduce from the above identity that

[∇μ1
e1 ∇

μ2

e1+e2S
n
a,Mδ](j, k) = [∇μ1Sn1

a,2δ](j − k)[∇μ2Sn2
a,2δ](k), j, k ∈ Z,

from which we have

(A.8) ‖∇μ1
e1 ∇

μ2

e1+e2S
n
a,Mδ‖lp(Z2) = ‖∇μ1Sn1

a,2δ‖lp(Z)‖∇μ2Sn2
a,2δ‖lp(Z), μ1, μ2, n ∈ N0,
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where n1 and n2 are defined in (A.7). Let m := sr(a, 2). By â(0) = 1, it is known
in [21] and [20, Theorem 3.1] that ρj(a, 2)p ≥ 21/p−j for all j ∈ N0 and

(A.9) ρj(a, 2)p = max(21/p−j , ρm(a, 2)p), j = 0, . . . ,m.

Taking μ1 = m and μ2 = 0 in (A.8), by ρ0(a, 2)p ≥ 21/p > 0 and limn→∞ n1/n =
1/2 = limn→∞ n2/n, we have√

ρm(a, 2)p

√
ρ0(a, 2)p = lim

n→∞
‖∇mSn1

a,2δ‖
1/n
lp(Z)

lim
n→∞

‖Sn2
a,2δ‖

1/n
lp(Z)

= lim
n→∞

‖∇m
e1S

n
a,Mδ‖1/nlp(Z2)

≤ ρm(a,M)p.

Since ρ0(a, 2)p ≥ 21/p, we conclude from the above inequality that ρm(a, 2)p ≤
2−1/p(ρm(a,M)p)

2. Consequently, by | det(M)| = 2 and sr(a,M) = m, we have

smp(a, 2) =
1
p − log2 ρm(a, 2)p ≥ 1

p − log2[2
−1/p(ρm(a,M)p)

2]

= 2
p − 2 log2 ρm(a,M)p

= smp(a,M).

This proves smp(a, 2) ≥ smp(a,M). Conversely, taking μ1 = j and μ2 = m − j in
(A.8) with 0 ≤ j ≤ m, we have

(A.10)

lim
n→∞

‖∇j
e1∇

m−j
e1+e2S

n
a,Mδ‖2/nlp(Z2)

= lim
n→∞

‖∇jSn1
a,2δ‖

2/n
lp(Z)

lim
n→∞

‖∇m−jSn2
a,2δ‖

2/n
lp(Z)

≤ρj(a, 2)pρm−j(a, 2)p.

By ∇e2δ = ∇e1+e2δ− [∇e1δ](·−e2), we see that all ∇μ1
e1 ∇m−μ1

e2 δ with μ1 = 0, . . . ,m

are finitely linear combinations of [∇j
e1∇

m−j
e1+e2δ](· − k), j = 0, . . . ,m and k ∈ Z2. If

we can prove

(A.11) ρj(a, 2)pρm−j(a, 2)p ≤ 21/pρm(a, 2)p, ∀ j = 0, . . . ,m,

then it follows from (A.10) that (ρm(a,M)p)
2 ≤ 21/pρm(a, 2)p. Since m = sr(a,M)

and | det(M)| = 2,

smp(a,M) = 2
p − 2 log2 ρm(a,M)p

≥ 2
p − 2 log2

√
21/pρm(a, 2)p

= 1
p − log2 ρm(a, 2)p = smp(a, 2).

Hence, smp(a,M) ≥ smp(a, 2) and this completes the proof of item (i).
We now prove (A.11). According to (A.9), we have four cases to consider. If

ρj(a, 2)p = 21/p−j and ρm−j(a, 2)p = 21/p−(m−j), then (A.11) holds, since

ρj(a, 2)pρm−j(a, 2)p = 21/p−j21/p−(m−j) = 22/p−m = 21/p21/p−m ≤ 21/pρm(a, 2)p,

where we used the fact that ρm(a, 2)p ≥ 21/p−m. If ρj(a, 2)p = ρm(a, 2)p and

ρm−j(a, 2)p = 21/p−(m−j), then (A.11) holds, since

ρj(a, 2)pρm−j(a, 2)p = 21/p−(m−j)ρm(a, 2)p ≤ 21/pρm(a, 2)p.

The case ρj(a, 2)p = 21/p−j and ρm−j(a, 2)p = ρm(a, 2)p is similar.
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If ρj(a, 2)p = ρm(a, 2)p and ρm−j(a, 2)p = ρm(a, 2)p, then

ρj(a, 2)pρm−j(a, 2)p = ρm(a, 2)pρm(a, 2)p ≤ 21/pρm(a, 2)p,

where we used the inequality ρm(a, 2)p ≤ 21/p which is guaranteed by our assump-
tion sm(a, 2)p ≥ 0. Therefore, (A.11) is verified and this completes the proof of
item (i).

We now prove item (ii). The claim sr(u ∗ v,M) ≥ sr(u,M) + sr(v,M) can be
directly verified by using the definition of sum rules. By (A.6) and û ∗ v(ω) =
û(ω)v̂(ω), for μ, ν ∈ Nd

0, we have

∇μ+νSn
u∗v,Mδ = | det(M)|−n[∇μSn

u,Mδ] ∗ [∇νSn
v,Mδ].

Consequently, by Cauchy-Schwarz inequality, we have

‖∇μ+νSn
u∗v,Mδ‖l∞(Zd) ≤ | det(M)|−n‖∇μSn

u,Mδ‖l2(Zd)‖∇νSn
v,Mδ‖l2(Zd)

Let m1 := sr(u,M) and m2 := sr(v,M). Taking μ, ν ∈ Nd
0 with |μ| = m1 and

|ν| = m2 in the above inequality, we have

lim
n→∞

‖∇μ+νSn
u∗v,Mδ‖1/n

l∞(Zd)
≤ |det(M)|−1 lim

n→∞
‖∇μSn

u,Mδ‖1/n
l2(Zd)

lim
n→∞

‖∇νSn
v,Mδ‖1/n

l2(Zd)

≤ |det(M)|−1ρm1(u,M)2ρm2(v,M)2.

Note that any element η ∈ Nd
0 with |η| = m1 + m2 can be written as η = μ + ν

with |μ| = m1 and |ν| = m2 for some μ, ν ∈ Nd
0. Thus, we deduce from the

above inequality that ρm1+m2
(u ∗ v,M)∞ ≤ | det(M)|−1ρm1

(u,M)2ρm2
(v,M)2.

Let m := sr(u ∗ v,M). By m ≥ m1 +m2, we have

ρm(u ∗ v,M)∞ ≤ ρm1+m2
(u ∗ v,M)∞ ≤ | det(M)|−1ρm1

(u,M)2ρm2
(v,M)2,

from which we have

sm∞(u ∗ v,M) = −d log| det(M)| ρm(u ∗ v,M)∞

≥ −d log| det(M)|[| det(M)|−1ρm1
(u,M)2ρm2

(v,M)2]

= d
2 − d log| det(M)| ρm1

(u,M)2 +
d
2 − d log| det(M)| ρm2

(v,M)2

= sm2(u,M) + sm2(v,M).

The proof of item (ii) is completed by noting that sm∞(u ∗ v,M) ≤ sm2(u ∗ v,M)
always holds.

To prove item (iii), we define ũ(k, j) := u(k)δ(j) and ṽ(j, k) := v(k)δ(j) for all
j, k ∈ Z. That is, ũ is the 2D filter by identifying u on Z with Z × {0}, while
ṽ is the 2D filter by identifying v on Z with {0} × Z. Since sm(u, 2) ≥ 0 and
sm(v, 2) ≥ 0, by item (i), we have sr(ũ,M√

2) = sr(u, 2), sr(ṽ,M√
2) = sr(v, 2) and

sm(ũ,M√
2) = sm(u, 2), sm(ṽ,M√

2) = sm(v, 2). Note that u⊗ v = ũ ∗ ṽ. Now the
claim in item (iii) follows directly from item (ii). �
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[41] M.-J. Lai and J. Stöckler, Construction of multivariate compactly supported tight
wavelet frames, Appl. Comput. Harmon. Anal. 21 (2006), no. 3, 324–348, DOI
10.1016/j.acha.2006.04.001. MR2274841

[42] Q. Mo and X. Zhuang, Matrix splitting with symmetry and dyadic framelet filter banks
over algebraic number fields, Linear Algebra Appl. 437 (2012), no. 10, 2650–2679, DOI
10.1016/j.laa.2012.06.039. MR2964713

[43] S. D. Riemenschneider and Z. Shen, Box splines, cardinal series, and wavelets, Approximation
theory and functional analysis (College Station, TX, 1990), Academic Press, Boston, MA,
1991, pp. 133–149. MR1090554

[44] S. D. Riemenschneider and Z. Shen, Wavelets and pre-wavelets in low dimensions, J. Approx.
Theory 71 (1992), no. 1, 18–38, DOI 10.1016/0021-9045(92)90129-C. MR1180872

[45] A. Ron and Z. W. Shen, Affine systems in L2(Rd): the analysis of the analysis operators, J.
Funct. Anal. 148 (1997), 408–447.

[46] A. Ron and Z. Shen, Compactly supported tight affine spline frames in L2(Rd), Math. Comp.
67 (1998), no. 221, 191–207, DOI 10.1090/S0025-5718-98-00898-9. MR1433269

[47] Z. Shen, Wavelet frames and image restorations, Proceedings of the International Congress
of Mathematicians. Volume IV, Hindustan Book Agency, New Delhi, 2010, pp. 2834–2863.
MR2827995

http://www.ams.org/mathscinet-getitem?mr=2581236
http://www.ams.org/mathscinet-getitem?mr=2843033
http://www.ams.org/mathscinet-getitem?mr=2880278
http://www.ams.org/mathscinet-getitem?mr=3022977
http://www.ams.org/mathscinet-getitem?mr=3062472
http://www.ams.org/mathscinet-getitem?mr=3264310
http://www.ams.org/mathscinet-getitem?mr=3202306
http://www.ams.org/mathscinet-getitem?mr=3290963
http://www.ams.org/mathscinet-getitem?mr=1862994
http://www.ams.org/mathscinet-getitem?mr=2112853
http://www.ams.org/mathscinet-getitem?mr=3206985
http://www.ams.org/mathscinet-getitem?mr=1968121
http://www.ams.org/mathscinet-getitem?mr=2511580
http://www.ams.org/mathscinet-getitem?mr=2762950
http://www.ams.org/mathscinet-getitem?mr=3351529
http://www.ams.org/mathscinet-getitem?mr=2274841
http://www.ams.org/mathscinet-getitem?mr=2964713
http://www.ams.org/mathscinet-getitem?mr=1090554
http://www.ams.org/mathscinet-getitem?mr=1180872
http://www.ams.org/mathscinet-getitem?mr=1433269
http://www.ams.org/mathscinet-getitem?mr=2827995


CANONICAL QUINCUNX TIGHT FRAMELETS 379

[48] C. Tai, X. Zhang, and Z. Shen, Wavelet frame based multiphase image segmentation, SIAM
J. Imaging Sci. 6 (2013), no. 4, 2521–2546, DOI 10.1137/120901751. MR3138100

Department of Mathematical and Statistical Sciences, University of Alberta, Ed-

monton, Alberta T6G 2G1, Canada

E-mail address: bhan@ualberta.ca

Department of Mathematics and Computer Science, University of Missouri–St. Louis,

St. Louis, Missouri 63121

E-mail address: jiangq@umsl.edu

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge

Road, 119076 Singapore

E-mail address: matzuows@nus.edu.sg

Department of Mathematics, City University of Hong Kong, Tat Chee Avenue,

Kowloon Tong, Hong Kong

E-mail address: xzhuang7@cityu.edu.hk

http://www.ams.org/mathscinet-getitem?mr=3138100

	1. Introduction and motivations
	2. Double canonical quincunx tight framelets with symmetry property and minimal support
	3. Double canonical quincunx tight framelets with symmetry property derived from one-dimensional filters
	4. Multiple canonical quincunx tight framelet filter banks  with symmetry proprety
	Appendix A. Proofs of Theorems 2.1 and 4.2
	References

