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EXTREME ZEROS IN A SEQUENCE OF PARA-ORTHOGONAL

POLYNOMIALS AND BOUNDS FOR THE SUPPORT

OF THE MEASURE

A. MARTÍNEZ-FINKELSHTEIN, A. SRI RANGA, AND D. O. VERONESE

Abstract. Given a nontrivial Borel measure μ on the unit circle T, the cor-
responding reproducing (or Christoffel-Darboux) kernels with one of the vari-
ables fixed at z = 1 constitute a family of so-called para-orthogonal polyno-
mials, whose zeros belong to T. With a proper normalization they satisfy a
three-term recurrence relation determined by two sequences of real coefficients,
{cn} and {dn}, where {dn} is additionally a positive chain sequence. Coeffi-
cients (cn, dn) provide a parametrization of a family of measures related to μ
by addition of a mass point at z = 1.

In this paper we estimate the location of the extreme zeros (those closest to
z = 1) of the para-orthogonal polynomials from the (cn, dn)-parametrization
of the measure, and use this information to establish sufficient conditions for
the existence of a gap in the support of μ at z = 1. These results are easily
reformulated in order to find gaps in the support of μ at any other z ∈ T.

We provide also some examples showing that the bounds are tight and
illustrate their computational applications.

1. Introduction

Orthogonal polynomials on the unit circle (in short, OPUC), also known as
Szegő polynomials, are one of the most beautiful objects in Classical Analysis, with
deep connections and applications in many areas of Mathematics and Engineering.
Their systematic study, started by Szegő [29] and Geronimus [15], has experimented
recently with an important burst of activity, stimulated in part by their relation
with the spectral theory [24, 26].

Given a nontrivial probability measure μ on the unit circle T := {ζ = eiθ: 0 ≤
θ ≤ 2π} the associated orthonormal OPUC ϕn(z) = κnz

n + lower degree terms are
defined by degϕn = n, κn > 0 and∫

T

ϕn(z)ϕm(z)dμ(z) =

∫ 2π

0

ϕn(e
iθ)ϕm(eiθ)dμ(eiθ) = δnm,

where δnm stands for the Kronecker delta. Among their fundamental properties is
that all their zeros belong to the open unit disk D := {z ∈ C : |z| < 1}, and that
they satisfy the Szegő recurrence,

(1.1) Φn(z) = zΦn−1(z)− αn−1 Φ
∗
n−1(z), n ≥ 1,
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given here in terms of the monic OPUC Φn(z) = ϕn(z)/κn, n ≥ 0. The coefficients

αn−1 = −Φn(0) are the Verblunsky coefficients, and Φ∗
n(z) = znΦn(1/z̄). It is well

known that |αn| < 1, n ≥ 0, and that {αn}∞n=0 ⊂ D∞ ↔ {μ} is a bijection between
the set of Verblunsky coefficients and positive Borel measures on T (see e.g. [24],
as well as [13]). Establishing the correspondence → (resp., ←) is the direct (resp.,
inverse) spectral problem. In particular, recovering the support of the associated
measure from the sequence of Verblunsky coefficients is an important part of the
direct spectral problem.

In the classical situation of orthogonal polynomials on the real line, their zeros
are strongly correlated with the support of the measure of orthogonality: they all
belong to the convex hull of this support, and each polynomial has at most one
zero in each gap of the support. This is not the case of the OPUC: the behavior
of their zeros in D can be very complicated, even for the simplest weights; see
e.g. [22, 23]. Looking for sequences of polynomials related to μ and with zeros on
T, Jones, Nj̊astad and Thron [19] introduced the para-orthogonal polynomials on
the unit circle (in short, POPUC): they are, up to normalization, polynomials of
the form Φn(z)−τnΦ

∗
n(z), where |τn| = 1. The definition zΦn−1(z)− τ̃n−1Φ

∗
n−1(z),

where |τ̃n−1| = 1, is also used and is equivalent, since

Φn(z)− τnΦ
∗
n(z) = (1 + τnαn−1)

[
zΦn−1(z)−

τn + αn−1

1 + τnαn−1
Φ∗

n−1(z)
]

and

|τn| = 1 ⇔
∣∣∣∣ τn + αn−1

1 + τnαn−1

∣∣∣∣ = 1.

By (1.1), a POPUC of degree n can be constructed from the set {Φj}n−1
j=0 of OPUC,

or equivalently from the set of Verblunsky coefficients {αj}n−1
j=0 , by forcing the

last coefficient αn−1 in (1.1) to be on T. For further information on POPUC see
[3, 8, 11, 16, 26, 31] and the references therein.

Zeros of all POPUC lie on the unit circle T. In fact, Geronimus [14] (see also
[21]) gave a general construction of rational functions whose denominators are an
arbitrary sequence of POPUC, and such that they converge to the Carathéodory
function

∫
C(z + ζ)(z − ζ)−1dμ(ζ) in D (and by symmetry, also in the complement

to D). For an arbitrary sequence of POPUC not much else can be said.
In the case when μ is not supported on the whole T, we would like to choose the

sequence of POPUC whose zeros are consistent with the supp(μ). Ideally, one needs
to assure that the set of attracting points (strong limit points in the terminology
of [4]) of the zeros of the sequence of para-orthogonal polynomials coincides with
the support of the measure. This would allow one to characterize this support in
terms of the asymptotic distribution of such zeros. This problem was essentially
solved in the work of Cantero, Moral and Velázquez [4], where they put forward a
rather general construction of the sequence of POPUC with such a property, using
the connection with the spectral theory of the (unitary) truncated CMV matrices.

As it was already observed by Golinskii [16], a particular instance of the polyno-
mials considered in [4] is closely related to the reproducing (also Christoffel-Darboux
or CD) kernel associated to μ. Recall that the CD kernel is

(1.2) Kn(w, z) :=
n∑

j=0

ϕj(w)ϕj(z) , n ≥ 0,
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and the well-known Christoffel-Darboux formula (see, for example, [24, Thm. 2.2.7])
says that for z 
= w,

(1.3)
Kn(w, z) =

ϕn+1(w)ϕn+1(z)− ϕ∗
n+1(w)ϕ

∗
n+1(z)

w̄ z − 1

=
wzϕn(w)ϕn(z)− ϕ∗

n(w)ϕ
∗
n(z)

w̄ z − 1
, n ≥ 0.

It shows that if we fix w ∈ T, then up to a normalization factor, (w̄ z− 1)Kn(z, w)
is a POPUC of degree n+ 1:

(1.4)
(w̄ z − 1)Kn(z, w) = const

(
Φn+1(z)− τn+1(w) Φ

∗
n+1(z)

)
= const (zΦn(z)− wτn(w) Φ

∗
n(z)) ,

with

(1.5) τn(w) =

(
ϕ∗
n(w)

ϕn(w)

)
=

Φn(w)

Φ∗
n(w)

∈ T.

These polynomials have an additional feature: they satisfy a bona fide three-term
recurrence relation (see [7, Thm. 2.1]). A deeper analysis of sequences of para-
orthogonal polynomials satisfying three-term recurrence relations was carried out
in [2].

In what follows, without loss of generality we will assume w = 1, and write τn
instead of τn(1). When the freedom in the selection of the parameter w will be
relevant, it will be explicitly discussed.

Paper [7] also contained a convenient “symmetrization” of the polynomials
Kn(1, z); it was shown there that the appropriately normalized Kn(1, z), that we
denote by Rn (see the precise definition in Section 2) satisfy a three-term recurrence
formula of the form

(1.6) Rn+1(z) = [(1 + icn+1)z + (1− icn+1)]Rn(z)− 4dn+1zRn−1(z), n ≥ 0,

with R−1(z) = 0 and R0(z) = 1. This can be considered as a generalization of the
results found in Delsarte and Genin [9, 10].

Sequences {cn}∞n=1 and {dn+1}∞n=1 are both real, and {dn+1}∞n=1 has an addi-
tional useful feature: it is a positive chain sequence. In other words, there exists a
sequence {gn+1}n≥0 with 0 ≤ g1 < 1 and 0 < gn < 1 for n ≥ 2, called a parameter
sequence for {dn+1}∞n=1, such that

(1.7) dn+1 = (1− gn)gn+1, n ≥ 1.

We can have either a unique or an infinite number of parameter sequences corre-
sponding to a given positive chain sequence. The value g1 = 0 used in (1.7) gives us
the minimal parameter sequence for {dn+1}∞n=1. The largest value M1 that g1 can
assume such that the sequence {gn+1}n≥0 calculated from (1.7) is still a parame-
ter sequence, gives rise to the maximal parameter sequence {Mn}n≥1. Thus, the
parameter sequence for {dn+1}∞n=1 is unique if and only if M1 = 0; otherwise any
value of 0 ≤ g1 ≤ M1 generates a parameter sequence, and we say that {dn+1}∞n=1

is a nonsingle parameter (or non-SP) positive chain sequence.
This notion makes sense also for finite sequences {dn+1}Nn=1, in which case with

0 ≤ g1 < 1 and 0 < gn < 1 for 2 ≤ n ≤ N + 1 there hold (1 − gn)gn+1 = dn+1,
1 ≤ n ≤ N , and we speak about finite positive chain sequences ; see [20]. However, in
this case, as pointed out by the referee, the notion of maximal parameter sequence
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in the same sense does not hold. We can still say that there exists a bounding
sequence {M̂n+1}Nn=0 such that 0 < gn < M̂n < 1, 1 ≤ n ≤ N , (1 − gn)gn+1 =

(1− M̂n)M̂n+1 = dn+1, 1 ≤ n ≤ N and

M̂N+1 = 1.

The theory of chain sequences was introduced by Wall [30], and the special ver-
sion of positive chain sequences has been thoroughly explored by Chihara and many
others for studying the properties of orthogonal polynomials defined on bounded
intervals of the real line. For many of the basic properties about positive chain
sequences we refer to Chihara [6].

Sequences {cn}∞n=1 and {dn+1}∞n=1 can be easily calculated from the Verblunsky
coefficients of the corresponding measure μ on T (and vice versa), providing an
alternative parametrization of a family of measures related to μ by mass addition
at z = 1; see [2, 5, 7] and Section 2 for further details.

The zeros of Rn, generated by (1.6), have a strong resemblance to zeros of
orthogonal polynomials on the real line: they belong to T, are simple and interlace.
In other words, if we denote the zeros of Rn by zn,j = eiθn,j , j = 1, 2, . . . , n, then
(see e.g. [11]) we can number them in such a way that

(1.8) 0 < θn+1,1 < θn,1 < θn+1,2 < · · · < θn,n < θn+1,n+1 < 2π, n ≥ 1.

This property and the three-term recurrence relation (1.6) are additional tools,
missing for more general families of POPUC, that allows us to establish more
precise results about the support of the orthogonality measure μ in terms of the
zeros of {Rn}∞n=0. In particular, we study the extremal zeros zn,1 and zn,n and
their asymptotic behavior, establishing bounds for the support of μ in terms of
the sequences {cn}∞n=1 and {dn+1}∞n=1 (and indirectly, in terms of the Verblunsky
coefficients). Considering para-orthogonal polynomials obtained from the rotated
measures we also get information about bounds for any gap within the support of
the original measure.

Definition 1.1. A positive sequence {qn+1}Nn=1 (N finite or infinite) is called a
scaling sequence for the positive chain sequence {dn+1}Nn=1 if qn+1 ≤ 1 for 1 ≤ n ≤
N and {dn+1/qn+1}Nn=1 is also a positive chain sequence.

Obviously, {qn+1}Nn=1 with qn+1 = 1 for n = 1, . . . , N , is a (trivial) scaling
sequence for any positive chain sequence.

For convenience, we introduce here some additional notation used throughout
this manuscript. Open and closed arcs on the unit circle are denoted by

(1.9) A(ϑ1, ϑ2) = {eiθ : ϑ1 < θ < ϑ2} and A[ϑ1, ϑ2] = {eiθ : ϑ1 ≤ θ ≤ ϑ2},

for 0 < ϑ2 − ϑ1 ≤ 2π, respectively. Additionally, for a, b ∈ R and q ∈ [0, 1] we
denote by u(−)(a, b, q) < u(+)(a, b, q) the roots of the quadratic equation

(1.10) P (u) := (1− q)u2 − (a+ b)u+ ab− q = 0.

It is straightforward to check that for q ∈ [0, 1) these roots are real and finite; for
q = 1 we assume u(±)(a, b, q) = ±∞ when ±(a+ b) ≥ 0.

The main results are presented in Sections 4 and 5. One of them can be stated
as follows.
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Theorem 1.1. Let μ be a nontrivial probability Borel measure on T, being {cn},
{dn+1} the coefficients of the corresponding recurrence relation (1.6). Given a
scaling sequence {qn+1} for {dn+1}, we define

(1.11) u
(±)
n+1 = u(±)(cn, cn+1, qn+1), n ≥ 1.

If

0 ≤ ϑ1 := 2 arccot

(
sup
n≥1

u
(+)
n+1

)
< ϑ2 := 2 arccot

(
inf
n≥1

u
(−)
n+1

)
≤ 2π,

then

supp(μ− μ({1})δ1) ⊆ A[ϑ1, ϑ2].

Here, δ1 is the Dirac delta at z = 1.

Remark 1.1. It will become clearer later, the smaller the scaling sequence qn+1 is,
the smaller the size of the arc A[ϑ1, ϑ2]; the trivial choice qn+1 ≡ 1 gives the worst
estimate for supp(μ).

In the next section it will be shown that the coefficients of (1.6) can be obtained
directly from the Verblunsky coefficients {αn} of μ. Thus, the theorem above gives
indirectly a bound for suppμ in terms of the αn’s. It can be seen also as a statement
about the gap in supp(μ) around z = 1. More generally, we can locate a gap using
a construction starting from the {αn}∞n=0 of a nontrivial positive measure μ on

T. Namely, for a parameter 0 < ϑ ≤ 2π, let the sequence {τ (ϑ)n }∞n=0 be given
recursively by

τ
(ϑ)
0 = eiϑ and τ (ϑ)n = eiϑ τ

(ϑ)
n−1

1− τ
(ϑ)
n−1αn−1

1− τ
(ϑ)
n−1αn−1

, n ≥ 1.

Having {τ (ϑ)n }∞n=0 we define {c(ϑ)n }∞n=1 and {d(ϑ)n+1}∞n=1 by

c(ϑ)n =
− Im(τ

(ϑ)
n−1αn−1)

1− Re(τ
(ϑ)
n−1αn−1)

, g(ϑ)n =
1

2

∣∣1− τ
(ϑ)
n−1αn−1

∣∣2[
1− Re(τ

(ϑ)
n−1αn−1)

] , n ≥ 1,

and let

d
(ϑ)
n+1 = (1− g(ϑ)n )g

(ϑ)
n+1.

Finally, for x ∈ [−1, 1] we set

d
(ϑ)
n+1(x) =

d
(ϑ)
n+1(

x− c
(ϑ)
n

√
1− x2

)(
x− c

(ϑ)
n+1

√
1− x2

) .
Theorem 1.2. Let {αn}∞n=0 be the Verblunsky coefficients for a nontrivial positive
measure μ on the unit circle, and let 0 < ϑ2 − ϑ1 ≤ 2π (with ϑ2 > 0). With the
definitions introduced above, set

m
(ϑ1,ϑ2)
0 = 0 and m

(ϑ1,ϑ2)
n =

d
(ϑ2)
n+1

(
x(ϑ1, ϑ2)

)
1−m

(ϑ1,ϑ2)
n−1

, n ≥ 1,

with

x(ϑ1, ϑ2) := cos
(
(2π + ϑ1 − ϑ2)/2

)
.
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Then
suppμ ∩ A(ϑ1, ϑ2) = ∅

if and only if

cot
(
(2π + ϑ1 − ϑ2)/2

)
< c

(ϑ)
1 and 0 < m

(ϑ1,ϑ2)
n < 1, n ≥ 1.

The paper is organized as follows. Sections 2 and 3 are a brief summary of the
main results from [1], [5], [7] and [11], necessary for a better understanding of the
rest of the manuscript. Section 4 describes a simple technique for finding bounds
for the extreme zeros of the polynomials Rn from the coefficients {cn} and {dn+1},
while Section 5 relates these bounds with the support of the measure. Section
6 contains some further results on scaling sequences, used in the construction of
Example 3 in Section 7. Examples 1 and 2 from Section 7 illustrate with explicit
formulas the tightness of the bounds obtained in this paper.

2. CD kernel POPUC and positive chain sequences

In this section we gather some of the main results from [7], providing a necessary
background for the rest of the paper.

The CD kernel Kn(w, z) of a nontrivial probability measure μ on T was intro-
duced in (1.2). For w ∈ T fixed, this is a polynomial of degree n in z, which can be
renormalized monic by defining

Pn(w; z) :=
κ−2
n+1w

Φn+1(w)

Kn(w, z)

1 + τn+1(w)αn
=

zΦn(z)− wτn(w)Φ
∗
n(z)

z − w
, n ≥ 0,

where {αn}n≥0 are the Verblunsky coefficients for μ, and τn(w) is given by (1.5).
In what follows we fix w = 1, and set R0(z) = 1,

(2.1) Rn(z) =

⎛
⎝ n∏

j=1

1− τj−1αj−1

1− Re(τj−1αj−1)

⎞
⎠ Pn(1; z), n ≥ 1,

with τj = τj(1), j ≥ 0. It is important to notice that if we know the Verblunsky
coefficients for μ, τj ’s can be easily computed recursively by

(2.2) τn =
τn−1 − αn−1

1− τn−1αn−1
, n ≥ 1,

starting with τ0 = 1.
It turns out that the sequence of polynomials {Rn}n≥0 in (2.1) satisfies the three-

term recurrence formula (1.6). The coefficients cn are explicitly given in terms of
αn’s by

(2.3) cn =
− Im(τn−1αn−1)

1− Re(τn−1αn−1)
∈ R, n ≥ 1.

It was mentioned also that {dn+1}∞n=1 is a positive chain sequence: it satisfies (1.7)
with the parameter sequence {gn}∞n=1,

(2.4) gn =
1

2

∣∣1− τn−1αn−1

∣∣2[
1− Re(τn−1αn−1)

] , n ≥ 1.

Polynomials Rn, n ≥ 1, satisfy∫
T

ζ−n+jRn(ζ)(1− ζ)dμ(ζ) = 0, 0 ≤ j ≤ n− 1.
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Observe that this relation remains unaltered by an addition to μ of a Dirac measure
(or mass point) at ζ = 1 (so-called Uvarov transformation). This fact induces us
to expect that {Rn(z)}∞n=0 are invariant under such a transformation. This is the
case indeed. Assume that μ({1}) = a ∈ [0, 1); then

(2.5) μ(t; ·) = 1− t

1− a
μ+

t− a

1− a
δ1, t ∈ [0, 1),

is a nontrivial positive probability Borel measure on T such that μ(t; {1}) = t.

Let us denote by {Φn(t; z)}∞n=0 and {α(t)
n }∞n=0 the corresponding monic OPUC

and Verblunsky coefficents for the measure μ(t; .); obviously, they depend on the
parameter t.

A remarkable fact, first observed in [7], is that the sequence of polynomials
{Rn(z)}∞n=0 (and thus, {Pn(1; z)}∞n=0), and the sequences of constants {τn}∞n=0,
{cn}∞n=1 and {dn+1}∞n=1, do not depend on t and are exactly the same for all
measures {μ(t; ·), 0 ≤ t < 1}. This is not the case however of the parameter
sequence gn, defined in (2.4): if

dn+1 = (1− g(t)n ) g
(t)
n+1 and g(t)n =

1

2

∣∣1− τn−1α
(t)
n−1

∣∣2
1− Re(τn−1α

(t)
n−1)

, n ≥ 1,

then the sequence {gn+1}∞n=0 = {g(t)n+1}∞n=0 does depend on the value of t. Thus,

{g(t)n+1}∞n=0 for each t represents a different parameter sequence of the positive chain
sequence {dn+1}∞n=1, which is necessarily non-SP. It is easy to show that

g
(t)
1 =

1

2

∣∣1− α
(t)
0

∣∣2[
1− Re(α

(t)
0 )

]
is decreasing in t, so that {g(0)n+1}∞n=0 = {Mn+1}∞n=0 is the maximal parameter
sequence of {dn+1}∞n=1.

The polynomials Rn satisfy the orthogonality relation

(2.6)

∫
T

ζ−n+jRn(ζ)(1− ζ)dμ(t; ζ) =

{
0, 0 ≤ j ≤ n− 1,

γ
(t)
n , j = n,

with

γ(t)
n = (1− τnα

(t)
n )

n−1∏
k=0

(1− τkα
(t)
k )(1− |α(t)

k |2)
1− Re(τkα

(t)
k )

=
2(1− t)M1

1 + ic1

n∏
k=1

4dk+1

1 + ick+1
.

Sequences {cn}∞n=1 and {dn+1}∞n=1 give a parametrization of the family {μ(t; ·),
0 ≤ t < 1}, in the same vein as {αn}n≥0 parametrize μ. For convenience, we call it
the (cn, dn)-parametrization of this family of measures. This result can be seen also
as a unit circle analogue of the classical Favard theorem on R (see [5]). Indeed, from
the results established in [5] and [7], if {cn}∞n=1 is any real sequence, and {dn+1}∞n=1

is a non-SP positive chain sequence, then for each t ∈ [0, 1) there exists a unique
positive probability Borel measure μ(t; ·) on T and the corresponding sequence of

its Verblunsky coefficients {α(t)
n }n≥0 such that cn’s and dn’s are calculated from

them by formulas (2.3) and (2.4), and μ(t; {1}) = t. Furthermore, if we denote

by {Mn}∞n=1 the maximal parameter sequence of {dn+1}∞n=1, and by {m(t)
n }∞n=0 the
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minimal parameter sequence of the positive chain sequence {dn}∞n=1 augmented by
the term d1 = (1− t)M1, then

(2.7) α
(t)
n−1 =

1

τn−1

1− 2m
(t)
n − icn

1− icn
, n ≥ 1,

where the sequence {τn}∞n=0 is calculated by (2.2) and satisfies

τ0 = 1, τn = τn−1
1− icn
1 + icn

, n ≥ 1.

One of the consequences of the result established in [4, Corollary 4.19] (see also
the proof of Theorem 4.1 in [5]) is the following theorem.

Theorem 2.1. If for some 0 ≤ ϑ1 < ϑ2 ≤ 2π and for all sufficiently large n, the
zeros of Rn belong to the open arc A(ϑ1, ϑ2), then for all 0 ≤ t < 1,

(2.8) suppμ(t; ·) ∩ A(0, ϑ1) = suppμ(t; ·) ∩ A(ϑ2, 2π) = ∅.

In particular, for the extreme zeros zn,1 = eiθn,1 and zn,n = eiθn,n of Rn, we have
that if

ϑ1 := lim
n→∞

θn,1 and ϑ2 := lim
n→∞

θn,n,

then (2.8) holds, and

eiϑ1 , eiϑ2 ∈ suppμ(t; ·).

Remark 2.1. Because of the interlacing of the zeros of Rn, n ≥ 1, “all sufficiently
large n” in Theorem 2.1 is also equivalent to saying “all n”.

Our next goal will be to obtain bounds for the extreme zeros zn,1 and zn,n
directly from the sequences {cn} and {dn+1}.

3. Delsarte-Genin transformation

It is much more convenient to study the zeros of {Rn} by their transplantation
to the real line by means of the functions {Wn} defined by

(3.1) Wn(x) = 2−ne−inθ/2Rn(e
iθ), n ≥ 0,

where x = cos(θ/2). The transformation x = cos(θ/2) = (eiθ/2 + e−iθ/2)/2, is
known as the Delsarte-Genin transformation (see [32], where the abbreviation DG
transformation is also used).

The sequence of functions {Wn}∞n=0 satisfies (see [1, 11])

(3.2) Wn+1(x) =
(
x− cn+1

√
1− x2

)
Wn(x)− dn+1 Wn−1(x), n ≥ 0,

with W−1(x) = 0 and W0(x) = 1. Functions Wn bear a resemblance to standard
orthogonal polynomials on the real line. For instance, for any n ≥ 1, Wn has
exactly n distinct zeros xn,j = cos(θn,j/2), j = 1, 2, . . . , n, all in (−1, 1). Another
consequence of the three-term recurrence formula (3.2) is the interlacing property

(3.3) −1 < xn+1,n+1 < xn,n < xn+1,n < · · · < xn,1 < xn+1,1 < 1, n ≥ 1,

for the zeros of Wn and Wn+1 (a fact that was used in [11] to prove the interlacing
property (1.8) for the zeros of Rn and Rn+1 on T).

In [1], the function Wn is considered as belonging to the simple field extension of

the field of polynomials, generated by the adjunction of
√
1− x2. More precisely,
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if Pn represents the polynomials of degree ≤ n, we consider the linear space of real
functions Ωn, n ≥ 0, given by Ω0 = P0 and

Ωn =
{
B(0)

n (x) +
√
1− x2B

(1)
n−1(x) : B

(j)
k ∈ Pk and B

(j)
k (−x) = (−1)kB

(j)
k (x)

}
.

Observe that if F ∈ Ωn−2, then F ∈ Ωn, although F /∈ Ωn−1.
Moreover (see [12] and also [1, Lemma 2.1]), if Fn ∈ Ωn, then the polynomial Qn

defined by rne
−inθ/2Qn(e

iθ) = Fn(cos(θ/2)), rn ∈ R, is self-reciprocal or conjugate

reciprocal (see [27]): it satisfies Q∗
n(z) = znQn(1/z) = Qn(z). Notice that the

polynomials Rn, given by (3.1), share the same property.
With respect to the zeros of Fn ∈ Ωn we know the following (see [1, Thm. 2.2]):

• If Fn(1) 
= 0, then the number of zeros of Fn in (−1, 1) cannot exceed n.
• If Fn(1) = 0, then Fn(−1) = 0 and the number of zeros of Fn in [−1, 1]
cannot exceed n+ 1.

The straightforward identity

e−iθ/2(eiθ − eiθj ) = (1− eiθj )
[
x− cot(θj/2)

√
1− x2

]
, x = cos(θ/2),

yields also the following factorization for Fn ∈ Ωn:

Lemma 3.1. Let Fn ∈ Ωn. With 1 ≤ r ≤ n, let xj = cos(θj/2), j = 1, 2, . . . , r, be
zeros of Fn in (−1, 1). Then

Fn(x) = Gn−r(x)

r∏
j=1

(x− βj

√
1− x2),

where Gn−r ∈ Ωn−r and βj = cot(θj/2), j = 1, 2, . . . , r.

From this, we have in particular for the functions Wn,

Wn(x) =

n∏
j=1

[
1− τj−1αj−1

]
(1− zn,j)

2 [1− Re(τj−1αj−1)]

n∏
j=1

(
x− βn,j

√
1− x2

)
, n ≥ 1,

where βn,j = cot(θn,j/2) and zn,j = eiθn,j , j = 1, 2, . . . , n.
A direct consequence of (2.6) is the following orthogonality relation for {Wn}∞n=0:∫ 1

−1

(x+ i
√

1− x2)−n+1+2jWn(x) dψ(x) =

{
0, 0 ≤ j ≤ n− 1,

i 2−n−1γ
(t)
n , j = n,

where dψ(x) = −
√
1− x2 dμ(ei2 arccos(x)), which in turn yields (see [1, Theorem 4.1

and Corollary 4.1.3]) that n,m = 0, 1, 2, . . . ,

(3.4)

∫ 1

−1

W2n(x)W2m(x)
√
1− x2 dψ(x) = χ2n δn,m,

∫ 1

−1

W2n+1(x)W2m+1(x)
√
1− x2 dψ(x) = χ2n+1 δn,m,

∫ 1

−1

W2n(x)W2m+1(x) dψ(x) = 0,

where

χ0 =
1

2
[1− Re(α0)] and χn = dn+1

1 + c2n
1 + c2n+1

χn−1, n ≥ 1.
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We can also express (3.4) by (see [1, Corollary 4.1.1])

(3.5)

∫ 1

−1

F(x)Wn(x) dψ(x) = 0 whenever F ∈ Ωn−1.

The following result, related to Theorem 2.1, illustrates the advantage of working
with the sequence Wn (and thus, Rn).

Theorem 3.1. Let μ be a nontrivial positive measure on T, with Rn and Wn given
by (2.1) and (3.1), respectively. Assume 0 < ϑ1 < ϑ2 < 2π. Then with the notation
(1.9):

a) If suppμ ∩ A(0, ϑ1) = ∅, then the function Wn does not have any zeros
in the interval [cos(ϑ1/2), 1] and, equivalently, the polynomial Rn does not
vanish on the closed arc A[0, ϑ1].

b) If suppμ∩A(ϑ2, 2π) = ∅, then the function Wn does not have any zeros in
the interval [−1, cos(ϑ2/2)] and, equivalently, the polynomial Rn does not
vanish on the closed arc A[ϑ2, 2π].

c) If suppμ ∩ A(ϑ1, ϑ2) = ∅, then the function Wn has at most one zero in
the interval [cos(ϑ2/2), cos(ϑ1/2)] and, equivalently, the polynomial Rn has
at most one zero in the closed arc A[ϑ1, ϑ2].

Proof. If A(0, ϑ1) is a gap in the support of μ, then the support of ψ, where dψ(x) =

−
√
1− x2 dμ(ei2 arccos(x)), stays within the interval [−1, cos(ϑ1/2)]. Suppose that

Wn has the zero y = cos(ϑ/2) in [cos(ϑ1/2), 1]. By Lemma 3.1,

Wn(x) = (x− β
√
1− x2)Gn−1(x),

where Gn−1 ∈ Ωn−1 and β = cot(ϑ/2). Hence, by (3.5),

I =

∫ 1

−1

(Gn−1(x))
2(x− β

√
1− x2) dψ(x) =

∫ 1

−1

Gn−1(x)Wn(x) dψ(x) = 0.

On the other hand, since the support of ψ stays within the interval [−1, cos(ϑ1/2)]

and since (x− β
√
1− x2) < 0 in [−1, cos(ϑ1/2)), one must have

I =

∫ cos(ϑ1/2)

−1

(Gn−1(x))
2(x− β

√
1− x2) dψ(x) < 0.

That is, the existence of a zero of Wn in [cos(ϑ1/2), 1] leads to a contradiction.
This proves a); the proof of b) is similar.

Now we turn to the statement c). If A(ϑ1, ϑ2) is a gap in suppμ, then the
support of ψ stays outside of the subinterval (cos(ϑ2/2), cos(ϑ1/2)). Suppose that
y1 = cos(ϑ(1)/2) and y2 = cos(ϑ(2)/2) are zeros of Wn in [cos(ϑ2/2), cos(ϑ1/2)]. By
Lemma 3.1,

Wn(x) = (x− β1

√
1− x2)(x− β2

√
1− x2)Gn−2(x),

where Gn−2∈Ωn−2, β1 = cot(ϑ(1)/2) and β2=cot(ϑ(2)/2). Since
√
1− x2Gn−2(x) ∈

Ωn−1 we have by (3.5)

Ĩ =

∫ 1

−1

(Gn−2(x))
2(x− β1

√
1− x2)(x− β2

√
1− x2)

√
1− x2 dψ(x) = 0.



EXTREME ZEROS OF PARA-ORTHOGONAL POLYNOMIALS 271

On the other hand, since (x−β1

√
1− x2)(x−β2

√
1− x2) > 0 outside the subinterval

[cos(ϑ2/2), cos(ϑ1/2)], one must have

Ĩ =

∫ cos(ϑ2/2)

−1

(Gn−2(x))
2(x− β1

√
1− x2)(x− β2

√
1− x2)

√
1− x2 dψ(x)

+

∫ 1

cos(ϑ1/2)

(Gn−2(x))
2(x−β1

√
1− x2)(x−β2

√
1− x2)

√
1−x2 dψ(x) > 0.

That is, the existence of more than one zero of Wn in [cos(ϑ2/2), cos(ϑ1/2)] leads
to a contradiction. �
Remark 3.1. Statement c) of Theorem 3.1 was previously established in [3] and
[16], by different techniques.

4. Extreme zeros from the (cn, dn)-parametrization

We first look at the information about the zeros of Wn and Rn that can be
extracted from the coefficients {cn}∞n=1 and {dn+1}∞n=1 of the recurrence formula
(3.2). We are particularly interested in the smallest, xn,n, and the largest, xn,1,
zero of Wn; see (3.3). The following bounds were already established in [11]:

• If ck > 0 for 1 ≤ k ≤ n and čn = min
1≤k≤n

ck, then − 1√
1 + č2n

< xn,n.

• If ck < 0 for 1 ≤ k ≤ n and ĉn = max
1≤k≤n

ck, then xn,1 <
1√

1 + ĉ2n
.

Observe that these bounds depend only on the sequence {cn}; the following
results extend and improve them by taking into account also the chain sequence
{dn+1}. Given these two sequences, we define for x ∈ [−1, 1]

(4.1) dn+1(x) :=
dn+1

(x− cn
√
1− x2)(x− cn+1

√
1− x2)

.

Theorem 4.1. Let Wn be given by the three-term recurrence formula (3.2), where
{cn}∞n=1 is a real sequence and {dn+1}∞n=1 is a positive chain sequence. Then, for
N ≥ 2, the zeros of Wn, 1 ≤ n ≤ N , all belong to (A,B) ⊆ (−1, 1) if, and only if,

a)
A√

1−A2
< c1 <

B√
1−B2

,

b) {dn+1(x)
}N−1

n=1
is a finite positive chain sequence for x = A and x = B.

Proof. From (3.2) that Wn ∈ C2(−1, 1),

(4.2)
Wn+1(x)

Wn(x)
+ dn+1

Wn−1(x)

Wn(x)
= x− cn+1

√
1− x2,

and

(4.3)
Wn(x)

(x− cn
√
1− x2)Wn−1(x)

(
1− Wn+1(x)

(x− cn+1

√
1− x2)Wn(x)

)
= dn+1(x),

for n ≥ 1. Using that W1(1)/W0(1) = 1 and that {dn+1}∞n=1 is a positive chain
sequence, it follows that (−1)n−1Wn−1(−1) = Wn−1(1) > 0, n ≥ 1.

Furthermore, observe that A − c1
√
1−A2 < 0 and dn+1(A) > 0, n ≥ 1, imply

that A − cn
√
1−A2 < 0, n = 1, 2, . . . , N . In the same vein, B − c1

√
1−B2 > 0

and dn+1(B) > 0, n ≥ 1, imply B − cn
√
1−B2 > 0, n = 1, 2, . . . , N . Thus, the

statement that we need to prove in the theorem is also equivalent to the following.
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For N ≥ 2, the zeros of Wn, 1 ≤ n ≤ N , all belong to (A,B) ⊆ (−1, 1) if, and
only if,

a1)
A√

1−A2
< cn <

B√
1− B2

, n = 1, . . . , N ,

b) {dn+1(x)
}N−1

n=1
is a finite positive chain sequence for x = A and x = B.

We now prove this for the left bound A. Assume that the zeros of WN are all
greater than A. Then, by the interlacing property (3.3), Wn(A)/Wn−1(A) < 0, 1 ≤
n ≤ N . Hence, from W1(A) = A− c1

√
1−A2 and from (4.2), A− cn

√
1−A2 < 0,

1 ≤ n ≤ N , establishing the lower bound for cn in a1).

Now, since Wn(A)/[(A− cn
√
1−A2)Wn−1(A)] > 0 for 1 ≤ n ≤ N and

dn+1(A) =
dn+1

(A− cn
√
1−A2)(A− cn+1

√
1−A2)

> 0, 1 ≤ n ≤ N − 1,

from (4.3) we have

Wn+1(A)/[(A− cn+1

√
1−A2)Wn(A)] < 1 for 1 ≤ n ≤ N − 1.

An immediate consequence of (4.3) is that {dn+1(A)}N−1
n=1 is a finite positive

chain sequence. Thus, part b) of the theorem holds for the point A. Notice that

{1−Wn+1(A)/[(A−cn+1

√
1−A2)Wn(A)]}N−1

n=0 is the minimal parameter sequence

for {dn+1(A)}N−1
n=1 .

Now we prove the reciprocal statement, again at the point A, assuming that
both a1) and b), for x = A, hold.

By the assumption a1), W1(A) = A − c1
√
1−A2 < 0 (which means A < x1,1)

and A− cn+1

√
1−A2 < 0 for n = 1, 2, . . . , N − 1. Using b) we have that{

1− Wn+1(A)

(A− cn+1

√
1−A2)Wn(A)

}N−1

n=0

is the minimal parameter sequence of the finite positive chain sequence {dn+1(A)}N−1
n=1.

Hence,

0 <
Wn+1(A)

(A− cn+1

√
1−A2)Wn(A)

< 1, n = 1, 2, . . . , N − 1.

From this, (−1)nWn(A) > 0, n = 1, 2, . . . , N .
From the interlacing property (3.3) for the zeros xn,j , j = 1, 2, . . . , n, of Wn

observe that (−1)jWn(xn−1,j) > 0 for j = 1, 2, . . . , n − 1 and n ≥ 2. Hence, in
particular,

(−1)n Wn(xn−1,n−1) < 0, n ≥ 2.

Now the inequality A < xN,N easily follows by induction.
This completes the proof of the theorem with respect to the point A; the proof

for the point B is similar. �

With further restrictions on the coefficients cn, n ≥ 1, we get the following
corollary of Theorem 4.1.

Corollary 4.2. Let Wn be given by the three-term recurrence formula (3.2), where
the sequences {cn}∞n=1 and {dn+1}∞n=1 satisfy the conditions of Theorem 4.1, for
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some even N ≥ 2. Assume that there exist C and D, A < C < D < B, such that
the elements of the sequence {cn}∞n=1 also satisfy the additional property

(4.4)
A√

1−A2
< c2n−� <

C√
1− C2

<
D√

1−D2
< c2n−1+� <

B√
1−B2

,

for (1 ≤ n ≤ N/2 and � = 0) or (1 ≤ n ≤ N/2 and � = 1).
Then the zeros of Wn, 1 ≤ n ≤ N , stay within (A,C) ∪ (D,B).

Proof. From Theorem 4.1 the zeros of Wn, 1 ≤ n ≤ N are all inside (A,B). Since

W1(x) = x− c1
√
1− x2, from (4.4),

(−1)�+1W1(C) > 0 and (−1)�+1W1(D) > 0.

Thus, the single zero of W1 stays within (A,C) ∪ (D,B).
Since

(−1)�[C − c2
√
1− C2] > 0 and (−1)�[D − c2

√
1−D2] > 0,

we now obtain from (3.2) that

(−1)1W2(C) = (−1)�[C − c2
√
1− C2](−1)�+1W1(C)− (−1)1d2 > 0,

(−1)1W2(D) = (−1)�[C − c2
√
1−D2](−1)�+1W1(D)− (−1)1d2 > 0.

Thus, together with the fact that the zeros of W1 and W2 interlace, we conclude
that the zeros of W2 stay within (A,C) ∪ (D,B).

We continue the proof by induction. Suppose that for a k ≥ 1 the zeros of W2k−1

and W2k stay within (A,C) ∪ (D,B) and that

(−1)�+kW2k−1(C) > 0, (−1)�+kW2k−1(D) > 0

and
(−1)kW2k(C) > 0, (−1)kW2k(D) > 0.

Since

(−1)�+1(C − c2k+1

√
1− C2) > 0 and (−1)�+1(D − c2k+1

√
1−D2) > 0,

we obtain from

(−1)�+k+1W2k+1(C)=(−1)�+k+1
[
(C−c2k+1

√
1− C2)W2k(C)−d2k+1W2k−1(C)

]
,

(−1)�+k+1W2k+1(D)=(−1)�+k+1
[
(D−c2k+1

√
1−D2)W2k(D)−d2k+1W2k−1(D)

]
,

that
(−1)�+k+1W2k+1(C) > 0 and (−1)�+k+1W2k+1(D) > 0.

Thus, from the interlacing of the zeros, the zeros of W2k+1 stay within (A,C) ∪
(D,B) also. Now, continuing with

(−1)�(C − c2k+2

√
1− C2) > 0 and (−1)�(D − c2k+2

√
1−D2) > 0,

we obtain from

(−1)k+1W2k+2(C)=(−1)2�+k+1
[
(C−c2k+2

√
1− C2)W2k+1(C)−d2k+2W2k(C)

]
,

(−1)k+1W2k+2(D)=(−1)2�+k+1
[
(D−c2k+2

√
1−D2)W2k+1(D)−d2k+2W2k(D)

]
,

that
(−1)k+1W2k+2(C) > 0 and (−1)k+1W2k+2(D) > 0.

From this the zeros of W2k+2 also stay within (A,C) ∪ (D,B). Thus, the proof
follows by induction. �
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We now apply Theorem 4.1 to find good bounds for the extreme zeros of WN

or, equivalently, for the extreme zeros of RN on T. With this purpose we formulate
first the following lemma.

Lemma 4.1. Let a, b ∈ R, 0 < q < 1, and

(4.5) h(x; a, b) =
(
x− a

√
1− x2

)(
x− b

√
1− x2

)
, x ∈ [−1, 1].

Then, the inequality h(x; a, b) ≥ q holds if and only if

(4.6) x ∈
[
−1,

u(−)√
1 + (u(−))2

]
∪
[

u(+)√
1 + (u(+))2

, 1

]
,

where u(±) = u(±)(a, b, q) are the zeros of the polynomial (1.10), as discussed in
Section 1.

Remark 4.1. Recall that for q ∈ [0, 1), u(±) are real and finite, while for q = 1 we
assumed u(±)(a, b, q) = ±∞ when ±(a+ b) ≥ 0. For instance, if a+ b > 0, then

u(−) =
ab− 1

a+ b
, u(+) = +∞.

so the set (4.6) is reduced to the single, leftmost interval. Similar analysis is valid
for a+ b < 0.

Proof. Observe that h(±1; a, b) = 1, so the endpoints of [−1, 1] are always in the
solution set of the inequality h(x; a, b) ≥ q. Consider now x ∈ (−1, 1), and make in
h the change of variables x = cos(θ/2), θ ∈ (0, 2π):

h(cos θ/2; a, b) = sin2 (θ/2) (cot (θ/2)− a) (cot (θ/2)− b) .

Hence, using the basic identity sin2 +cos2 = 1 we conclude that the inequality
h(cos θ/2; a, b) ≥ q is equivalent to(

cot (θ/2)− a
)(

cot (θ/2)− b
)
≥ q

(
cot2 (θ/2) + 1

)
.

This is a quadratic inequality in u = cot(θ/2): (u− a)(u− b) ≥ q(u2 + 1), that is,
P (u) ≥ 0, where P is the polynomial defined in (1.10). Notice that the discriminant
D(q, a, b) = (a+b)2−4(1−q)(ab−q) is a quadratic polynomial in q with the negative
leading coefficient, and both D(0, a, b) ≥ 0 and D(1, a, b) ≥ 0, so that D(q, a, b) ≥ 0
for all 0 < q < 1.

Since the leading coefficient of P is positive, we conclude that P (u) ≥ 0 when
either u ≤ u(−) or u ≥ u(+), where u(−) ≤ u(+). It remains to use the monotonicity
of cos(θ/2) and the identity

x =
u√

1 + u2

to finish the proof. �
Theorem 4.3. Let N ≥ 2 and let {qn+1}N−1

n=1 be a finite scaling sequence for the

chain sequence {dn+1}N−1
n=1 ; see Definition 1.1. Set

(4.7) AN = min
2≤n≤N

u
(−)
n√

1 +
(
u
(−)
n

)2 , BN = max
2≤n≤N

u
(+)
n√

1 +
(
u
(+)
n

)2 ,
where u

(±)
n were defined in (1.11).

Then the zeros of WN lie in (AN , BN ) and consequently, the zeros of RN lie
within the open arc A

(
2 arccos(BN ), 2 arccos(AN )

)
.
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Proof. Given a finite positive chain sequence {d̂n+1}N−1
n=1 , the comparison test [6,

Theorem 5.7] assures that if

(4.8) 0 < dn+1(x) ≤ d̂n+1, n = 1, 2, . . . , N − 1,

then {dn+1(x)}N−1
n=1 is also a finite positive chain sequence. Taking d̂n+1 = dn+1/

qn+1, n = 1, 2, . . . , N − 1, then from the definition (4.1) it follows that (4.8) is
equivalent to the inequality

(4.9) h(x; cn, cn+1) ≥ qn+1, 1 ≤ n ≤ N − 1,

with h defined in (4.5). Assume first that qn+1 < 1.
Applying Lemma 4.1 we conclude that with the definitions given in the state-

ment of the theorem, {dn+1(AN )}N−1
n=1 and {dn+1(BN )}N−1

n=1 are finite positive chain
sequences, or in other words, condition b) of Theorem 4.1 holds.

It is also easy to check that

(u
(+)
n+1 − cn)(cn − u

(−)
n+1) =

qn+1

1− qn+1
(1 + c2n)

and
(u

(+)
n+1 − cn+1)(cn+1 − u

(−)
n+1) =

qn+1

1− qn+1
(1 + c2n+1),

for n = 1, 2, . . . , N − 1. Since u
(+)
n+1 > u

(−)
n+1, we conclude that u

(−)
n+1 < cn, u

(−)
n+1 <

cn+1, u
(+)
n+1 > cn and u

(+)
n+1 > cn+1 for 1 ≤ n ≤ N − 1. Direct calculation shows

that the values obtained for AN and BN also satisfy part a) of Theorem 4.1.
Finally, we can use Remark 4.1 to conclude that the theorem also remains valid

when qn+1 = 1. �
As follows from the proof of Theorem 4.3, the smaller the scaling sequence {qn+1}

is, the tighter the bounds AN and BN are. This is easier to observe when the
measure is real-symmetric (that is, all its Verblunsky coefficients are real and all
values cn = 0); in this case

u
(−)
n+1 = −

√
qn+1√

1− qn+1
and u

(+)
n+1 =

√
qn+1√

1− qn+1
.

Combining it with Theorem 3.1 we see that for such measures the existence of
a scaling sequence {qn+1}∞n=1 such that qn+1 < q < 1, n ≥ 1, implies that the
measure lives inside a symmetric arc and its support has a gap in a neighborhood
of z = 1. Examples of measures with such a property were given in [32] by means
of the Delsarte-Genin transformation and an additional scaling parameter.

It is convenient to specify the statement of Theorem 4.3 for the case of the trivial
scaling sequence qn+1 = 1, 1 ≤ n ≤ N−1. Recall that by the definition in Section 1,

±(cn + cn+1) ≥ 0 ⇒ u
(±)
n+1 = u(±)(cn, cn+1, 1) = ±∞.

It means that if at least for one n ∈ {1, . . . , N − 1}, cn + cn+1 ≥ 0, the value of
BN in (4.7) is 1; analogously, if at least for one n ∈ {1, . . . , N − 1}, cn + cn+1 ≤ 0,
AN = −1. We can restate it as the following corollary:

Corollary 4.4. In the conditions of Theorem 4.3 take qn+1 = 1, 1 ≤ n ≤ N − 1.
Then

(a) If cn+cn+1 > 0 for all n = 1, . . . , N−1, then the zeros of WN lie in (AN , 1)
and the zeros of RN lie within the open arc A(0, 2 arccos(AN )), with AN

defined in (4.7).
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(b) If cn + cn+1 < 0 for all n = 1, . . . , N − 1, then the zeros of WN lie in
(−1, BN ) and the zeros of RN lie within the open arc A(2 arccos(BN ), 2π),
with BN defined in (4.7).

Notice that if cn + cn+1 changes sign, the statement of Corollary 4.4 becomes
trivial.

We can formulate a somewhat weaker form of Theorem 4.3 by observing that
either

x− cn
√
1− x2 ≤ −

√
q
(1,N)
n , 1 ≤ n ≤ N,

or

x− cn
√
1− x2 ≥

√
q
(1,N)
n , 1 ≤ n ≤ N,

for x ∈ [−1, 1] are sufficient for (4.9). Here, q
(1,N)
1 = q2, q

(1,N)
n = max{qn, qn+1},

2 ≤ n ≤ N − 1 and q
(1,N)
N = qN . These inequalities are equivalent to

(4.10) 2 cot2(θ/4)− 2cn cot(θ/4) ≤
(
1−

√
q
(1,N)
n

)
(1 + cot2(θ/4)), 1 ≤ n ≤ N,

and

(4.11) 2 cot2(θ/4)− 2cn cot(θ/4) ≥
(
1 +

√
q
(1,N)
n

)
(1 + cot2(θ/4)), 1 ≤ n ≤ N,

with x = cos(θ/2). With similar manipulations as in the proof of Theorem 4.3, we
get:

Theorem 4.5. For N ≥ 2, let {qn+1}N−1
n=1 be a scaling sequence for a finite positive

chain sequence {dn+1}N−1
n=1 , and {cn}N−1

n=1 an arbitrary finite real sequence. Define

q
(1,N)
1 = q2, q(1,N)

n = max{qn, qn+1}, 2 ≤ n ≤ N − 1, and q
(1,N)
N = qN ,

as well as

(4.12) u1,n =
cn +

√
c2n + (1− q

(1,N)
n )

1 +

√
q
(1,N)
n

and v1,n =
1 +

√
q
(1,N)
n

−cn +

√
c2n + (1− q

(1,N)
n )

.

If

(4.13) AN = min
1≤n≤N

u2
1,n − 1

u2
1,n + 1

, BN = max
1≤n≤N

v21,n − 1

v21,n + 1
,

then the zeros of WN , generated by (3.2), lie in (AN , BN ) and the zeros of RN lie
within the open arc

A(2 arccos(BN ), 2 arccos(AN )).

Remark 4.2. Considering the behavior of the function x− cn
√
1− x2, the solutions

for u1,n in Theorem 4.5 are obtained from (4.10) and the solutions for v1,n are
obtained from (4.11).

Finally, specifying Theorem 4.5 for the trivial scaling sequence we obtain:

Corollary 4.6. The assertion of Theorem 4.5 is true if we take

u1,n =
cn + |cn|

2
and v1,n =

2

−cn + |cn|
.
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5. Bounds for the support of the measure

Now by making n → ∞ and considering the appropriate infinite positive chain

sequence {d̂n+1}∞n=0 we can combine Theorem 4.3 (for bounds for the zeros of Wn

and Rn) and Theorem 2.1 in order to establish some results about the support of
the measure μ(0; .) from its (cn, dn)-parametrization.

Theorem 5.1. Given the real sequence {cn}∞n=1 and the non-SP positive chain
sequence {dn+1}∞n=1, let μ(t; .), 0 ≤ t < 1, be the corresponding family of posi-
tive measures (2.5). Also, let {qn+1}∞n=1 be a scaling sequence for {dn+1}∞n=1; see
Definition 1.1. Set AN and BN as in (4.7), that is,

AN = min
2≤n≤N

u
(−)
n√

1 +
(
u
(−)
n

)2 , BN = max
2≤n≤N

u
(+)
n√

1 +
(
u
(+)
n

)2 ,
where u

(±)
n were defined in (1.11). Then

supp(μ(0; ·)) ⊆ A[ϑ1, ϑ2],

where

ϑ1 = 2 lim
N→∞

arccos(BN ), ϑ2 = 2 lim
N→∞

arccos(AN ).

Clearly, in Theorem 5.1, {BN} (resp., {AN}) is an increasing (resp., decreasing)
sequence, thus the limits exist.

Theorem 1.1 now is a direct corollary of Theorem 5.1. Indeed, if {cn} and {dn+1}
are such that

un ≥ cot(ϑ2/2) and vn ≤ cot(ϑ1/2), n ≥ 2,

then by Theorem 5.1 the zeros of Rn, n ≥ 1, stay within A(ϑ1, ϑ2). Hence, by
Theorem 2.1 the support of the associated measure μ(0; .) also belongs to the closed
arc A[ϑ1, ϑ2]. This concludes the proof.

Similarly, with the use of Theorem 4.5 we have the following.

Theorem 5.2. Given the real sequence {cn}∞n=1 and the non-SP positive chain
sequence {dn+1}∞n=1, let μ(0; .) be the corresponding positive measure as given by
(2.5) and (2.6). If {qn+1}∞n=1 is a scaling sequence for {dn+1}∞n=1, define

q
(1)
1 = q2, q(1)n = max{qn, qn+1}, n ≥ 2,

as well as

u1,n =
cn +

√
c2n + (1− q

(1)
n )

1 +

√
q
(1)
n

and v1,n =
1 +

√
q
(1)
n

−cn +

√
c2n + (1− q

(1)
n )

.

Then

supp(μ(0; ·)) ⊆ A[ϑ1, ϑ2],

where

cot(ϑ1/4) = sup
n≥1

v1,n and cot(ϑ2/4) = inf
n≥1

u1,n.

The following corollary to Theorem 1.1 is a consequence of Corollary 4.4.
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Corollary 5.3. Given the set of complex numbers {αn}∞n=0, where |αn| < 1, n ≥ 0,
let μ be the nontrivial positive measure on the unit circle for which {αn}∞n=0 are
the associated Verblunsky coefficients. Let the real sequence {cn} and the positive
chain sequence {dn+1} be given by (2.3)–(2.4).

a) Let cn + cn+1 > 0, n ≥ 1. For a given ϑ2 such that 0 < ϑ2 ≤ 2π, if

cot(ϑ2/2) ≤
cncn+1 − 1

cn + cn+1
, n ≥ 1,

then the support of μ lies within the closed arc A[0, ϑ2].

b) Let cn + cn+1 < 0, n ≥ 1. For a given ϑ1 such that 0 ≤ ϑ1 < 2π, if

cncn+1 − 1

cn + cn+1
≤ cot(ϑ1/2), n ≥ 1,

then the support of μ lies within the closed arc A[ϑ1, 2π].

Using Theorem 5.2 we can also state the following.

Theorem 5.4. Assume given a nontrivial positive measure on T whose Verblunsky
coefficients are {αn}∞n=0, with |αn| < 1, n ≥ 0, and whose (cn, dn)-parametrization

is given by (2.3)–(2.4). If {qn+1}∞n=1 is a scaling sequence for {dn+1}N−1
n=1 , define

q
(1)
1 = q2, q(1)n = max{qn, qn+1}, n ≥ 2.

For 0 ≤ ϑ1 < ϑ2 ≤ 2π, if

cot(ϑ2/4) ≤
cn +

√
c2n + (1− q

(1)
n )

1 +

√
q
(1)
n

and
1 +

√
q
(1)
n

−cn +

√
c2n + (1− q

(1)
n )

≤ cot(ϑ1/4),

for n ≥ 1, then the support of μ(0; .) stays within the closed arc A[ϑ1, ϑ2].

We finish this section providing a proof of Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2. Let us consider the measure μ̃ obtained from μ by a rotation
of angle 2π−ϑ2. That is, μ̃(z) = μ(ze−i(2π−ϑ2)). Hence, if μ has a gap in A(ϑ1, ϑ2),
then the support of the measure μ̃ is in A[0, 2π + ϑ1 − ϑ2].

It is known that the Verblunsky coefficients of μ̃ in terms of the Verblunsky
coefficients μ are given by

α̃n = e−i(n+1)(2π−ϑ2)αn = ei(n+1)ϑ2αn, n ≥ 0.

Hence, if Φ̃n are the OPUC with respect to the measure μ̃, then by Theorem 3.1
(part b)) the zeros of the polynomials

R̃n(z) =

∏n
j=1

[
1− τ̃j−1α̃j−1

]
∏n

j=1

[
1− Re(τ̃j−1α̃j−1)

] zΦ̃n(z)− τ̃nΦ̃
∗
n(z)

z − 1
, n ≥ 1,

lie within the arc A(0, 2π+ ϑ1 − ϑ2). From the results given in Section 2, τ̃n above
are such that

τ̃0 =
Φ̃0(1)

Φ̃∗
0(1)

= 1 and τ̃n =
Φ̃n(1)

Φ̃∗
n(1)

= τ̃n−1
1− τ̃n−1α̃n−1

1− τ̃n−1α̃n−1
, n ≥ 1.(5.1)
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Moreover, the sequence {R̃n} satisfies the three-term recurrence formula

R̃n+1(z) =
[
(1 + ic

(ϑ2)
n+1)z + (1− ic

(ϑ2)
n+1)

]
R̃n(z)− 4d

(ϑ2)
n+1zR̃n−1(z),

with R̃0(z) = 1 and R̃1(z) = (1 + ic
(ϑ2)
1 )z + (1− ic

(ϑ2)
1 ), where

c(ϑ2)
n =

− Im(τ̃n−1α̃n−1)

1− Re(τ̃n−1α̃n−1)
and d

(ϑ2)
n+1 = (1− gn)gn+1,

for n ≥ 1, with

gn =
1

2

∣∣1− τ̃n−1α̃n−1

∣∣2[
1− Re(τ̃n−1α̃n−1)

] , n ≥ 1.

With τ
(ϑ2)
n−1 = einϑ2 τ̃n−1, n ≥ 1, we easily observe that τ̃n−1α̃n−1 = τ

(ϑ2)
n−1αn−1,

n ≥ 1. Hence, the coefficients c
(ϑ2)
n and d

(ϑ2)
n+1 can be given as in the theorem, and

the recurrence formula (5.1) for τ̃n leads to the recurrence formula for τ
(ϑ2)
n given

in the theorem.
Hence, the theorem follows from Theorem 4.1. �

6. Further results about scaling sequences

As it follows from our previous considerations, scaling sequences {qn+1} play a
fundamental role in the expression for the bounds for the extreme zeros. Recall that
qn+1 ≡ 1 is always a scaling sequence. A natural question is: Which other constant
sequences are scaling sequences for the given positive chain sequence? This can be
answered in terms of the zeros of the symmetric polynomials Wn generated by the
recurrence relation (3.2) with cn ≡ 0.

Namely, a direct consequence of Theorem 4.1 is the following result:

Lemma 6.1. Let N ≥ 2 and let {dn+1}N−1
n=1 be a finite positive chain sequence.

Then the constant sequence {qn+1=q}N−1
n=1 is a finite scaling sequence for {dn+1}N−1

n=1

if and only if

q > x2
N,1.

Here, xN,1 is the largest zero of the symmetric polynomial WN obtained from the
three-term recurrence formula

Wn+1(x) = xWn(x)− dn+1Wn−1(x), n = 1, 2, . . . , N − 1,

with W0(x) = 1 and W1(x) = x.

Applying this lemma with {dn+1} = {1/4} (that is, Wn are the Chebyshev
polynomial of the second kind), we can conclude that the largest finite constant

positive chain sequence {d(N−1)}N−1
n=1 of N − 1 elements is such that

d(N−1) =
1

[4 cos2(π/(N + 1)) + ε]
, ε > 0,

which was already established by Ismail and Li [20].
We can extend the above lemma to infinite positive chain sequences {dn+1}∞n=1

as follows.
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Lemma 6.2. Let {dn+1}∞n=1 be a positive chain sequence. Then the constant se-
quence {qn+1 = q}∞n=1 is a scaling sequence for {dn+1}∞n=1 if and only if

q ≥ ξ2 = lim
n→∞

x2
n,1,

where xn,1 is the largest zero of the symmetric polynomial Wn given by the three-
term recurrence formula

Wn+1(x) = xWn(x)− dn+1Wn−1(x), n ≥ 1,

with W0(x) = 1 and W1(x) = x.

We finish this section with an example of a positive chain sequence that we will
use in Section 7. For λ ≥ −1/2, the sequence

(6.1) d
(λ)
1,n = d

(λ)
n+1 =

1

4

n(n+ 2λ+ 1)

(n+ λ)(n+ λ+ 1)
, n ≥ 1,

is a positive chain sequence. We have

d
(λ)
1,n = (1−mn−1)mn = (1−M1,n−1)M1,n, n ≥ 1,

where

mn =
n

2(n+ λ+ 1)
and M1,n =

n+ 2λ+ 1

2(n+ λ+ 1)
, n ≥ 0,

are the minimal and maximal parameter sequences of {d(λ)1,n}∞n=1, respectively (see

[7]). Observe that for λ = −1/2 these parameter sequences coincide, so {d(−1/2)
1,n }∞n=1

is a single parameter positive chain sequence.
Polynomials {Wn}∞n=0 generated by W0(x) = 1, W1(x) = x and

Wn+1(x) = xWn(x)− d
(λ)
n+1Wn−1(x), n ≥ 1,

coincide with the monic ultraspherical (or Gegenbauer) polynomials {C(λ+1)
n },

which for λ = −1/2 are the monic Legendre polynomials.
We also have

1

4
− d

(λ)
n+1 =

1

4

λ(λ+ 1)

(n+ λ)(n+ λ+ 1)
, n ≥ 1,

and

d
(−1/2)
n+1 − d

(λ)
n+1 =

1

4

1/4

(n2 − 1/4)
+

1

4

λ(λ+ 1)

(n+ λ)(n+ λ+ 1)

=
n

4

n(λ+ 1/2)2 + (λ+ 1/2)/2

(n2 − 1/4)(n+ λ)(n+ λ+ 1)
, n ≥ 1.

Thus, we can state the following.

Lemma 6.3. Let λ > −1/2 and N ≥ 2. Then {[cos(π/(2N))]−2d
(−1/2)
n+1 }N−1

n=1 is a
finite positive chain sequence such that

d
(λ)
n+1 < d

(−1/2)
n+1 <

1

cos2(π/(2N))
d
(−1/2)
n+1 <

1

(x
(N)
1 )2

d
(−1/2)
n+1 , n = 1, 2, . . . , N − 1.

Here, x
(N)
1 is the largest zero of the N th degree Legendre polynomial.

Proof. By Lemma 6.1, q is the constant finite parameter sequence for {d(−1/2)
n+1 }N−1

n=1

if q > [x
(N)
1 ]2. It remains to use that x

(N)
1 < cos(π/(2N)); see [29, Thm. 6.21.3]. �
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7. Examples

Example 1 (Geronimus polynomials). Let α ∈ D, and consider a measure μ(α) on
T with constant Verblunsky coefficients,

αn = −Φ
(α)
n+1(0) = α, n ≥ 0.

This case was studied by Geronimus in [15]; it is known (see also [17], [18] and
[24, p. 83]) that for Re(α) + |α|2 ≤ 0, supp(μ(α)) = A[θ|α|, 2π − θ|α|], while for

Re(α) + |α|2 > 0, supp(μ(α)) = A[θ|α|, 2π − θ|α|] ∪ {wα}, with

(7.1) θ|α| = 2arcsin(|α|) and wα =
1 + α

1 + α
.

Additionally,

dμ(α)(eiθ) =

√
cos2(θ|α|/2)− cos2(θ/2)

2π|1 + α| sin((θ − ϑα)/2)
dθ + tαδwα

,

where

tα = max

{
2(Re(α) + |α|2)

|1 + α|2 , 0

}
.

Let Im(α) 
= 0, and denote ϑα := arg(wα) ∈ (−π, π). Consider the measure μ
obtained by rotating μ(α) by the angle −ϑα:

μ(z) = μ(α)(wαz).

It is well known that the Verblunsky coefficients associated with μ are αn = wn+1
α α,

n ≥ 0.
The support of the measure μ has gaps in A(0, θ|α|−ϑα) and A(2π−θ|α|−ϑα, 2π).

In other words, the support of μ(0; .) (see (2.5)) is the arc A[θ|α|−ϑα, 2π−θ|α|−ϑα].
Since sin(θ|α|/2) = |α| and sin(ϑα/2) = − Im(α)/|1 + α|, we easily obtain that

cot
(
(θ|α| − ϑα)/2

)
=

√
1− |α|2

(
1 + Re(α)

)
− |α| Im(α)

|α|
(
1 + Re(α)

)
+
√
1− |α|2| Im(α)

=

[√
1− |α|2

(
1 + Re(α)

)
− |α| Im(α)

][
|α|

(
1 + Re(α)

)
−
√
1− |α|2| Im(α)

]
|α|2

(
1 + Re(α)

)2 − (1− |α|2)|
(
Im(α)

)2
and

cot
(
(2π − θ|α| − ϑα)/2

)
=

√
1− |α|2

(
1 + Re(α)

)
+ |α| Im(α)

−|α|
(
1 + Re(α)

)
+
√
1− |α|2| Im(α)

=

[√
1− |α|2

(
1 + Re(α)

)
+ |α| Im(α)

][
|α|

(
1 + Re(α)

)
+
√

1− |α|2| Im(α)
]

−|α|2
(
1 + Re(α)

)2
+ (1− |α|2)|

(
Im(α)

)2 .

With the observation
(
1 + Re(α)

)2
+
(
Im(α)

)2
= |1 + α|2, we can write

(7.2) cot
(
(θ|α| − ϑα)/2

)
=

− Im(α)
(
1 + Re(α)

)
+ |α|

√
1− |α|2 |1 + α|2(

1 + Re(α)
)2 − (1− |α|2)| |1 + α|2

and

(7.3) cot
(
(2π − θ|α| − ϑα)/2

)
=

− Im(α)
(
1 + Re(α)

)
− |α|

√
1− |α|2 |1 + α|2(

1 + Re(α)
)2

+ (1− |α|2)| |1 + α|2
.
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In order to apply Theorem 1.1 we need to calculate the values of {cn}∞n=1 and
{dn+1}∞n=1 = {(1 − gn)gn+1}∞n=1 associated with the measure μ(z) = μ(α)(wαz)
using (2.3) and (2.4). From the recurrence relation for τn given by (2.2), we easily
verify that τn = w−n

α , n ≥ 0. From this,

cn =
− Im(α)

1 + Re(α)
, n ≥ 1,

and

dn+1 =
(
1− 1− |α|2

2
[
1 + Re(α)

]) 1− |α|2
2
[
1 + Re(α)

] =
(1− |α|2)|1 + α|2

4
[
1 + Re(α)

]2 , n ≥ 1.

Both the chain sequence {dn+1}∞n=1 and the parameter sequence {gn+1}∞n=0, with

gn =
1− |α|2

2
[
1 + Re(α)

] , n ≥ 1,

are constant sequences. Thus, from Wall’s criteria (see [6, p. 101]) {gn+1}∞n=0 is not
a maximal parameter sequence if and only if gn < 1/2, n ≥ 1 or, equivalently, when
Re(α) + |α|2 > 0, which agrees with the criterion of existence of a pure point (at
z = 1) in the rotated measure μ.

Observe that the constant chain sequence {dn+1}∞n=1 is such that dn+1 ≤ 1/4,
n ≥ 1. Hence,

qn+1 =
(1− |α|)2|1 + α|2(

1 + Re(α)
)2 , n ≥ 1,

is a constant scaling sequence for {dn+1}∞n=1. Since for n ≥ 1,

cncn+1 + 1 =
|1 + α|2(

1 + Re(α)
)2 ,√

(cn + cn+1)2 − 4(1− qn+1)(cncn+1 − qn+1) =
√
4qn+1(cncn+1 + 1− qn+1)

= 2
√
(1− |α|2)|α| |1 + α|2(

1 + Re(α)
)2 .

Using the definition (1.11) and formulas (7.2)–(7.3) we obtain that

u
(−)
n+1 = u(−)(cn, cn+1, qn+1) = cot

(
(2π − θ|α| − ϑα)/2

)
,

u
(+)
n+1 = u(+)(cn, cn+1, qn+1) = cot

(
(θ|α| − ϑα)/2

)
.

In other words, the bounds given by Theorem 1.1 are sharp.

Example 2. Let μ(b1,b2,c) be the probability measure on the unit circle for which
the associated Verblunsky coefficients are given by

α2n =
b1 + ic

1 + ic
, α2n+1 =

b2 − ic

1 + ic
, n ≥ 0.

Here, b1, b2 and c are real, and −1 < b1 < 1 and −1 < b2 < 1.
We can apply the results from [25, Chapter 11] in order to assert that the abso-

lutely continuous part of the measure μ(b1,b2,c) is in A[ϑ+
1 , ϑ

−
1 ] ∪ A[ϑ−

2 , ϑ
+
2 ], where

0 ≤ ϑ+
1 < ϑ−

1 ≤ π, 2π − ϑ+
2 = ϑ+

1 = ϑ+(b1, b2, c) and 2π − ϑ−
2 = ϑ−

1 = ϑ−(b1, b2, c),
with

ϑ+(b1, b2, c) = arccos
(c2 − b1b2 + (1− b21)

1/2(1− b22)
1/2

c2 + 1

)
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and

ϑ−(b1, b2, c) = arccos
(c2 − b1b2 − (1− b21)

1/2(1− b22)
1/2

c2 + 1

)
.

Moreover, the absolutely continuous part of μ(b1,b2,c) is

dμ(b1,b2,c)
ac (eiθ) = const

√
(1− b21)(1− b22)− [c2 − b1b2 − (c2 + 1) cos θ]2

| sin θ + c(1− cos θ)| dθ.

From [25] we also have that if b2 + b1 > 0, then μ(b1,b2,c) has a pure point at z = 1;
if b2 − b1 > 0, then μ(b1,b2,c) has a pure point at eiϑ(−c), where

eiϑ(c) =
c2 − 1

c2 + 1
+ i

2c

c2 + 1
.

Now we consider the polynomials Rn given by (2.1). It follows from parts a) and
b) of Theorem 3.1 that the polynomial Rn does not have any zeros outside the arc
A[ϑ+

1 , ϑ
+
2 ]. From part c) of Theorem 3.1 we conclude that there is at most one zero

of Rn in the arc A[ϑ−
1 , ϑ

−
2 ] if b2 − b1 ≤ 0, and at most two zeros of Rn in A[ϑ−

1 , ϑ
−
2 ]

if b2 − b1 > 0.
Now let us look at the (cn, dn)-parametrization of μ(b1,b2,c), and at the corre-

sponding bounds for the zeros of Rn.
From (2.2), τ2n = 1 and τ2n+1 = 1+ic

1−ic , n ≥ 0. Hence, by (2.3) and (2.4),

cn = (−1)nc, dn+1 = (1− gn)gn+1, n ≥ 1,

where

g2n−1 =
1

2
(1− b1), g2n =

1

2
(1− b2), n ≥ 1.

From Corollary 4.2 we can say that the zeros of Rn are outside the arc A
(
ϑ(|c|),

2π−ϑ(|c|)
)
. This is in some sense a sharp result because one of the extreme points

of A
(
ϑ(|c|), 2π − ϑ(|c|)

)
coincides with the position of the (possible) pure point of

μ(b1,b2,c) at eiϑ(−c). Observe that when b1 = b2 = b, then eiϑ(−c) also coincide with

eiϑ
−(b,b,c) or ei[2π−ϑ−(b,b,c)].
From Theorem 1.1 (see also Theorem 5.1) we have

supp(μ(b1,b2,c) − μ(b1,b2,c)({1})δ1) ⊆ A
[
ϑ1, ϑ2

]
,

where ϑ1 and ϑ2 are such that cot(ϑ2/2)= inf
1≤n≤∞

un+1 and cot(ϑ1/2)= sup
1≤n≤∞

vn+1.

Clearly,

u
(−)
n+1 = −

√
c2 + qn+1√
1− qn+1

, u
(+)
n+1 =

√
c2 + qn+1√
1− qn+1

, n ≥ 1.

To be able to achieve any reasonable results from above, one still needs to find a

dominant chain sequence d̂n+1 such that qn+1 = dn+1/d̂n+1 < 1, n ≥ 1, is a scaling
sequence for {dn+1}.

In the particular case when b1 = b2 = b, we have dn+1 = (1 − b2)/4 and by

choosing d̂n+1 = 1/4 we have

u
(−)
n+1 = −

√
c2 + 1− b2

|b| , u
(+)
n+1 =

√
c2 + 1− b2

|b| , n ≥ 1.

This gives the optimal result, where

ϑ2 = 2π − ϑ+(b, b, c) and ϑ1 = ϑ+(b, b, c).
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When b1 = b2 does not hold, for example, when |b1| ≥ 1/2, |b2| ≥ 1/2 and b1b2 > 0,
we still have dn+1 < 1/4. Thus, we obtain for ϑ1, ϑ2,

cos(ϑ1/2) = max
{√

c2 + (1 + b1)(1− b2)√
c2 + 1

,

√
c2 + (1− b1)(1 + b2)√

c2 + 1

}
and ϑ2 = 2π − ϑ1.

Example 3. For b = λ+ iη, λ > −1/2, η ∈ R, we consider the nontrivial positive
measure μ(b) on the unit circle given by

dμ(b)(eiθ) = e−η θ [sin2(θ/2)]λdθ,

where λ > −1/2. It was shown in [28] that the associated Verblunsky coefficients
are

α
(b)
n−1 = − (b)n

(b+ 1)n
, n ≥ 1.

As already established in [7], the polynomials {Rn} constructed by (2.1) satisfy the
three-term recurrence formula (1.6), with

cn =
η

n+ λ
, dn+1 = d

(λ)
n+1 =

1

4

n (n+ 2λ+ 1)

(n+ λ)(n+ λ+ 1)
, n ≥ 1.

Observe that the positive chain sequence {dn+1}∞n=1 appearing here coincides with
that in (6.1), corresponding to the ultra spherical polynomials.

Since supp(μ(b)) = T, the accumulation set of zeros of Rn (as n → ∞) is the
whole unit circle. Let us use the results from Section 4 in order to find estimates
for the bounds of the extreme zeros of RN for any fixed N ≥ 2.

If λ ≥ 0, then dn+1 ≤ 1/4, and a finite positive chain sequence {d̂n+1}N−1
n=1

dominating {dn+1}N−1
n=1 is

(7.4) d̂n+1 = d(N−1) =
1

4 cos2(π/(N + 1)) + ε
, ε > 0, n = 1, 2, . . . , N − 1

(see [20]), which gives us the scaling sequence for {dn+1}N−1
n=1 :

(7.5) qn+1 = [cos2(π/(N + 1)) + ε]
n(n+ 2λ+ 1)

(n+ λ)(n+ λ+ 1)
, n = 1, 2, . . . , N − 1.

The results given in Tables 1, 2 are obtained as an application of Theorem 4.3,
when the pair (λ, η) are, respectively, (1, 1) and (10, 0.01). The information within
the brackets is to indicate for what value of n the

min{u(−)
n /

√
1 + (u

(−)
n )2 : 2 ≤ n ≤ N} and max{u(+)

n /

√
1 + (u

(+)
n )2 : 2 ≤ n ≤ N}

are attained. For example, the line corresponding to N = 30 in Table 1 informs us

that B30 = max{u(+)
n /

√
1 + (u

(+)
n )2 : 2 ≤ n ≤ 30} = u

(+)
24 /

√
1 + (u

(+)
24 )2.

Clearly, in both tables (1 and 2), 2 arccos(BN ) < θN,1 and 2 arccos(AN ) > θN,N

as expected.
The sequence in (7.5) is increasing in n, while for η > 0 the sequence {cn}N−1

n=1 is
decreasing in n. Thus, for h in (4.9) we have that h(x; cn, cn+1) < h(x; cn−1, cn) for

−1 < x < cos(ϑ/2), where cot(ϑ/2) = cn. Together with our choice of {qn+1}N−1
n=1

we see that {u(−)
n+1}N−1

n=1 in Theorem 4.3 is decreasing in n. This is confirmed
from the information in brackets in the column associated with ≈ 2 arccos(AN ) in
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Table 1. Information on the bounds for the extreme zeros eiθN,1

and eiθN,N of R
(b)
N when b = 1 + i.

N ≈ 2 arccos(BN ) ≈ θN,1 ≈ 2 arccos(AN ) ≈ θN,N

10 0.4639446 0.4972376 5.4352508 5.1944808

(u
(+)
8 ) (u

(−)
10 )

15 0.3198603 0.3499643 5.7029950 5.5126714

(u
(+)
12 ) (u

(−)
15 )

30 0.1653904 0.1855341 5.9853660 5.8730792

(u
(+)
24 ) (u

(−)
30 )

50 0.1005688 0.1141174 6.1025923 6.0306959

(u
(+)
39 ) (u

(−)
50 )

Table 2. Information on the bounds for the extreme zeros eiθN,1

and eiθN,N of R
(b)
N when b = 10 + i 0.01.

N ≈ 2 arccos(BN ) ≈ θN,1 ≈ 2 arccos(AN ) ≈ θN,N

10 1.2564079 1.4994620 5.0247247 4.7814017

(u
(+)
10 ) (u

(−)
10 )

15 0.9620515 1.1898228 5.3195004 5.0914664

(u
(+)
15 ) (u

(−)
15 )

30 0.5731032 0.7410146 5.7090691 5.5409545

(u
(+)
30 ) (u

(−)
30 )

50 0.3746598 0.4949570 5.9078531 5.7874076

(u
(+)
50 ) (u

(−)
50 )

Tables 1 and 2. Therefore, when η > 0 and λ ≥ 0, the extreme zero zN,N = eiθN,N

of RN (N ≥ 2) is such that

cot(θN,N/2) < u
(−)
N =

2(cN−1cN − qN )

(cN−1 + cN ) +
√
(cN−1 + cN )2 − 4(1− qN )(cN−1cN − qN )

,

where

qN = [cos2(π/(N + 1)) + ε]
(N − 1)(N + 2λ)

(N + λ− 1)(N + λ)
and cn =

η

n+ λ
, n ≥ 1.

Now, when 0 > λ > −1/2 we have dn+1 > 1/4 and the choice (7.4) for {d̂n+1}N−1
n=1

is not viable. For example, with λ = −1/4 and N = 10 we have q2 = d2/d
(9) =

1.0521448759 . . . . > 1.
Thus, when 0>λ>p− 1/2, by considering the results of Lemma 6.3, we choose

{d̂n+1}N−1
n=1 to be

(7.6) d̂n+1 =
1

cos2(π/(2N))
d
(−1/2)
n+1 , n = 1, 2, . . . , N − 1.

With this choice, the results given in Tables 3 are obtained as an application of
Theorem 4.3, when (λ, η) is (−0.25, 1).
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Table 3. Information on the bounds for the extreme zeros eiθN,1

and eiθN,N of R
(b)
N when b = −0.25 + i.

N ≈ 2 arccos(BN ) ≈ θN,1 ≈ 2 arccos(AN ) ≈ θN,N

10 0.1016913 0.1991716 5.6818261 5.2285409

(u
(+)
4 ) (u

(−)
10 )

15 0.0635237 0.1358499 5.8881850 5.5600926

(u
(+)
4 ) (u

(−)
15 )

30 0.0290353 0.0695512 6.0885290 5.9117387

(u
(+)
7 ) (u

(−)
30 )

50 0.0166939 0.0421377 6.1670558 6.0579734

(u
(+)
11 ) (u

(−)
50 )

With the choice of {d̂n+1}N−1
n=1 as in (7.6), again we observe that {qn+1}N−1

n=1 ,
where

qn+1 = cos2(π/(2N))
(n2 − 1/4)(n+ 2λ+ 1)

n(n+ λ)(n+ λ+ 1)
,

is an increasing sequence as n increase from 1 to N − 1. Consequently, we conclude
that when η > 0 and −1/2 < λ < 0, the extreme zero zN,N = eiθN,N of RN (N ≥ 2)
is such that

cot(θN,N/2) < u
(−)
N =

2(cN−1cN − qN )

(cN−1 + cN ) +
√
(cN−1 + cN )2 − 4(1− qN )(cN−1cN − qN )

,

where

qN = cos2(π/(2N))

(
(N − 1)2 − 1/4

)
(N + 2λ)

(N − 1)(N + λ− 1)(N + λ)
and cn =

η

n+ λ
, n ≥ 1.
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The second author’s research was supported by grants 305073/2014-1 and
475502/2013-2 of CNPq and grant 2009/13832-9 of FAPESP.

This research is also part of the third author’s PhD thesis supported by a grant
from CAPES, Brazil.

Part of this work was carried out during the visit of the first author to the
Department of Applied Mathematics of IBILCE, UNESP. He acknowledges the
hospitality of the hosting department, as well as the financial support of the Special
Visiting Researcher Fellowship 401891/2013-5 of the Brazilian Mobility Program
“Science without borders”.



EXTREME ZEROS OF PARA-ORTHOGONAL POLYNOMIALS 287

References
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