Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Torsion subgroups of rational elliptic curves over the compositum of all cubic fields


Authors: Harris B. Daniels, Álvaro Lozano-Robledo, Filip Najman and Andrew V. Sutherland
Journal: Math. Comp. 87 (2018), 425-458
MSC (2010): Primary 11G05; Secondary 11R21, 12F10, 14H52
DOI: https://doi.org/10.1090/mcom/3213
Published electronically: May 5, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E/\mathbb{Q}$ be an elliptic curve and let $ \mathbb{Q}(3^\infty )$ be the compositum of all cubic extensions of $ \mathbb{Q}$. In this article we show that the torsion subgroup of $ E(\mathbb{Q}(3^\infty ))$ is finite and we determine 20 possibilities for its structure, along with a complete description of the $ \overline {\mathbb{Q}}$-isomorphism classes of elliptic curves that fall into each case. We provide rational parameterizations for each of the 16 torsion structures that occur for infinitely many $ \overline {\mathbb{Q}}$-isomorphism classes of elliptic curves, and a complete list of $ j$-invariants for each of the 4 that do not.


References [Enhancements On Off] (What's this?)

  • [1] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
  • [2] Michael Chou, Torsion of rational elliptic curves over quartic Galois number fields, J. Number Theory 160 (2016), 603-628. MR 3425225, https://doi.org/10.1016/j.jnt.2015.09.013
  • [3] J. E. Cremona, Elliptic curve data, database available at http://homepages.warwick.ac.uk/
    ~masgaj/ftp/data/.
  • [4] C. J. Cummins and S. Pauli, Congruence subgroups of $ {\rm PSL}(2,{\mathbb{Z}})$ of genus less than or equal to 24, Experiment. Math. 12 (2003), no. 2, 243-255. MR 2016709
  • [5] H. Daniels, Á. Lozano-Robledo, J. Morrow, F. Najman, and A.V. Sutherland, Magma scripts related to Torsion subgroups of rational elliptic curves over the compositum of all cubic fields, available at http://math.mit.edu/ drew.
  • [6] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349-366 (German). MR 718935, https://doi.org/10.1007/BF01388432
  • [7] Gerhard Frey and Moshe Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields, Proc. London Math. Soc. (3) 28 (1974), 112-128. MR 0337997
  • [8] Yasutsugu Fujita, Torsion subgroups of elliptic curves with non-cyclic torsion over $ \mathbb{Q}$ in elementary abelian 2-extensions of $ \mathbb{Q}$, Acta Arith. 115 (2004), no. 1, 29-45. MR 2102804, https://doi.org/10.4064/aa115-1-3
  • [9] Yasutsugu Fujita, Torsion subgroups of elliptic curves in elementary abelian 2-extensions of $ \mathbb{Q}$, J. Number Theory 114 (2005), no. 1, 124-134. MR 2163908, https://doi.org/10.1016/j.jnt.2005.03.005
  • [10] Itamar Gal and Robert Grizzard, On the compositum of all degree $ d$ extensions of a number field, J. Théor. Nombres Bordeaux 26 (2014), no. 3, 655-673. MR 3320497
  • [11] Bertram Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409-434 (German). MR 0064771
  • [12] Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Families of elliptic curves over cubic number fields with prescribed torsion subgroups, Math. Comp. 80 (2011), no. 273, 579-591. MR 2728995, https://doi.org/10.1090/S0025-5718-10-02369-0
  • [13] Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Families of elliptic curves over quartic number fields with prescribed torsion subgroups, Math. Comp. 80 (2011), no. 276, 2395-2410. MR 2813367, https://doi.org/10.1090/S0025-5718-2011-02493-2
  • [14] Daeyeol Jeon, Chang Heon Kim, and Euisung Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2) 74 (2006), no. 1, 1-12. MR 2254548, https://doi.org/10.1112/S0024610706022940
  • [15] Daeyeol Jeon, Chang Heon Kim, and Andreas Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith. 113 (2004), no. 3, 291-301. MR 2069117, https://doi.org/10.4064/aa113-3-6
  • [16] S. Kamienny, Torsion points on elliptic curves and $ q$-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221-229. MR 1172689, https://doi.org/10.1007/BF01232025
  • [17] M. A. Kenku, On the number of $ {\bf Q}$-isomorphism classes of elliptic curves in each $ {\bf Q}$-isogeny class, J. Number Theory 15 (1982), no. 2, 199-202. MR 675184, https://doi.org/10.1016/0022-314X(82)90025-7
  • [18] M. A. Kenku, The modular curve $ X_{0}(39)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 21-23. MR 510395, https://doi.org/10.1017/S0305004100055444
  • [19] M. A. Kenku, The modular curves $ X_{0}(65)$ and $ X_{0}(91)$ and rational isogeny, Math. Proc. Cambridge Philos. Soc. 87 (1980), no. 1, 15-20. MR 549292, https://doi.org/10.1017/S0305004100056462
  • [20] M. A. Kenku, The modular curve $ X_{0}(169)$ and rational isogeny, J. London Math. Soc. (2) 22 (1980), no. 2, 239-244. MR 588271, https://doi.org/10.1112/jlms/s2-22.2.239
  • [21] M. A. Kenku, On the modular curves $ X_{0}(125)$, $ X_{1}(25)$ and $ X_{1}(49)$, J. London Math. Soc. (2) 23 (1981), no. 3, 415-427. MR 616546, https://doi.org/10.1112/jlms/s2-23.3.415
  • [22] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125-149. MR 931956
  • [23] Michael Laska and Martin Lorenz, Rational points on elliptic curves over $ {\bf Q}$ in elementary abelian $ 2$-extensions of $ {\bf Q}$, J. Reine Angew. Math. 355 (1985), 163-172. MR 772489, https://doi.org/10.1515/crll.1985.355.163
  • [24] LMFDB Collaboration, The L-functions and modular forms database, available at http://www.lmfdb.org.
  • [25] Álvaro Lozano-Robledo, On the field of definition of $ p$-torsion points on elliptic curves over the rationals, Math. Ann. 357 (2013), no. 1, 279-305. MR 3084348, https://doi.org/10.1007/s00208-013-0906-5
  • [26] Álvaro Lozano-Robledo, Division fields of elliptic curves with minimal ramification, Rev. Mat. Iberoam. 31 (2015), no. 4, 1311-1332. MR 3438391, https://doi.org/10.4171/RMI/870
  • [27] Á. Lozano-Robledo, Uniform boundedness in terms of ramification, preprint, available at http://alozano.clas.uconn.edu/research-articles/.
  • [28] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33-186 (1978). MR 488287
  • [29] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129-162. MR 482230, https://doi.org/10.1007/BF01390348
  • [30] James McKee, Computing division polynomials, Math. Comp. 63 (1994), no. 208, 767-771. MR 1248973, https://doi.org/10.2307/2153297
  • [31] Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437-449 (French). MR 1369424, https://doi.org/10.1007/s002220050059
  • [32] L. J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc. Cambridge Philos. Soc. 21 (1922) 179-192.
  • [33] Filip Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on $ X_1(n)$, Math. Res. Lett. 23 (2016), no. 1, 245-272. MR 3512885
  • [34] Pierre Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, J. Reine Angew. Math. 506 (1999), 85-116. MR 1665681, https://doi.org/10.1515/crll.1999.009
  • [35] H. Poincaré Sur les propriétés arithmétiques des courbes algébriques, J. Math. Pures Appl. Ser 5. 7 (1901), 161-233.
  • [36] Nicholas M. Katz and Serge Lang, Finiteness theorems in geometric classfield theory, Enseign. Math. (2) 27 (1981), no. 3-4, 285-319 (1982). With an appendix by Kenneth A. Ribet. MR 659153
  • [37] Derek J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169
  • [38] Jeremy Rouse and David Zureick-Brown, Elliptic curves over $ \mathbb{Q}$ and 2-adic images of Galois, Res. Number Theory 1 (2015), Art. 12, 34. MR 3500996, https://doi.org/10.1007/s40993-015-0013-7
  • [39] Jean-Pierre Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259-331 (French). MR 0387283
  • [40] Joseph H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094
  • [41] Andrew V. Sutherland, A local-global principle for rational isogenies of prime degree, J. Théor. Nombres Bordeaux 24 (2012), no. 2, 475-485. MR 2950703
  • [42] Andrew V. Sutherland, Computing images of Galois representations attached to elliptic curves, Forum Math. Sigma 4 (2016), 79. MR 3482279, https://doi.org/10.1017/fms.2015.33
  • [43] A.V. Sutherland and D. Zywina, Modular curves of prime power level with infinitely many rational points, to appear in Algebra and Number Theory, available at https://arxiv.org/abs/1605.03988.
  • [44] André Weil, L'arithmétique sur les courbes algébriques, Acta Math. 52 (1929), no. 1, 281-315 (French). MR 1555278, https://doi.org/10.1007/BF02547409
  • [45] Guido Zappa, Remark on a recent paper of O. Ore, Duke Math. J. 6 (1940), 511-512. MR 0002118
  • [46] D. Zywina, On the possible images of mod $ \ell $ representations associated to elliptic curves over $ \mathbb{Q}$, preprint, available at http://arxiv.org/abs/1508.07660.
  • [47] D. Zywina, Possible indices for the Galois image of elliptic curves over $ \mathbb{Q}$, preprint, available at http://arxiv.org/abs/1508.07663.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11G05, 11R21, 12F10, 14H52

Retrieve articles in all journals with MSC (2010): 11G05, 11R21, 12F10, 14H52


Additional Information

Harris B. Daniels
Affiliation: Department of Mathematics and Statistics, Amherst College, Amherst, Massachusetts 01002
Email: hdaniels@amherst.edu

Álvaro Lozano-Robledo
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269
Email: alvaro.lozano-robledo@uconn.edu

Filip Najman
Affiliation: Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
Email: fnajman@math.hr

Andrew V. Sutherland
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: drew@math.mit.edu

DOI: https://doi.org/10.1090/mcom/3213
Received by editor(s): February 23, 2016
Received by editor(s) in revised form: August 24, 2016
Published electronically: May 5, 2017
Additional Notes: The third author acknowledges support from the QuantiXLie Center of Excellence. The fourth author was supported by NSF grants DMS-1115455 and DMS-1522526.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society