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AN EXACTLY COMPUTABLE LAGRANGE–GALERKIN

SCHEME FOR THE NAVIER–STOKES EQUATIONS

AND ITS ERROR ESTIMATES

MASAHISA TABATA AND SHINYA UCHIUMI

Abstract. We present a Lagrange–Galerkin scheme, which is computable
exactly, for the Navier–Stokes equations and show its error estimates. In the
Lagrange–Galerkin method we have to deal with the integration of composite
functions, where it is difficult to get the exact value. In real computations, nu-
merical quadrature is usually applied to the integration to obtain approximate
values, that is, the scheme is not computable exactly. It is known that the error
caused from the approximation may destroy the stability result that is proved
under the exact integration. Here we introduce a locally linearized velocity and
the backward Euler method in solving ordinary differential equations in the
position of the fluid particle. Then, the scheme becomes computable exactly,
and we show the stability and convergence for this scheme. For the P2/P1- and
P1+/P1-finite elements optimal error estimates are proved in �∞(H1)×�2(L2)
norm for the velocity and pressure. We present some numerical results, which
reflect these estimates and also show robust stability for high Reynolds num-
bers in the cavity flow problem.

1. Introduction

The purpose of this paper is to present a Lagrange–Galerkin scheme free from
numerical quadrature for the Navier–Stokes equations and to prove the conver-
gence. The Lagrange–Galerkin method, which is also called the characteristics
finite element method or the Galerkin-characteristics method, is a powerful nu-
merical method for flow problems, having such advantages that it is robust for
convection-dominated problems and that the resultant matrix to be solved is sym-
metric. It has, however, a drawback that it may lose the stability when numerical
quadrature is employed with less care to integrate composite function terms that
characterize the method. Our scheme presented here overcomes this drawback.

Lagrange–Galerkin schemes for the Navier–Stokes equations have been developed
in [1, 4–6, 17, 18, 20, 22, 24]; see also the bibliographies therein. After convergence
analysis was done successfully by Pironneau [20] in a suboptimal rate, the opti-
mal convergence result was obtained by Süli [24]. Optimal convergence results by
Lagrange–Galerkin schemes were extended to the multi-step method by Boukir et
al. [6], to the projection method by Achdou–Guermond [1] and to the pressure-
stabilized method by Notsu–Tabata [18]. All these results of the stability and
convergence are proved under the condition that the integration of the compos-
ite function terms is computed exactly. Since it is difficult to perform the exact
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integration in real problems, numerical quadrature is usually employed. It is, how-
ever, reported that instability may occur caused by numerical quadrature error for
convection-diffusion problems in [16, 22, 25, 28]. If rough numerical quadrature is
used, we observe such instability occurs also for the Navier–Stokes equations by
numerical examples in this paper.

Several methods have been studied to avoid the instability; see [4,5,16,21,22,28].
There, the map of a fluid particle from the present position to the position a time
increment Δt before (the position is often called the foot along the trajectory) is
simplified. To find the foot of a particle is nothing but to solve a system of ordinary
differential equations (ODEs). Morton et al. [16] solved the ODEs only at the
centroids of the elements, and Priestley [22] did only at the vertices of the elements.
The map of the other points is approximated by linear interpolation of those values.
It becomes possible to perform the exact integration of the composite function
terms with the simplified map. Bermejo et al. [4, 5] used the same simplified
map as [22] to employ a numerical quadrature of high accuracy to the composite
function terms for the Navier–Stokes equations. Tanaka et al. [28] and Tabata–
Uchiumi [27] replaced the velocity by a locally linearized velocity and approximated
the map by the backward Euler approximation to solve the ODEs for convection-
diffusion problems. The approximate map makes possible the exact integration of
the composite function terms, whose basic idea is the same as [22].

In this paper we prove the convergence of a Lagrange–Galerkin scheme with the
same approximate map as [27, 28] in the P2/P1- and P1+/P1-elements (Taylor–
Hood and MINI elements) for the Navier–Stokes equations. Since we neither solve
the ODEs nor use numerical quadrature, our scheme is exactly computable to
realize the theoretical results. It is, therefore, a genuinely stable Lagrange–Galerkin
scheme. Our convergence results are best possible for the velocity and pressure in
the �∞(H1) × �2(L2)-norm for both elements as well as for the velocity in the
�∞(L2)-norm in the P1+/P1-finite element.

In order to make clear the argument of convergence in the Lagrange–Galerkin
method let us introduce two words, exact and computed finite element solutions.
Let (u, p) be an exact solution of the Navier–Stokes equations, (uh, ph) an exact
finite element solution by a scheme, and (uC

h , p
C
h ) a computed solution of (uh, ph).

Since the solution got in the real computation is (uC
h , p

C
h ), the desired estimate is,

in a norm with positive constants α and β,

‖(u− uC
h , p− pCh )‖ ≤ c(Δtα + hβ).(1.1)

In the standard (not Lagrange–Galerkin) finite element method, we usually do not
distinguish (uC

h , p
C
h ) from (uh, ph) because all coefficients appearing in the finite

element equation are derived from the integrations of polynomials over elements,
which are computed exactly except for the errors caused by finite length of digits.
Namely, the scheme is exactly computable, and we understand that (uC

h , p
C
h ) is

equal to (uh, ph). Then, (1.1) is obviously equivalent to the estimate,

‖(u− uh, p− ph)‖ ≤ c(Δtα + hβ).(1.2)

In the conventional Lagrange–Galerkin method with quadrature formula of de-
gree m to the integrations of composite function terms, the computed solution
(uC

h (m), pCh (m)) is not equal to (uh, ph). In fact, the difference may cause the in-
stability for low m as shown in Examples 6.1 and 6.2. The theoretical result (1.2)
does not imply the convergence result (1.1) of the computed solution. To the best
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of our knowledge, the error estimate

‖(u− uC
h (m), p− pCh (m))‖ ≤ cm(Δtα

′
+ hβ′

)(1.3)

has not been obtained. With respect to the present scheme we prove (1.2). Since it
is exactly computable without using quadrature, we have (uC

h , p
C
h ) = (uh, ph) and

(1.1). We note that, in the isoparametric finite element method where numerical
quadrature is used, for example, in the Poisson problem in a curved domain, uC

h is
not equal to uh, but the estimate corresponding to (1.3) is obtained with β′ = β
and an appropriate choice m in [7].

As for the efficiency of the computation the present scheme spends about 2.6
times more computation time than the conventional scheme with the quadrature of
degree nine in the computation of the cavity flow problem in a square as shown in
Example 6.2.

The contents of this paper are as follows. In the next section we describe the
Navier–Stokes problem and some preparation. In Section 3, after recalling the con-
ventional Lagrange–Galerkin scheme, we present our Lagrange–Galerkin scheme
with a locally linearized velocity. In Section 4 we show convergence results, which
are proved in Section 5. In Section 6 we show some numerical results, which re-
flect the theoretical convergence orders and the robustness of the scheme for high-
Reynolds-number problems. In Section 7 we give conclusions.

2. Preliminaries

We state the problem and prepare the notation used throughout this paper.
Let Ω be a polygonal or polyhedral domain of Rd (d = 2, 3) and T > 0 a time.

We use the Sobolev spaces Wm,p(Ω) equipped with the norm ‖·‖m,p and the semi-

norm |·|m,p for p ∈ [1,∞] and a non-negative integer m. We denote W 0,p(Ω) by

Lp(Ω). W 1,p
0 (Ω) is the subspace of W 1,p(Ω) consisting of functions whose trace

vanish on the boundary of Ω. When p = 2, we denote Wm,2(Ω) by Hm(Ω) and
drop the subscript 2 in the corresponding norm and semi-norm. The dual space of
H1

0 (Ω) is denoted by H−1(Ω). For the vector-valued function w ∈ W 1,∞(Ω)d we
define the semi-norm |w|1,∞ by∥∥∥∥{ d∑

i,j=1

(
∂wi

∂xj

)2}1/2∥∥∥∥
0,∞

.

The parenthesis (·, ·) shows the L2(Ω)i-inner product for i = 1, d or d× d. L2
0(Ω) is

the space of functions f ∈ L2(Ω) satisfying (f, 1) = 0. For a Sobolev space X(Ω)
we use the abbreviations Hm(X) = Hm(0, T ;X(Ω)) and C(X) = C([0, T ];X(Ω)).
We define the function space Zm(t1, t2) by

Zm(t1, t2) ≡
{
f ∈ Hj(t1, t2;H

m−j(Ω)d); j = 0, . . . ,m, ‖f‖Zm(t1,t2)
< ∞

}
,

‖f‖Zm(t1,t2)
≡

{ m∑
j=0

‖f‖2Hj(t1,t2;Hm−j(Ω)d)

}1/2

,

and denote Zm(0, T ) by Zm.
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We consider the Navier–Stokes equations: find (u, p) : Ω× (0, T ) → R
d ×R such

that
Du

Dt
− νΔu+∇p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u = u0 in Ω at t = 0,

(2.1)

where ∂Ω is the boundary of Ω, Du
Dt ≡ ∂u

∂t + (u · ∇)u is the material derivative and

ν > 0 is a viscosity. Functions f ∈ C(L2) and u0 : Ω → R
d are given.

We define the bilinear forms a on H1
0 (Ω)

d ×H1
0 (Ω)

d and b on H1
0 (Ω)

d × L2
0(Ω)

by
a(u, v) ≡ ν(∇u,∇v), b(v, q) ≡ −(∇ · v, q).

Then, we can write the weak form of (2.1) as follows: find (u, p) : (0, T ) → H1
0 (Ω)

d×
L2
0(Ω) such that for t ∈ (0, T ),(

Du

Dt
(t), v

)
+ a(u(t), v) + b(v, p(t)) = (f(t), v), ∀v ∈ H1

0 (Ω)
d,(2.2a)

b(u(t), q) = 0, ∀q ∈ L2
0(Ω),(2.2b)

with u(0) = u0.
Let u be smooth. The characteristic curve X(t;x, s) is defined by the solution

of the system of the ordinary differential equations,

dX

dt
(t;x, s) = u(X(t;x, s), t), t < s,(2.3a)

X(s;x, s) = x.(2.3b)

Then, we can write the material derivative term ( ∂
∂t + u · ∇)u as follows:(

∂u

∂t
+ (u · ∇)u

)
(X(t), t) =

d

dt
u(X(t), t).

Let Δt > 0 be a time increment. For w : Ω → R
d we define the mapping

X1(w) : Ω → R
d by

(2.4) (X1(w))(x) ≡ x− w(x)Δt.

Remark 2.1. The image of x by X1(u(·, t)) is nothing but the approximate value of
X(t−Δt;x, t) obtained by solving (2.3) by the backward Euler method.

Let NT ≡ 
T/Δt�, tn ≡ nΔt and ψn ≡ ψ(·, tn) for a function ψ defined in

Ω × (0, T ). For a set of functions ψ = {ψn}NT

n=0 and a Sobolev space X(Ω), two
norms ‖·‖�∞(X) and ‖·‖�2(n1,n2;X) are defined by

‖ψ‖�∞(X) ≡ max
{
‖ψn‖X(Ω) ;n = 0, . . . , NT

}
,

‖ψ‖�2(n1,n2;X) ≡
(
Δt

n2∑
n=n1

‖ψn‖2X(Ω)

)1/2

,

and ‖ψ‖�2(1,NT ;X) is denoted by ‖ψ‖�2(X). The backward difference operator DΔt

is defined by

DΔtψ
n ≡ ψn − ψn−1

Δt
.
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Let Th be a triangulation of Ω̄ and h ≡ maxK∈Th
diam(K) the maximum element

size. Throughout this paper we consider a regular family of triangulations {Th}h↓0.
Let Vh × Qh ⊂ H1

0 (Ω)
d × L2

0(Ω) be the P2/P1- or P1+/P1-finite element space,
which is called the Hood–Taylor element or the MINI element [2, 10]. Let

Π
(1)
h : C(Ω̄)d ∩H1

0 (Ω)
d → Vh

be the Lagrange interpolation operator to the P1-finite element space. Let (ŵh, r̂h)
≡ ΠS

h(w, r) ∈ Vh ×Qh be the Stokes projection of (w, r) ∈ H1
0 (Ω)

d ×L2
0(Ω) defined

by

a(ŵh, vh) + b(vh, r̂h) = a(w, vh) + b(vh, r), ∀vh ∈ Vh,(2.5a)

b(ŵh, qh) = b(w, qh), ∀qh ∈ Qh.(2.5b)

We denote by (ΠS
h(w, r))1 the first component ŵh of ΠS

h(w, r).
The symbol ◦ stands for the composition of functions, e.g., (g ◦ f)(x) ≡ g(f(x)).

3. A Lagrange–Galerkin scheme with a locally linearized velocity

The conventional Lagrange–Galerkin scheme, which we call Scheme LG, is de-
scribed as follows.

Scheme LG. Let u0
h = (ΠS

h(u
0, 0))1. Find {(un

h, p
n
h)}

NT

n=1 ⊂ Vh ×Qh such that(
un
h − un−1

h ◦X1(u
n−1
h )

Δt
, vh

)
+ a(un

h, vh) + b(vh, p
n
h) = (fn, vh), ∀vh ∈ Vh,

b(un
h, qh) = 0, ∀qh ∈ Qh,

for n = 1, . . . , NT .

Remark 3.1. Süli [24] used the exact solution Xn−1
h of the system of ordinary

differential equations,

dXn−1
h

dt
(t;x, tn) = un−1

h (Xn−1
h (t;x, tn), t), tn−1 < t < tn,(3.2a)

Xn−1
h (tn;x, tn) = x,(3.2b)

instead of X1(u
n−1
h ).

By a similar way to [24] combined with [6], error estimates

‖uh − u‖�∞(H1) , ‖ph − p‖�2(L2) ≤ c(hk +Δt),(3.3a)

‖uh − u‖�∞(L2) ≤ c(hk+1 +Δt)(3.3b)

can be proved, where k = 2 for the P2/P1-element and k = 1 for the P1+/P1-
element. In the estimate above, the composite function term (un−1

h ◦X1(u
n−1
h ), vh)

is assumed to be exactly integrated.
Although the function un−1

h is a polynomial on each element K, the composite

function un−1
h ◦ X1(u

n−1
h ) is not a polynomial on K in general since the image

X1(u
n−1
h ) of an element K may spread over plural elements. Hence, it is hard to

calculate the composite function term (un−1
h ◦ X1(u

n−1
h ), vh) exactly. In practice,
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the following numerical quadrature has been used. Let g : K → R be a continuous
function. A numerical quadrature Ih[g;K] of

∫
K
g dx is defined by

Ih[g;K] ≡ meas(K)

Nq∑
i=1

wig(ai),

where Nq is the number of quadrature points and (wi, ai) ∈ R × K is a pair of
the weight and the point for i = 1, . . . , Nq. We call the practical scheme using
numerical quadrature Scheme LG′.

Scheme LG′. Let u0
h = (ΠS

h(u
0, 0))1. Find {(un

h, p
n
h)}

NT

n=1 ⊂ Vh ×Qh such that

1

Δt
(un

h, vh)−
1

Δt

∑
K∈Th

Ih[(u
n−1
h ◦X1(u

n−1
h )) · vh;K]

+a(un
h, vh) + b(vh, p

n
h) = (fn, vh), ∀vh ∈ Vh,

b(un
h, qh) = 0, ∀qh ∈ Qh,

for n = 1, . . . , NT .

For convection-diffusion equations it has been reported that rough numerical
quadrature causes the instability [16, 22, 25–28]. For the Navier–Stokes equations
we present numerical results showing the instability of Scheme LG′ in Section 6.

We now present our Lagrange–Galerkin scheme with a locally linearized velocity.
It is free from quadrature and exactly computable. We call it Scheme LG-LLV.

Scheme LG-LLV. Let u0
h = (ΠS

h(u
0, 0))1. Find {(un

h, p
n
h)}

NT

n=1 ⊂ Vh × Qh such
that

(
un
h − un−1

h ◦X1(Π
(1)
h un−1

h )

Δt
, vh

)
+ a(un

h, vh) + b(vh, p
n
h) = (fn, vh), ∀vh ∈ Vh,

(3.4a)

b(un
h, qh) = 0, ∀qh ∈ Qh,(3.4b)

for n = 1 . . . , NT .

In the above scheme the locally linearized velocity Π
(1)
h un−1

h is used in place of

the original velocity un−1
h . The error caused by the introduction of the approximate

velocity Π
(1)
h un−1

h is evaluated properly in Theorems 4.2 and 4.5 in the next section.

The following proposition assures that the integration (un−1
h ◦X1(Π

(1)
h un−1

h ), vh) can
be calculated exactly.

Proposition 3.2. Let uh, vh ∈ Vh and w ∈ W 1,∞
0 (Ω)d. Suppose α20Δt |w|1,∞ < 1,

where α20 is the constant defined in (5.1a) below. Then,
∫
Ω
(uh ◦X1(Π

(1)
h w)) ·vh dx

is exactly computable.

Outline of the proof. When uh and vh are scalar functions, the result on the exact
computability has been proved in [28] and [27, Proposition 1]. Here, we do not
repeat the proof but show only the outline. It is necessary that the inclusion

(X1(Π
(1)
h w))(Ω) ⊂ Ω holds to execute the integration of uh ◦X1(Π

(1)
h w) · vh over Ω.

The condition α20Δt |w|1,∞ < 1 is sufficient for it by virtue of Lemma 5.7-(i) and

(5.1a) below. The mapping X1(Π
(1)
h w) is linear on each element. When a mapping

F is linear, we have the following general result for any two elements K0 and K1
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and any polynomial φh of any order k defined on K1. Proposition 3.2 is proved by
applying the following lemma, whose proof is easy; cf. [27, Lemma 1]. �

Lemma 3.3. Let K0,K1 ∈ Th and F : K0 → R
d be linear and one-to-one. Let

E1 ≡ K0 ∩ F−1(K1) and meas(E1) > 0. Then, the following hold:

(i) E1 is a polygon (d = 2) or a polyhedron (d = 3).
(ii) φh ◦ F|E1

∈ Pk(E1), ∀φh ∈ Pk(K1).

Remark 3.4. (i) In the case of d = 2, Priestley [22] approximated Xn−1
h (tn−1;x, tn)

in (3.2) by

X̃h(x) = B1λ1(x) +B2λ2(x) +B3λ3(x), x ∈ K0

on each K0 ∈ Th, where Bi = Xn−1
h (tn−1;Ai, t

n), {Ai}3i=1 are vertices of K0 and

{λi}3i=1 are the barycentric coordinates of K0 with respect to {Ai}3i=1. Since X̃h(x)
is linear in K0, the decomposition∫

K0

(un−1
h ◦ X̃h) · vh dx =

∑
l∈Λ(K0)

∫
El

(un−1
h ◦ X̃h) · vh dx,

Λ(K0) ≡
{
l;K0 ∩ X̃−1

h (Kl) �= ∅
}
, El ≡ K0 ∩ X̃−1

h (Kl),

makes the exact integration possible. The points Bi = Xn−1
h (tn−1;Ai, t

n) are the
solutions of the system of ordinary differential equations (3.2) and it is not easy to
solve it exactly in general since un−1

h is a piecewise polynomial. In practice, some
numerical method, e.g., the Runge–Kutta method, is employed.

(ii) Since our mapping X1(Π
(1)
h un−1

h ) is also linear in K0, we can rewrite the
mapping as

X1(Π
(1)
h un−1

h )(x) = C1λ1(x) + C2λ2(x) + C3λ3(x), x ∈ K0,

where Ci = Ai − (Π
(1)
h un−1

h )(Ai)Δt = Ai − un−1
h (Ai)Δt for i = 1, 2, 3. Since Ci

are the approximate values of Xn−1
h (tn−1;Ai, t

n) by the Euler method, our method
is also derived from Priestley’s method by applying the Euler method to (3.2).
In the following we show the convergence for the Navier–Stokes equations, which
is not discussed in [22]. As the solver for the ordinary differential equations the
Runge–Kutta method is more accurate than the Euler method. However, in order
to obtain the best possible convergence order of the velocity and the pressure, at
least in the �∞(H1) × �2(L2)-norm for the P2/P1- and P1+/P1-finite elements, it
is shown to be sufficient to employ the Euler method in (3.2).

4. Main results

We present the main results of error estimates for Scheme LG-LLV, which are
proved in the next section. We first state the result when the P2/P1-element is
employed.

Hypothesis 1. The solution of (2.1) satisfies

u ∈ Z2 ∩H1(H3), p ∈ H1(H2).

Remark 4.1. Hypothesis 1 implies (u, p) ∈ C(H3 ×H2), which yields ∇ · u0 = 0.

Hypothesis 2. The sequence {Th}h↓0 satisfies the inverse assumption. In addition,
for each h, ∀K ∈ Th has at least one vertex in Ω.
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Theorem 4.2. Let Vh×Qh be the P2/P1-finite element space. Suppose Hypotheses
1 and 2. Then, there exist positive constants c0 and h0 such that if h ∈ (0, h0] and

Δt ≤ c0h
d/4, the solution (uh, ph) ≡ {(un

h, p
n
h)}

NT

n=0 of Scheme LG-LLV exists and
the estimates

‖uh − u‖�∞(H1) , ‖ph − p‖�2(L2) ≤ c1(h
2 +Δt)

hold, where c1 is a positive constant independent of h and Δt.

Next, we state the result when the P1+/P1-element is employed.

Hypothesis 1′. The solution of (2.1) satisfies

u ∈ Z2 ∩H1(H2), p ∈ H1(H1).

Remark 4.3. Hypothesis 1′ implies (u, p) ∈ C(H2 ×H1), which yields ∇ · u0 = 0.

Hypothesis 3. The Stokes problem is regular, that is, for all g ∈ L2(Ω)d the
solution (w, r) ∈ H1

0 (Ω)
d × L2

0(Ω) of the Stokes problem,

−νΔw +∇r = g, x ∈ Ω,

∇ · w = 0, x ∈ Ω,

belongs to H2(Ω)d ×H1(Ω) and the estimate

‖(w, r)‖H2×H1 ≤ c ‖g‖0
holds, where c is a positive constant independent of g, w and r.

Remark 4.4. Hypothesis 3 holds, for example, if d = 2 and Ω is convex [10].

Theorem 4.5. Let Vh×Qh be the P1+/P1-finite element space. Suppose Hypothe-
ses 1′ and 2. Then, there exist positive constants c0 and h0 such that if h ∈ (0, h0]

and Δt ≤ c0h
d/4, the solution (uh, ph) ≡ {(un

h, p
n
h)}

NT

n=0 of Scheme LG-LLV exists,
and the estimates

(4.1) ‖uh − u‖�∞(H1) , ‖ph − p‖�2(L2) ≤ c2(h+Δt)

hold, where c2 is a positive constant independent of h and Δt. Moreover, under
Hypothesis 3, the estimate

(4.2) ‖uh − u‖�∞(L2) ≤ c3(h
2 +Δt)

holds, where c3 is a positive constant independent of h and Δt.

Remark 4.6. The convergence proof is easily extended for any pairs satisfying the
inf-sup condition. However, the convergence order with respect to the space dis-
cretization is bounded by O(h2) caused by the locally linearized approximation of
the velocity. In fact, in the case of the P2/P1-element the estimate (3.3b) with
k = 2 does not hold in Scheme LG-LLV, cf., Example 6.1 in Section 6.

5. Proofs of the main theorems

The proofs of Theorems 4.2 and 4.5 can be carried out in the way of [6,24] except
for estimates concerning the newly introduced locally linearized velocity. For the
paper to be selfcontained, however, we show here the complete proofs. We also give
a clear bound on Δt for estimates of the Jacobian of a mapping in Lemma 5.7. In
this section and Appendix A the symbol α with a subscript stands for a positive
numerical constant, in particular independent of the discretization parameters, h
and Δt.
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5.1. Some lemmas. We recall some results used in proving the main theorems.
For proofs of Lemmas 5.1–5.6 we refer to the cited bibliography.

Lemma 5.1 (Poincaré’s inequality [7]). There exists an α1(Ω) such that

‖v‖0 ≤ α1 |v|1 , ∀v ∈ H1
0 (Ω)

d.

Lemma 5.2 (The Lagrange interpolation [7]). Suppose {Th}h↓0 is a regular family

of triangulations of Ω̄. Let Xh be the P2- or P1+-finite element space and Π
(1)
h be

the Lagrange interpolation operator to the P1-finite element space. Then, it holds
that

‖Π(1)
h v‖0,∞ ≤ ‖v‖0,∞ , ∀v ∈ C(Ω̄)d,

and there exist α20 ≥ 1, α21 and α22 such that

|Π(1)
h v|1,∞ ≤ α20 |v|1,∞ , ∀v ∈ W 1,∞(Ω)d,(5.1a)

‖Π(1)
h v − v‖s ≤ α21h

2−s|v|2, s = 0, 1, ∀v ∈ H2(Ω)d,(5.1b)

‖Π(1)
h vh‖0 ≤ α22 ‖vh‖0 , ∀vh ∈ Xh.(5.1c)

Remark 5.3. The inequality (5.1c) holds sinceXh is finite-dimensional. If we replace

Π
(1)
h by the Clément interpolation operator [8], this inequality holds for all v ∈

L2(Ω)d.

Lemma 5.4 (The inverse inequality [7]). Suppose {Th}h↓0 satisfies the inverse
assumption. Let Xh be the P2- or P1+-finite element space. Then, there exist α30

and α31 such that

‖vh‖0,∞ ≤ α30h
−d/6 ‖vh‖1 , ∀vh ∈ Xh,

|vh|1,∞ ≤ α31h
−d/2 |vh|1 , ∀vh ∈ Xh.

Lemma 5.5 (The inf-sup condition [2,3,29]). Suppose Hypothesis 2. Let Vh×Qh ⊂
H1

0 (Ω)
d ×L2

0(Ω) be the P2/P1- or P1+/P1-finite element space. Then, there exists
an α4 such that

inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

b(vh, qh)

‖vh‖1 ‖qh‖0
≥ α4.

Lemma 5.6 ([10]). (i) Suppose Hypothesis 2 and that Vh ×Qh ⊂ H1
0 (Ω)

d ×L2
0(Ω)

is the P2/P1- or P1+/P1-finite element space. Let (ŵh, r̂h) be the Stokes projection
of (w, r) defined in (2.5). Then, there exists an α50(ν) such that

‖ŵh − w‖1 , ‖r̂h − r‖0 ≤ α50h
k‖(w, r)‖Hk+1×Hk ,

where k = 2 for the P2/P1-element and k = 1 for the P1+/P1-element.
(ii) Moreover, suppose Hypothesis 3. Then, there exists an α51(ν) such that

‖ŵh − w‖0 ≤ α51h
k+1‖(w, r)‖Hk+1×Hk ,

where k = 2 for the P2/P1-element and k = 1 for the P1+/P1-element.

Lemma 5.7. (i) Let w ∈ W 1,∞
0 (Ω)d and X1(w) be the mapping defined in (2.4).

Then, under the condition Δt |w|1,∞ < 1, X1(w) : Ω → Ω is bijective.

(ii) Furthermore, under the condition Δt |w|1,∞ ≤ 1/4, the estimate

1

2
≤ det

(
∂X1(w)

∂x

)
≤ 3

2

holds, where det(∂X1(w)/∂x) is the Jacobian.
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Proof. The former is proved in [23, Proposition 1]. We prove the latter only in the
case d = 3 since the proof in d = 2 is much easier. Let I be the 3×3 identity matrix,
A = (aij) and aj = (a1j , a2j , a3j)

T , where aij = Δt ∂wi/∂xj for i, j = 1, 2, 3. The
notation | · | stands for the absolute value, or the Euclidean norm in R

3 or R
3×3.

From the condition

|a| = (|a1|2 + |a2|2 + |a3|2)1/2 ≤ 1/4,

we obtain

det(A) ≤ |a1| |a2| |a3| ≤
(

1

4
√
3

)3

.

Then, we have∣∣∣∣det(∂X1(w)

∂x

)
− 1

∣∣∣∣ = | det(I −A)− 1|

=| − (a11 + a22 + a33)

+ a11a22 + a22a33 + a33a11 − a12a21 − a23a32 − a31a13 − det(A)|
≤|a11 + a22 + a33|
+ |a11a22 + a22a33 + a33a11 − a12a21 − a23a32 − a31a13|+ | det(A)|

≤
√
3|a|+ |a|2 + | det(A)| ≤ 1/2,

which implies the result. �

Lemma 5.8. Let 1 ≤ q < ∞, 1 ≤ p ≤ ∞, 1/p + 1/p′ = 1 and wi ∈ W 1,∞
0 (Ω)d,

i = 1, 2. Under the condition Δt |wi|1,∞ ≤ 1/4, it holds that, for ψ ∈ W 1,qp′
(Ω)d,

‖ψ ◦X1(w1)− ψ ◦X1(w2)‖0,q ≤ 21/(qp
′)Δt ‖w1 − w2‖0,pq ‖∇ψ‖0,qp′ ,

where X1(·) is defined in (2.4).

Lemma 5.8 is a direct consequence of [1, Lemma 4.5] and Lemma 5.7-(ii).

Lemma 5.9. Let w ∈ W 1,∞
0 (Ω)d. Under the condition Δt |w|1,∞ ≤ 1/4, there

exists an α6 such that, for ψ ∈ L2(Ω)d,

‖ψ − ψ ◦X1(w)‖−1 ≤ α6Δt ‖w‖1,∞ ‖ψ‖0 ,

where X1(·) is defined in (2.4).

This is an extension of [9, Lemma 1] obtained in the 1D case. For the self-
containedness we give the proof of Lemma 5.9 in Appendix A.

5.2. Estimates of enh under some assumptions. Let

(5.2) (enh, ε
n
h) ≡ (un

h − ûn
h, p

n
h − p̂nh), η(t) ≡ u(t)− ûh(t),

where (u, p) is the solution of (2.1), (ûh(t), p̂h(t)) is the Stokes projection of
(u(t), p(t)) defined in (2.5) and (un

h, p
n
h) is the solution of Scheme LG-LLV at the

step n. From (2.2), (2.5) and (3.4) we have the error equations in (enh, ε
n
h):(

DΔte
n
h, vh

)
+ a(enh, vh) + b(vh, ε

n
h) =

4∑
i=1

(Rn
i , vh), ∀vh ∈ Vh,(5.3a)

b(enh, qh) = 0, ∀qh ∈ Qh,(5.3b)
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for n = 1, . . . , NT , where

Rn
1 ≡ Dun

Dt
− un − un−1 ◦X1(u

n−1)

Δt
,

Rn
2 ≡ un−1 ◦X1(Π

(1)
h un−1

h )− un−1 ◦X1(u
n−1)

Δt
,

Rn
3 ≡ ηn − ηn−1 ◦X1(Π

(1)
h un−1

h )

Δt
, Rn

4 ≡ −en−1
h − en−1

h ◦X1(Π
(1)
h un−1

h )

Δt
.

(5.4)

Lemma 5.10. Suppose Hypotheses 1 and 2. Under the condition

(5.5) Δt|un−1|1,∞, Δt|Π(1)
h un−1

h |1,∞ ≤ 1/4,

it holds that

‖Rn
1‖0 ≤β1

√
Δt ‖u‖Z2(tn−1,tn) ,(5.6a)

‖Rn
2‖0 ≤β2

∥∥en−1
h

∥∥
0
+ β3h

2(‖(u, p)n−1‖H3×H2 +
∣∣un−1

∣∣
2
),(5.6b)

‖Rn
3‖0 ≤β4

h2

√
Δt

(
‖(u, p)‖H1(tn−1,tn;H3×H2)

+
∥∥un−1

h

∥∥
0,∞ ‖(u, p)‖L2(tn−1,tn;H3×H2)

)
,(5.6c)

‖Rn
4‖0 ≤β5

∥∥un−1
h

∥∥
0,∞

∣∣en−1
h

∣∣
1
,(5.6d)

for n = 1, . . . , NT , where β1 = β1(‖u‖C(W 1,∞)), β2 = β2(|u|C(W 1,∞) , α22), β3 =

β3(|u|C(W 1,∞) , α21, α22, α50), β4 = β4(α50), β5 =
√
2 and the notation βi(A) means

that a positive constant βi depends on a set of parameters A.

Proof. We prove (5.6a). We decompose Rn
1 as follows:

Rn
1 (x) =

{
∂un

∂t
(x) + (un−1(x) · ∇)un(x)− un − un−1 ◦X1(u

n−1)

Δt
(x)

}
+ (un(x)− un−1(x)) · ∇un(x) ≡ Rn

11(x) +Rn
12(x).

Setting

y(x, s) = x+ (s− 1)Δt un−1(x), t(s) = tn−1 + sΔt,

we have

un − un−1 ◦X1(u
n−1)

Δt
=

1

Δt

[
u(y(·, s), t(s))

]1
s=0

,

which implies that

Rn
11 =

∂un

∂t
+ (un−1 · ∇)un −

∫ 1

0

{
(un−1(·) · ∇)u+

∂u

∂t

}
(y(·, s), t(s))ds

= Δt

∫ 1

0

ds

∫ 1

s

{(
un−1(·) · ∇+

∂

∂t

)2

u

}
(y(·, s1), t(s1))ds1

= Δt

∫ 1

0

s1

{(
un−1(·) · ∇+

∂

∂t

)2

u

}
(y(·, s1), t(s1))ds1.
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Hence, we have

‖Rn
11‖0 ≤ Δt

∫ 1

0

s1

∥∥∥∥∥
{(

un−1(·) · ∇+
∂

∂t

)2

u

}
(y(·, s1), t(s1))

∥∥∥∥∥
0

ds1

≤ β′
1(‖u‖C(L∞))

√
Δt ‖u‖Z2(tn−1,tn) ,

where we have used the transformation of independent variables from x to y and
s1 to t and the estimate | det(∂x/∂y)| ≤ 2 by virtue of Lemma 5.7-(ii). It is easy
to show

‖Rn
12‖0 ≤

√
Δt |un|1,∞

∥∥∥∥∂u∂t
∥∥∥∥
L2(tn−1,tn;L2)

.

From the triangle inequality we get (5.6a).

We prove (5.6b). Using Lemma 5.8 with q = 2, p = 1, p′ = ∞, w1 = Π
(1)
h un−1

h ,
w2 = un−1 and ψ = un−1, we have

‖Rn
2 ‖0 ≤

∣∣un−1
∣∣
1,∞ ‖Π(1)

h un−1
h − un−1‖0

≤
∣∣un−1

∣∣
1,∞ (‖Π(1)

h un−1
h −Π

(1)
h un−1‖0 + ‖Π(1)

h un−1 − un−1‖0).

From Lemmas 5.2 and 5.6-(i) we evaluate the first term as follows:

‖Π(1)
h un−1

h − Π
(1)
h un−1‖0 = ‖Π(1)

h (un−1
h −Π

(1)
h un−1)‖0

≤α22‖un−1
h −Π

(1)
h un−1‖0

≤α22(
∥∥un−1

h − ûn−1
h

∥∥
0
+

∥∥ûn−1
h − un−1

∥∥
0
+ ‖un−1 − Π

(1)
h un−1‖0)

≤α22(‖en−1
h ‖0 + α50h

2‖(u, p)n−1‖H3×H2 + α21h
2
∣∣un−1

∣∣
2
).

(5.7)

The second term is evaluated as follows:

‖Π(1)
h un−1 − un−1‖0 ≤ α21h

2
∣∣un−1

∣∣
2
.

Thus, we have

‖Rn
2 ‖0 ≤

∣∣un−1
∣∣
1,∞

{
α22(

∥∥en−1
h

∥∥
0
+ α50h

2‖(u, p)n−1‖H3×H2)

+ α21(1 + α22)h
2
∣∣un−1

∣∣
2

}
,

which implies (5.6b).
We prove (5.6c). Let

y(x) = x+ (s− 1)ΔtΠ
(1)
h un−1

h (x), t(s) = tn−1 + sΔt.

Since Rn
3 is rewritten as

Rn
3 =

∫ 1

0

{
∂η

∂t
+ (Π

(1)
h un−1

h (·) · ∇)η

}
(y(·, s), t(s))ds,
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we have, by using the change of the variable and Lemma 5.7-(ii),

‖Rn
3 ‖0 ≤

∥∥∥∥∫ 1

0

∣∣∣∣∂η∂t
∣∣∣∣ (y(·, s), t(s))ds∥∥∥∥

0

+

∥∥∥∥∫ 1

0

|(Π(1)
h un−1

h (·) · ∇)η|(y(·, s), t(s))ds
∥∥∥∥
0

≤
√
2√
Δt

(∥∥∥∥∂η∂t
∥∥∥∥
L2(tn−1,tn;L2)

+ ‖Π(1)
h un−1

h ‖0,∞ ‖∇η‖L2(tn−1,tn;L2)

)
≤
√
2α50h

2

√
Δt

(
‖(u, p)‖H1(tn−1,tn;H3×H2)

+
∥∥un−1

h

∥∥
0,∞ ‖(u, p)‖L2(tn−1,tn;H3×H2)

)
,

which implies (5.6c).
The inequality (5.6d) is obtained from Lemma 5.8 with q = 2, p = ∞, p′ = 1,

w1 = 0, w2 = Π
(1)
h un−1

h and ψ = en−1
h . �

Lemma 5.11. Suppose Hypotheses 1 and 2. Let n ∈ {1, · · · , NT } be any integer
and let un−1

h ∈ Vh be known. Suppose that un−1
h satisfies

b(un−1
h , qh) = 0, ∀qh ∈ Qh.(5.8)

Under the condition (5.5), there exists a solution (un
h, p

n
h) of (3.4) and it holds that∥∥DΔte

n
h

∥∥2
0
+DΔt(ν |enh|

2
1)

≤β21(
∥∥un−1

h

∥∥
0,∞)ν

∣∣en−1
h

∣∣2
1
+ β22(

∥∥un−1
h

∥∥
0,∞)

{
Δt ‖u‖2Z2(tn−1,tn)

+
h4

Δt
‖(u, p)‖2H1(tn−1,tn;H3×H2) + h4

(
‖(u, p)n−1‖2H3×H2 +

∣∣un−1
∣∣2
2

)}
,

where enh is defined in (5.2), and β21(ξ) and β22(ξ) are the functions defined in
(5.10) below.

Proof. Since it holds that Δt|Π(1)
h un−1

h |1,∞ ≤ 1/4, the mapping X1(Π
(1)
h un−1

h ) :
Ω → Ω is bijective from Lemma 5.7-(i). Hence, there exists a solution (un

h, p
n
h) of

(3.4). Substituting vh = DΔte
n
h in (5.3a), we have

(5.9)
∥∥DΔte

n
h

∥∥2
0
+DΔt

(ν
2
‖∇enh‖

2
0

)
+ b(DΔte

n
h, ε

n
h) ≤

4∑
i=1

(Rn
i , DΔte

n
h).

From (5.8) and (3.4) the term b(DΔte
n
h, ε

n
h) of the left-hand side vanishes. Using

Schwarz’ and Young’s inequalities and Lemma 5.10, we have∥∥DΔte
n
h

∥∥2
0
+DΔt

(ν
2
|enh|

2
1

)
≤ 2

{
β2
1Δt ‖u‖2Z2(tn−1,tn)

+
(
β2

∥∥en−1
h

∥∥
0
+ β3h

2(‖(u, p)n−1‖H3×H2 +
∣∣un−1

∣∣
2
)
)2

+ β2
4

h4

Δt

(
‖(u, p)‖H1(tn−1,tn;H3×H2) +

∥∥un−1
h

∥∥
0,∞ ‖(u, p)‖L2(tn−1,tn;H3×H2)

)2

+ β2
5

∥∥un−1
h

∥∥2
0,∞

∣∣en−1
h

∣∣2
1

}
+

1

2

∥∥DΔte
n
h

∥∥2
0
,



52 MASAHISA TABATA AND SHINYA UCHIUMI

which implies that

DΔt(ν |enh|
2
1) +

∥∥DΔte
n
h

∥∥2
0

≤β11

(∥∥en−1
h

∥∥2
0
+
∥∥un−1

h

∥∥2
0,∞

∣∣en−1
h

∣∣2
1

)
+ β12

{
Δt ‖u‖2Z2(tn−1,tn)

+
h4

Δt
(‖(u, p)‖2H1(tn−1,tn;H3×H2) +

∥∥un−1
h

∥∥2
0,∞ ‖(u, p)‖2L2(tn−1,tn;H3×H2))

+ h4
(
‖(u, p)n−1‖2H3×H2 +

∣∣un−1
∣∣2
2

)}
,

where β11 and β12 are constants depending only on β1, . . . , β5. Using Poincaré’s
inequality ‖en−1

h ‖0 ≤ α1|en−1
h |1 and defining the functions β21 and β22 by

(5.10) β21(ξ) =
β11

ν
(α2

1 + ξ2), β22(ξ) = β12(1 + ξ2),

we have the conclusion. �

5.3. Definitions of constants c∗, c0 and h0. We first define constants β∗
21 and

β∗
22 by

β∗
21 ≡ β21(‖u‖C(L∞) + 1), β∗

22 ≡ β22(‖u‖C(L∞) + 1).

We define two positive constants c∗ and c0 by

c∗ ≡
{
ν−1(1 + α2

1) exp(β
∗
21T )β

∗
22

}1/2
max

{
‖u‖Z2 ,

(
‖(u, p)‖2H1(H3×H2)

+ T
(
‖(u, p)‖2C(H3×H2) + |u|2C(H2)

)
+ να2

50|p0|22
)1/2}

and

c0 ≡ 1

4

√
1

α20α31c∗
.(5.11)

Let a positive constant h0 be small enough to satisfy that

α30h
1−d/6
0

(
c∗h0 + α50h0‖(u, p)‖C(H3×H2) + α21 |u|C(H2)

)
+α30c∗c0h

d/12
0 ≤ 1,(5.12a)

c0

{
α31h

1−d/4
0

(
c∗h0 + α50h0‖(u, p)‖C(H3×H2) + α21 |u|C(H2)

)
+α20h

d/4
0 |u|C(W 1,∞)

}
≤ 3

16α20
,(5.12b)

which are possible since all the powers of h0 are positive.

5.4. Induction. For n = 0, . . . , NT we define the property P(n) by

(a) ν |enh|
2
1 +

∥∥DΔteh
∥∥2
�2(1,n;L2)

≤ exp(β∗
21nΔt)β∗

22

{
Δt2 ‖u‖2Z2(t0,tn)

+ h4(‖(u, p)‖2H1(t0,tn;H3×H2) + ‖(u, p)‖2�2(0,n−1;H3×H2) + |u|2�2(0,n−1;H2))

+ ν
∣∣e0h∣∣21}.

(b) ‖un
h‖0,∞ ≤ ‖u‖C(L∞) + 1.

(c) Δt|Π(1)
h un

h|1,∞ ≤ 1/4.
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Proof of Theorem 4.2. We first prove that P(n) holds for n = 0, . . . , NT by induc-
tion. When n = 0, the property P(0)-(a) obviously holds with the equality. The
properties P(0)-(b) and (c) are proved in similar ways to and easier than P(n)-(b)
and (c) below. We omit the proofs.

Let n ∈ {1, · · · , NT } be any integer. Supposing that P(k), k = 1, . . . , n − 1,
holds true, we prove that P(n) holds. We now apply Lemma 5.11. The condition
(5.8) is satisfied trivially when n ≥ 2. When n = 1, from the choice of u0

h, (2.5)
and Remark 4.1 we have

(5.13) b(e0h, qh) = b(u0
h, qh)− b(û0

h, qh) = 0− 0 = 0, ∀qh ∈ Qh.

We consider the condition (5.5). The former condition follows from Δt ≤ c0h
d/4

and (5.12b) by the inequality

Δt|un−1|1,∞ ≤ c0h
d/4
0 |u|C(W 1,∞) ≤

3

16α20
≤ 1

4
,

and the latter condition Δt|Π(1)
h un−1

h |1,∞ ≤ 1/4 follows from P(n− 1)-(c). Hence,
there exists a solution (un

h, p
n
h) at the step n.

We begin the proof of P(n)-(a). By putting

xn ≡ν |enh|
2
1 , yn ≡

∥∥DΔte
n
h

∥∥2
0
,

bn ≡Δt ‖u‖2Z2(tn−1,tn)

+ h4
(

1
Δt‖(u, p)‖

2
H1(tn−1,tn;H3×H2) + ‖(u, p)n−1‖2H3×H2 +

∣∣un−1
∣∣2
2

)
,

P(n)-(a) is rewritten as

(5.14) xn +Δt
n∑

i=1

yi ≤ exp(β∗
21nΔt)β∗

22

(
x0 +Δt

n∑
i=1

bi

)
.

On the other hand, Lemma 5.11 implies that

xn +Δtyn ≤ (1 + β∗
21Δt)xn−1 + β∗

22Δtbn,

where we have used the inequalities β2i(
∥∥un−1

h

∥∥
0,∞) ≤ β∗

2i, i = 1, 2, obtained from

P(n− 1)-(b). Using the inequalities 1 ≤ 1 + x ≤ exp(x) for x ≥ 0 and P(n− 1)-(a)
rewritten by (5.14), we have

xn +Δt

n∑
i=1

yi = xn +Δtyn +Δt

n−1∑
i=1

yi

≤(1 + β∗
21Δt)xn−1 + β∗

22Δtbn +Δt

n−1∑
i=1

yi

≤(1 + β∗
21Δt) exp(β∗

21(n− 1)Δt)β∗
22

(
x0 +Δt

n−1∑
i=1

bi

)
+ β∗

22Δtbn

≤ exp(β∗
21nΔt)β∗

22

(
x0 +Δt

n∑
i=1

bi

)
,

which is nothing but P(n)-(a).
Since u0

h is the first component of ΠS
h(u

0, 0), we have

e0h = u0
h − û0

h = (ΠS
h(0,−p0))1 = ((ΠS

h − I)(0,−p0))1,
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which implies
∣∣e0h∣∣1 ≤ α50h

2
∣∣p0∣∣

2
. From P(0)-(a) and the definition of c∗, we have

(5.15) ‖enh‖1 ≤ c∗(h
2 +Δt).

P(n)-(b) is proved as follows:

‖un
h‖0,∞

≤‖un
h −Π

(1)
h un‖0,∞ + ‖Π(1)

h un‖0,∞
≤α30h

−d/6‖un
h − Π

(1)
h un‖1 + ‖un‖0,∞ (by Lemmas 5.4 and 5.2)

≤α30h
−d/6(‖un

h − ûn
h‖1 + ‖ûn

h − un‖1 + ‖un −Π
(1)
h un‖1) + ‖un‖0,∞

≤α30h
−d/6

(
c∗(h

2 +Δt) + α50h
2‖(u, p)n‖H3×H2 + α21h |un|2

)
+ ‖un‖0,∞

(by (5.15), Lemma 5.6-(i) and Lemma 5.2)

≤α30h
1−d/6 (c∗h+ α50h‖(u, p)n‖H3×H2 + α21 |un|2) + α30c∗c0h

d/12 + ‖un‖0,∞
(since Δt ≤ c0h

d/4)

≤1 + ‖u‖C(L∞) (since h ≤ h0 and by (5.12a)).

We prove P(n)-(c). We can estimate |un
h|1,∞ Δt as follows:

|un
h|1,∞ Δt

≤(|un
h −Π

(1)
h un|1,∞ + |Π(1)

h un|1,∞)Δt

≤{α31h
−d/2(|un

h −Π
(1)
h un|1) + α20 |un|1,∞}Δt (by Lemmas 5.4 and 5.2)

≤{α31h
−d/2(|un

h − ûn
h|1 + |ûn

h − un|1 + |un − Π
(1)
h un|1) + α20 |un|1,∞}Δt

≤
{
α31h

−d/2
(
c∗(h

2 +Δt) + α50h
2‖(u, p)n‖H3×H2 + α21h |un|2

)
+ α20 |un|1,∞

}
Δt (by (5.15), Lemma 5.6-(i) and Lemma 5.2)

≤c0

{
α31h

1−d/4 (c∗h+ α50h‖(u, p)n‖H3×H2 + α21 |un|2) + α20h
d/4 |un|1,∞

}
+ α31c∗c

2
0 (since Δt ≤ c0h

d/4)

≤ 3

16α20
+

1

16α20
=

1

4α20
(since h ≤ h0, and by (5.12b) and (5.11)).

From this estimate and the definition of α20, we have Δt|Π(1)
h un

h|1,∞ ≤ 1/4.
Thus, we have proved that P(n) holds for n = 0, · · · , NT .
From P(n)-(a), n = 0, . . . , NT , we obtain

(5.16) ‖eh‖�∞(H1) ,
∥∥DΔteh

∥∥
�(1,NT ;L2)

≤ c∗(h
2 +Δt).

Using the triangle inequality ‖uh − u‖�∞(H1) ≤ ‖eh‖�∞(H1) + ‖η‖�∞(H1), we get

‖uh − u‖�∞(H1) ≤ c1(h
2 +Δt).
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We now prove the estimate on the pressure. We can evaluate εnh as follows:

‖εnh‖0 ≤ 1

α4
sup

vh∈Vh

b(vh, ε
n
h)

‖vh‖1
(by Lemma 5.5)

=
1

α4
sup

vh∈Vh

1

‖vh‖1

( 4∑
i=1

(Rn
i , vh)− (DΔte

n
h, vh)− a(enh, vh)

)
(by (5.3a))

≤ 1

α4

( 4∑
i=1

‖Rn
i ‖0 +

∥∥DΔte
n
h

∥∥
0
+ ν |enh|1

)
≤c

(∥∥DΔte
n
h

∥∥
0
+ ν |enh|1 + ‖en−1

h ‖1 +
√
Δt ‖u‖Z2(tn−1,tn)

+ h2‖(u, p)n−1‖H3×H2 +
h2

√
Δt

‖(u, p)‖H1(tn−1,tn;H3×H2) + h2
∣∣un−1

∣∣
2

)
(by Lemma 5.10 and P(n− 1)-(b)),

which implies that, from (5.16)

‖εh‖�2(L2) ≤ c(
∥∥DΔteh

∥∥
�2(L2)

+ h2 +Δt) ≤ c(h2 +Δt),

where c is a positive constant independent of h and Δt. Using the triangle inequality

‖ph − p‖�2(L2) ≤ ‖εh‖�2(L2) + ‖p− p̂h‖�2(L2) ,

we obtain ‖ph − p‖�2(L2) ≤ c1(h
2 +Δt). �

5.5. Proof of Theorem 4.5. In this subsection we prove the result on the P1+/P1-
element. At first we replace the estimates of Rn

2 and Rn
3 in Lemma 5.10.

Lemma 5.10′. Suppose Hypotheses 1′ and 2. Under the condition (5.5) it holds
that

‖Rn
2 ‖0 ≤β2

∥∥en−1
h

∥∥
0
+ β3(h‖(u, p)n−1‖H2×H1 + h2

∣∣un−1
∣∣
2
),

‖Rn
3 ‖0 ≤β4

h√
Δt

(
‖(u, p)‖H1(tn−1,tn;H2×H1)

+
∥∥un−1

h

∥∥
0,∞ ‖(u, p)‖L2(tn−1,tn;H2×H1)

)
for n = 1, . . . , NT .

The proof is similar to Lemma 5.10 by replacing the order k = 2 by k = 1 in
Lemma 5.6-(i).

Proof of Theorem 4.5. We only show the outline of the proof for the existence of
(uh, ph) and the inequality (4.1) since the proof is similar to that of Theorem 4.2.
We replace the definition of c∗ by

c∗ ≡
{
ν−1(1 + α2

1) exp(β
∗
21T )β

∗
22

}1/2
max

{
‖u‖Z2 ,

(
‖(u, p)‖2H1(H2×H1)

+ T
(
‖(u, p)‖2C(H2×H1) + |u|2C(H2)

)
+ να2

50|p0|21
)1/2}

,
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redefine c0 by (5.11) with the new c∗, and replace the condition (5.12) on h0 by

α30h
1−d/6
0

(
c∗ + α50‖(u, p)‖C(H2×H1) + α21 |u|C(H2)

)
+ α30c∗c0h

d/12
0 ≤ 1,(5.17a)

c0

{
α31h

1−d/4
0

(
c∗ + α50‖(u, p)‖C(H2×H1) + α21 |u|C(H2)

)
+ α20h

d/4
0 |u|C(W 1,∞)

}
≤ 3

16α20
.(5.17b)

We also replace P(n)-(a) by

ν |enh|
2
1 +

∥∥DΔteh
∥∥2
�2(1,n;L2)

≤ exp(β∗
21nΔt)β∗

22

{
Δt2 ‖u‖2Z2(t0,tn)

+ h2
(
‖(u, p)‖2H1(t0,tn;H2×H1) + ‖(u, p)‖2�2(0,n−1;H2×H1) + |u|2�2(0,n−1;H2)

)
+ ν

∣∣e0h∣∣21}.
P(n)-(a) implies the estimate

‖enh‖1 ≤ c∗(h+Δt).(5.18)

The choice (5.17) is sufficient to derive P(n)-(b) and (c). Hence, the existence of
the solution and the estimate (4.1) are obtained similarly.

We now prove the estimate (4.2), following [24] except for the introduction of

X1(Π
(1)
h un−1

h ). Substituting (vh, qh) = (enh, ε
n
h) in (5.3), we have

(5.19)
1

2
DΔt ‖enh‖

2
0 +

1

2Δt

∥∥enh − en−1
h

∥∥2
0
+ ν |enh|

2
1 =

4∑
i=1

(Rn
i , e

n
h),

where Ri, i = 1, · · · , 4, are defined in (5.4). The term (Rn
1 , e

n
h) is evaluated by

(5.6a). From Lemma 5.6-(ii) we have∥∥ûn−1
h − un−1

∥∥
0
≤ α51h

2‖(u, p)n−1‖H2×H1 .

Using this estimate in the last line in (5.7), we have

(Rn
2 , e

n
h) ≤ ‖Rn

2 ‖0 ‖enh‖0 ≤ {β2

∥∥en−1
h

∥∥
0
+β′

3h
2(‖(u, p)n−1‖H2×H1+

∣∣un−1
∣∣
2
)} ‖enh‖0 .

We divide the term (Rn
3 , e

n
h) as follows:

(Rn
3 , e

n
h) =

1

Δt
(ηn − ηn−1, enh) +

1

Δt
(ηn−1 − ηn−1 ◦X1(Π

(1)
h un−1), enh)

+
1

Δt
(ηn−1 ◦X1(Π

(1)
h un−1)− ηn−1 ◦X1(Π

(1)
h un−1

h ), enh)

≡ I1 + I2 + I3.

The first term I1 is evaluated as

I1 ≤ 1√
Δt

∥∥∥∥∂η∂t
∥∥∥∥
L2(tn−1,tn;L2)

‖enh‖0 ≤ α51h
2

√
Δt

‖(u, p)‖H1(tn−1,tn;H2×H1) ‖enh‖0 .

By Lemma 5.9 the second term I2 is evaluated as

I2 ≤α6α20 ‖u‖C(W 1,∞)

∥∥ηn−1
∥∥
0
‖enh‖1

≤α6α20 ‖u‖C(W 1,∞) α51h
2‖(u, p)n−1‖H2×H1 ‖enh‖1 .
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In order to evaluate I3 we prepare the estimate

α30h
−d/6

∣∣ηn−1
∣∣
1
≤ α30h

1−d/6α50‖(u, p)n−1‖H2×H1 ≤ 1,

where we have used Lemma 5.6-(i) and (5.17a).

Using Lemma 5.8 with q = 1, p = p′ = 2, w1 = Π
(1)
h un−1, w2 = Π

(1)
h un−1

h and
ψ = ηn−1, Lemma 5.4, the above estimate and (5.7), we can evaluate I3 as follows:

I3 ≤ 1

Δt
‖ηn−1 ◦X1(Π

(1)
h un−1)− ηn−1 ◦X1(Π

(1)
h un−1

h )‖0,1 ‖enh‖0,∞

≤
√
2α30h

−d/6
∣∣ηn−1

∣∣
1
‖Π(1)

h un−1 −Π
(1)
h un−1

h ‖0‖enh‖1
≤
√
2‖Π(1)

h un−1 −Π
(1)
h un−1

h ‖0‖enh‖1
≤
√
2α22(‖en−1

h ‖0 + α51h
2‖(u, p)n−1‖H2×H1 + α21h

2
∣∣un−1

∣∣
2
) ‖enh‖1 .

In order to evaluate (Rn
4 , e

n
h) we prepare the estimate

α30h
−d/6

∣∣en−1
h

∣∣
1
≤ α30h

−d/6c∗(h+Δt) ≤ α30c∗h
−d/6(h+ c0h

d/4) ≤ 1,

where we have used (5.18) and (5.17a). Using Lemma 5.9, the above inequality and
a similar estimate to I3 in (Rn

3 , e
n
h), we can evaluate (Rn

4 , e
n
h) as follows:

(Rn
4 , e

n
h) =− 1

Δt
(en−1

h − en−1
h ◦X1(Π

(1)
h un−1), enh)

− 1

Δt
(en−1

h ◦X1(Π
(1)
h un−1)− en−1

h ◦X1(Π
(1)
h un−1

h ), enh)

≤α6α20 ‖u‖C(W 1,∞) ‖e
n−1
h ‖0 ‖enh‖1

+
√
2α22(‖en−1

h ‖0 + α51h
2‖(u, p)n−1‖H2×H1 + α21h

2
∣∣un−1

∣∣
2
) ‖enh‖1 .

Combining (5.19) with these estimates and using Young’s inequality and Poincaré’s
inequality ‖enh‖0 ≤ α1 |enh|1, we have,

1

2
DΔt ‖enh‖

2
0 + ν |enh|

2
1 ≤ β31

(∥∥en−1
h

∥∥
0
+
√
Δt ‖u‖Z2(tn−1,tn)

+
h2

√
Δt

‖(u, p)‖H1(tn−1,tn;H2×H1) + h2‖(u, p)n−1‖H2×H1 + h2
∣∣un−1

∣∣
2

)
‖enh‖1

≤ν |enh|
2
1 + β32

∥∥en−1
h

∥∥2
0
+ β33

{
Δt ‖u‖2Z2(tn−1,tn) +

h4

Δt
‖(u, p)‖H1(tn−1,tn;H2×H1)

+ h4
(
‖(u, p)n−1‖2H2×H1 +

∣∣un−1
∣∣2
2

)}
,

where β31, β32 and β33 are positive constants independent of h and Δt. Applying
discrete Gronwall’s inequality, we obtain (4.2). �

6. Numerical results

We show numerical results in d = 2 for the P2/P1-element. We compare the
present Scheme LG-LLV with the conventional Scheme LG′.

In order to divide an element K0 in Lemma 3.3 into the union of sub-triangles we
use the algorithm by Priestley [22] and Jack [13], where the edges and vertices are
traced to identify the polygon E1 and it is divided into the union of sub-triangles.
For the quadrature in Scheme LG′ we employ the seven-point formula of degree
five [11] and the 21-point formula of degree nine [14]. We denote the schemes with
these formulae by LG′(5) and LG′(9).
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Table 1. Symbols used in Figures 2, 3 and 4, and Tables 2 and 3.

φ u p u u
X �∞(H1

0 ) �2(L2) �∞(L2) �∞(L2)
Δt h2 h2 h2 h3

Scheme LG′ • � � �
Scheme LG-LLV ◦ � � �

Figure 1. The triangulation of Ω̄ for N = 16.

In order to find an element including a given point we use the efficient local search
algorithm by Löhner and Ambrosiano [15]. For the triangulation of the domain the
FreeFem++ [12] is used.

The relative error EX is defined by

EX(φ) ≡ ‖Πhφ− φh‖X
‖Πhφ‖X

,

for φ = u in X = �∞(H1
0 ) and �∞(L2), and for φ = p in X = �2(L2). Table 1

shows the symbols used in the graphs and tables. Since every graph of the relative
error EX versus h is depicted in the logarithmic scale, the slope corresponds to the
convergence order.

Example 6.1. In (2.1), let Ω ≡ (0, 1)2, T = 1. We consider the two cases, ν = 10−2

and 10−4. The functions f and u0 are defined so that the exact solution is

u1(x, t) = φ(x1, x2, t),

u2(x, t) = −φ(x2, x1, t),

p(x, t) = sin(π(x1 + 2x2) + 1 + t),

where φ(a, b, t) ≡ − sin(πa)2 sin(πb){sin(π(a+ t)) + 3 sin(π(a+ 2b+ t))}.

Let N be the division number of each side of Ω. We set h ≡ 1/N . Figure 1 shows
the triangulation of Ω̄ for N = 16. The time increment Δt is set to be Δt = h2

(N = 16, 23, 32, 45 and 64) or Δt = h3 (N = 16, 19, 23, 27 and 32) so that we can
observe the convergence behavior of order h2 or h3. The purpose of the choice
Δt = O(h2) or O(h3) is to examine the theoretical convergence order, but it is not
based on the stability condition, which is much weaker as shown in Theorem 4.2.

At first we consider the case of ν = 10−2. We use the quadrature formula of
degree five in Scheme LG′. Figure 2 shows the graphs of E�∞(H1

0 )
(u), E�2(L2)(p)

and E�∞(L2)(u) versus h. Their values and convergence orders are listed in Table 2.
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Figure 2. Relative errors E�∞(H1
0 )
(u), E�2(L2)(p), E�∞(L2)(u)

with Δt = h2 (left) and E�∞(L2)(u) with Δt = h3 (right) of Scheme

LG′(5) and Scheme LG-LLV in the case of ν = 10−2 in Example
6.1.

Table 2. The values of relative errors and orders in Figure 2 by
Scheme LG′(5) (top) and Scheme LG-LLV (bottom).

N • order � order � order

16 8.55e-2 1.63e-1 7.77e-2
23 4.34e-2 1.87 8.40e-2 1.82 4.03e-2 1.81
32 2.30e-2 1.93 4.52e-2 1.88 2.17e-2 1.87
45 1.20e-2 1.90 2.34e-2 1.92 1.13e-2 1.93
64 6.02e-3 1.97 1.18e-2 1.96 5.64e-3 1.96

N ◦ order � order � order

16 8.97e-2 1.93e-1 7.84e-2
23 4.62e-2 1.83 1.03e-1 1.73 4.10e-2 1.78
32 2.46e-2 1.92 5.44e-2 1.92 2.25e-2 1.82
45 1.29e-2 1.90 2.84e-2 1.91 1.17e-2 1.93
64 6.39e-3 1.99 1.41e-2 1.97 5.81e-3 1.98

N � order

16 6.45e-3
19 3.73e-3 3.19
23 2.10e-3 3.02
27 1.29e-3 3.02
32 7.57e-4 3.15

N � order

16 1.48e-2
19 9.19e-3 2.78
23 6.04e-3 2.19
27 3.83e-3 2.85
32 2.72e-3 2.01

When Δt = h2, the convergence orders of E�∞(H1
0 )
(u) (•, ◦), E�2(L2)(p) (�, �)

and E�∞(L2)(u) (�, �) are almost 2 in both schemes. When Δt = h3, the order of
E�∞(L2)(u) is almost 3 in Scheme LG′(5) (�) and 2 in Scheme LG-LLV (�). They
reflect the theoretical results.

Next, we consider a higher-Reynolds-number case of ν = 10−4. We use two
quadrature formulae of degree five and nine in Scheme LG′. Figure 3 shows the
graphs by LG′(5) and LG-LLV and Figure 4 shows the graphs by LG′(9) and
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Figure 3. Relative errors E�∞(H1
0 )
(u), E�2(L2)(p), E�∞(L2)(u)

with Δt = h2 (left) and E�∞(L2)(u) with Δt = h3 (right) of Scheme

LG′(5) and Scheme LG-LLV in the case of ν = 10−4 in Example
6.1.

Figure 4. Relative errors E�∞(H1
0 )
(u), E�2(L2)(p), E�∞(L2)(u)

with Δt = h2 (left) and E�∞(L2)(u) with Δt = h3 (right) of Scheme

LG′(9) and Scheme LG-LLV in the case of ν = 10−4 in Example
6.1.

LG-LLV. Their values are listed in Table 3. When Δt = h2, all errors increase
abnormally at N = 32, 45 and 64 in Scheme LG′(5) (•, �, �) in Figure 3 while
the convergence is observed in LG′(9) (•, �, �) in Figure 4 and Scheme LG-LLV
(◦, �, �), but the orders of E�∞(H1

0 )
(u) (•, ◦) are less than 2. In order to obtain
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Table 3. The values of relative errors and orders in Figures 3 and
4 by Scheme LG′(5) (top), Scheme LG′(9) (middle) and Scheme
LG-LLV (bottom).

N • order � order � order

16 1.91e+0 2.14e-1 1.93e-1
23 1.34e+0 0.97 8.97e-2 2.39 8.81e-2 2.16
32 9.42e+0 -5.90 3.48e-1 -4.11 5.28e-1 -5.43
45 4.10e+1 -4.31 1.28e+0 -3.81 1.46e+0 -2.98
64 8.82e+1 -2.18 2.77e+0 -2.20 2.02e+0 -0.93

N • order � order � order

16 1.00e+0 1.98e-1 1.44e-1
23 4.98e-1 1.93 1.03e-1 1.80 7.19e-2 1.91
32 2.18e-1 2.50 5.24e-2 2.05 3.33e-2 2.33
45 1.32e-1 1.47 2.44e-2 2.24 1.52e-2 2.29
64 7.31e-2 1.69 1.05e-2 2.39 6.27e-3 2.52

N ◦ order � order � order

16 6.72e-1 2.65e-1 2.09e-1
23 3.91e-1 1.50 1.36e-1 1.83 9.88e-2 2.07
32 1.85e-1 2.26 6.98e-2 2.02 4.18e-2 2.60
45 1.27e-1 1.10 3.73e-2 1.84 2.12e-2 1.99
64 7.21e-2 1.61 1.83e-2 2.03 9.78e-3 2.20

N � order

16 1.55e-1
19 6.64e-2 4.92
23 3.65e-2 3.14
27 1.92e-2 4.01
32 1.02e-2 3.71

N � order

16 1.55e-1
19 6.64e-2 4.92
23 3.65e-2 3.14
27 1.92e-2 4.01
32 1.02e-2 3.71

N � order

16 2.47e-1
19 1.05e-1 4.96
23 8.80e-2 0.94
27 6.18e-2 2.20
32 2.97e-2 3.29

the theoretical convergence order O(h2) in Scheme LG-LLV, it seems that finer
meshes will be necessary. When Δt = h3, the orders of E�∞(L2)(u) are more than
3 in Schemes LG′(5) and LG′(9) (�) while it is less than 3 between N = 19 and
23, and N = 23 and 27 in Scheme LG-LLV (�), cf. Remark 4.6. We can observe
that convergence is recovered in Scheme LG′(5) for much smaller time increments
Δt = h3. The reason is explained in Appendix B. In Table 3 (�) the differences of
the results of LG′(5) and LG′(9) are too small to be distinguished in three significant
figures.

The above numerical results show that, for the stable computation by Scheme
LG′, quadrature formula of degree five is sufficient in the case of ν = 10−2 but not
so in a higher-Reynolds-number case of ν = 10−4. Quadrature formula of degree
nine gives the stable computation for ν = 10−4. Scheme LG-LLV is always stable,
as proved in Theorem 4.2.

We now consider a cavity problem to see that Scheme LG-LLV is robust for
high Reynolds numbers while Scheme LG′ is not. This problem is subject to an
inhomogeneous Dirichlet boundary condition, but we can solve it by Scheme LG′

and Scheme LG-LLV. In order to assure the existence of the solution we deal with
a regularized cavity problem, where the prescribed velocity is continuous on the
boundary.

Example 6.2. Let Ω ≡ (0, 1)2, f = 0, u0 = 0. We consider the two cases,
ν = 10−4 and 10−5. The boundary condition is described in Figure 5 (left), where
g1 = 4x1(1− x1).
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Figure 5. The domain Ω and the boundary condition (left) and
the local mesh in [0.7, 1]× [0.7, 1] (right) in Example 6.2.

Figure 6. Stereographs of un
h1 (left) and un

h2 (right) at tn = 8 by
Scheme LG′(5) in Example 6.2 when ν = 10−4.

Figure 7. Stereographs of un
h1 (left) and un

h2 (right) at tn = 8 by
Scheme LG-LLV in Example 6.2 when ν = 10−4.

Figure 5 (right) shows the local mesh in [0.7, 1]× [0.7, 1] of the triangulation of
Ω̄, where each side is divided into 100 segments and smaller triangles are employed
near the boundary. The total element number is 9,774. We take Δt = 0.01. We
use the formulae of degree five and nine in Scheme LG′. Figures 6 and 7 show
the stereographs of the solution un

h at tn = 8 in the subdomain [0, 1] × [0.8, 1.0]
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Figure 8. Stereographs of un
h1 (left) and un

h2 (right) at tn = 8 by
Scheme LG′(9) in Example 6.2 when ν = 10−5.

Figure 9. Stereographs of un
h1 (left) and un

h2 (right) at tn = 8 by
Scheme LG-LLV in Example 6.2 when ν = 10−5.

by Scheme LG′(5) and Scheme LG-LLV, respectively, when ν = 10−4. They are
depicted in the range [−0.4, 0.4]. Neither solution is oscillating though uh2 by
Scheme LG′(5) takes larger values than that by Scheme LG-LLV as seen clearly
around x1 = 0.6. Figures 8 and 9 show the stereographs of the solution un

h at
tn = 8 in the subdomain [0, 1] × [0.8, 1.0] by Scheme LG′(9) and Scheme LG-
LLV, respectively, when ν = 10−5. They are depicted in the range [−0.4, 0.4].
Oscillation is clearly observed for both components of the solution by Scheme LG′(9)
in Figure 8. Oscillation is also observed when the formula of degree five is used
though the figure is not shown here. This shows that the degree of the formula is
not enough. On the other hand, we can see that the solution by Scheme LG-LLV
is solved well only with few oscillation at the boundary layer near the corner (1, 1)
in Figure 9. In order to eliminate the oscillation completely smaller elements will
be required near the corner. Thus, Scheme LG-LLV is more robust than Scheme
LG′(9) for high Reynolds numbers. Table 4 shows the CPU times in computing
the composite function term until tn = 2 when ν = 10−4. Scheme LG-LLV requires
about 2.6 times longer CPU time than LG′(9). The computations were carried out
on a machine with Intel Xeon Processor E3-1245 (3.30GHz) and Windows 7. The
code is compiled by Microsoft Visual C++ 2010 with O2 option.
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Table 4. CPU times (s) until tn = 2 when ν = 10−4 in Example 6.2.

LG′(5) LG′(9) LG-LLV

1.387 3.672 9.448

7. Conclusions

We have presented a Lagrange–Galerkin scheme free from numerical quadrature
for the Navier–Stokes equations. The scheme has a close relation with Priestley’s as
described in Remark 3.4. By virtue of the introduction of a locally linearized veloc-
ity, the scheme is exactly computable and the theoretical stability and convergence
results are assured for numerical solutions. We have shown optimal error estimates
in �∞(H1) × �2(L2)-norm for the velocity and pressure in the case of P2/P1- and
P1+/P1-finite elements. Numerical results have reflected these estimates and the
robustness of the scheme for high-Reynolds-number problems. The scheme pre-
sented here is of first-order in time. The extension to second-order in time can be
done as in [6, 19]. The extension of the subdivision algorithm of the triangle by
Priestley [22] and Jack [13] to the tetrahedron is not straightforward. Numerical
results in 3D will be reported in the future.

Appendix A. Proof of Lemma 5.9

Proof. We simply denote X1(w) by F . From the definition of the norm ‖·‖−1, we
have
(A.1)

‖ψ − ψ ◦ F‖−1 = sup
v∈H1

0 (Ω)d
‖v‖−1

1

∫
Ω

{ψ(x)−ψ(F (x))} · v(x)dx ≡ sup
v∈H1

0 (Ω)d
‖v‖−1

1 I1.

The change of variables from x to y = F (x) yields

I1 =

∫
Ω

ψ(x) · v(x)dx−
∫
Ω

ψ(y) · v(F−1(y))

∣∣∣∣det(∂x

∂y

)∣∣∣∣dy
≤ ‖ψ‖0

∥∥∥∥v − v ◦ F−1

∣∣∣∣det(∂x

∂y

)∣∣∣∣∥∥∥∥
0

≡ ‖ψ‖0 I2,
(A.2)

where det(∂x∂y ) is the Jacobian. We evaluate I2 by dividing

(A.3) I2 ≤
∥∥v − v ◦ F−1

∥∥
0
+

∥∥∥∥v ◦ F−1

(
1−

∣∣∣∣det(∂x

∂y

)∣∣∣∣)∥∥∥∥
0

≡ I21 + I22.

Using the estimates of the Jacobian (Lemma 5.7) and the change of variable from
x to z(x, s) ≡ sF (x) + (1− s)x = x− sw(x)Δt, we have

I221 =

∫
Ω

|v(y)− v(F−1(y))|2dy ≤ α61

∫
Ω

|v(F (x))− v(x)|2dx

≤ α61Δt2 ‖w‖20,∞
∫
Ω

∫ 1

0

|∇v(z(x, s))|2dsdx ≤ α62Δt2 ‖w‖20,∞ ‖∇v‖20 .
(A.4)

From a similar estimate to the proof of Lemma 5.7, we get∣∣∣∣1− ∣∣∣det(∂x

∂y

)∣∣∣∣∣∣∣ ≤ ∣∣∣1− det

(
∂x

∂y

)∣∣∣ = ∣∣∣det(∂x

∂y

)∣∣∣∣∣∣det(∂y

∂x

)
− 1

∣∣∣ ≤ α63Δt |w|1,∞ ,
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which implies

(A.5) I22 ≤
∥∥v ◦ F−1

∥∥
0

∥∥∥∥1− ∣∣∣det(∂x

∂y

)∣∣∣∥∥∥∥
0,∞

≤ α64Δt |w|1,∞ ‖v‖0 .

Combining the estimates (A.1)–(A.5), we have the conclusion. �

Appendix B. A scheme equivalent to Scheme LG
′

for small time increments

First we recall that the P2-element is employed for the velocity. In the numerical
quadrature formulae used in Section 6 all quadrature points aj are in the interior

of the element. If Δt is sufficiently small, the image [X1(u
n−1
h )](aj) and aj are in

the same element. In such a case the first equation of Scheme LG′ can be rewritten
as (

D̄Δtu
n
h, vh

)
+
(
(un−1

h · ∇)un−1
h , vh

)
+ a(un

h, vh)+b(vh, p
n
h)(B.1)

−Δt

2

∑
K∈Th

Ih
[{
(un−1

h )T (∇2un−1
h )un−1

h

}
· vh;K

]
= (fn, vh), ∀vh ∈ Vh,

where∇2un−1
h is the Hesse matrix. Here, we have used the Taylor expansion and the

condition that the quadrature is of order m ≥ 5. Hence Scheme LG′ is equivalent
to a scheme consisting of (B.1) and the second equation of Scheme LG′. For this
scheme we can show the stability and convergence. For the details we refer to a
forthcoming paper.
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