Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Application of modal filtering to a spectral difference method


Authors: Jan Glaubitz, Philipp Öffner and Thomas Sonar
Journal: Math. Comp. 87 (2018), 175-207
MSC (2010): Primary 65M12, 65M70; Secondary 42C10
DOI: https://doi.org/10.1090/mcom/3257
Published electronically: August 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We adapt the spectral viscosity (SV) formulation implemented as a modal filter to a Spectral Difference Method (SD) solving hyperbolic conservation laws. In the SD Method we use selections of different orthogonal polynomials (APK polynomials). Furthermore we obtain new error bounds for filtered APK extensions of smooth functions. We demonstrate that the modal filter also depends on the chosen polynomial basis in the SD Method. Spectral filtering stabilizes the scheme and leaves weaker oscillations. Hence, the selection of the family of orthogonal polynomials on triangles and their specific modal filter possesses a positive influence on the stability and accuracy of the SD Method. In the second part, we initiate a stability analysis for a linear scalar test case with periodic initial condition to find the best selection of APK polynomials and their specific modal filter. To the best of our knowledge, this work is the first that gives a stability analysis for a scheme with spectral filtering. Finally, we demonstrate the influence of the underlying basis of APK polynomials in a well-known test case.


References [Enhancements On Off] (What's this?)

  • [1] Y. Allaneau and A. Jameson, Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 49-52, 3628-3636. MR 2851584, https://doi.org/10.1016/j.cma.2011.08.019
  • [2] H. L. Atkins and C.-W. Shu, Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations, AIAA Journal 36 (1998), no. 5, 775-782.
  • [3] G. E. Barter and D. L. Darmofal, Shock capturing with higher-order, PDE-based artificial viscosity, AIAA paper 3823 (2007).
  • [4] M. G. Blyth and C. Pozrikidis, A Lobatto interpolation grid over the triangle, IMA J. Appl. Math. 71 (2006), no. 1, 153-169. MR 2203048, https://doi.org/10.1093/imamat/hxh077
  • [5] M. H. Carpenter and C. A. Kennedy, Fourth-order 2n-storage Runge-Kutta schemes, Nasa tm 109112 (1994), 871-885.
  • [6] Moshe Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991), no. 4, 345-390. MR 1154903, https://doi.org/10.1007/BF01060030
  • [7] Charles F. Dunkl and Yuan Xu, Orthogonal Polynomials of Several Variables, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 155, Cambridge University Press, Cambridge, 2014. MR 3289583
  • [8] Anne Gelb and Jared Tanner, Robust reprojection methods for the resolution of the Gibbs phenomenon, Appl. Comput. Harmon. Anal. 20 (2006), no. 1, 3-25. MR 2200928, https://doi.org/10.1016/j.acha.2004.12.007
  • [9] J. Glaubitz, H. Ranocha, P. Öffner, and T. Sonar, Enhancing stability of correction procedure via reconstruction using summation-by-parts operators II: Modal filtering, 2016, Submitted.
  • [10] D. Gottlieb and J. S. Hesthaven, Spectral methods for hyperbolic problems, J. Comput. Appl. Math. 128 (2001), no. 1-2, 83-131. MR 1820872, https://doi.org/10.1016/S0377-0427(00)00510-0
  • [11] David Gottlieb and Steven A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977. MR 0520152
  • [12] David Gottlieb and Chi-Wang Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (1997), no. 4, 644-668. MR 1491051, https://doi.org/10.1137/S0036144596301390
  • [13] Jan S. Hesthaven and Robert M. Kirby, Filtering in Legendre Spectral Methods, Math. Comp. 77 (2008), no. 263, 1425-1452. MR 2398775, https://doi.org/10.1090/S0025-5718-08-02110-8
  • [14] P. G. Huang, Z. J. Wang, and Y. Liu, An implicit space-time spectral difference method for discontinuity capturing using adaptive polynomials, AIAA paper 5255 (2005).
  • [15] H. T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, AIAA paper 4079 (2007).
  • [16] H. T. Huynh, High-order methods including discontinuous Galerkin by reconstructions on triangular meshes, AIAA Paper 44 (2011).
  • [17] H. T. Huynh, Z. J. Wang, and P. E. Vincent, High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids, Comput. & Fluids 98 (2014), 209-220. MR 3209968, https://doi.org/10.1016/j.compfluid.2013.12.007
  • [18] Antony Jameson, A proof of the stability of the spectral difference method for all orders of accuracy, J. Sci. Comput. 45 (2010), no. 1-3, 348-358. MR 2679803, https://doi.org/10.1007/s10915-009-9339-4
  • [19] George Em Karniadakis and Spencer J. Sherwin, Spectral/$ hp$ Element Methods for Computational Fluid Dynamics, 2nd ed., Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005. MR 2165335
  • [20] Robert M. Kirby and Spencer J. Sherwin, Aliasing errors due to quadratic nonlinearities on triangular spectral/$ hp$ element discretisations, J. Engrg. Math. 56 (2006), no. 3, 273-288. MR 2292677, https://doi.org/10.1007/s10665-006-9079-5
  • [21] Tom Koornwinder, Two-variable analogues of the classical orthogonal polynomials, Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Academic Press, New York, 1975, pp. 435-495. MR 0402146
  • [22] David A. Kopriva and John H. Kolias, A conservative staggered-grid Chebyshev multidomain method for compressible flows, J. Comput. Phys. 125 (1996), no. 1, 244-261. MR 1381812, https://doi.org/10.1006/jcph.1996.0091
  • [23] D. A. Kopriva and J. H. Kolias, A conservative staggered-grid Chebyshev multidomain method for compressible flow., Tech. report, DTIC Document, 1995.
  • [24] Yen Liu, Marcel Vinokur, and Z. J. Wang, Spectral difference method for unstructured grids. I. Basic formulation, J. Comput. Phys. 216 (2006), no. 2, 780-801. MR 2235393, https://doi.org/10.1016/j.jcp.2006.01.024
  • [25] Heping Ma, Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal. 35 (1998), no. 3, 869-892. MR 1619902, https://doi.org/10.1137/S0036142995293900
  • [26] Yvon Maday, Sidi M. Ould Kaber, and Eitan Tadmor, Legendre pseudospectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal. 30 (1993), no. 2, 321-342. MR 1211394, https://doi.org/10.1137/0730016
  • [27] G. May and A. Jameson, A spectral difference method for the Euler and Navier-Stokes equations on unstructured meshes, AIAA paper 304 (2006).
  • [28] A. Meister, S. Ortleb, and Th. Sonar, Application of spectral filtering to discontinuous Galerkin methods on triangulations, Numer. Methods Partial Differential Equations 28 (2012), no. 6, 1840-1868. MR 2981873, https://doi.org/10.1002/num.20705
  • [29] Andreas Meister, Sigrun Ortleb, Thomas Sonar, and Martina Wirz, An extended discontinuous Galerkin and spectral difference method with modal filtering, ZAMM Z. Angew. Math. Mech. 93 (2013), no. 6-7, 459-464. MR 3069920, https://doi.org/10.1002/zamm.201200051
  • [30] Philipp Öffner and Thomas Sonar, Spectral convergence for orthogonal polynomials on triangles, Numer. Math. 124 (2013), no. 4, 701-721. MR 3073957, https://doi.org/10.1007/s00211-013-0530-z
  • [31] P. Öffner, T. Sonar, and M. Wirz, Detecting strength and location of jump discontinuities in numerical data, Applied Mathematics 4 (2013), no. 12, 1.
  • [32] S. Ortleb, Ein diskontinuierliches Galerkin-Verfahren hoher Ordnung auf Dreiecksgittern mit modaler Filterung zur Lösung hyperbolischer Erhaltungsgleichungen, Kassel University Press GmbH, 2011.
  • [33] P.-O. Persson and J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, AIAA paper 112 (2006).
  • [34] H. Ranocha, J. Glaubitz, P. Öffner, and T. Sonar, Enhancing stability of correction procedure via reconstruction using summation-by-parts operators I: Artificial dissipation, 2016, Submitted.
  • [35] Hendrik Ranocha, Philipp Öffner, and Thomas Sonar, Summation-by-parts operators for correction procedure via reconstruction, J. Comput. Phys. 311 (2016), 299-328. MR 3461788, https://doi.org/10.1016/j.jcp.2016.02.009
  • [36] P. K. Suetin, Orthogonal polynomials in two variables, Analytical Methods and Special Functions, vol. 3, Gordon and Breach Science Publishers, Amsterdam, 1999. MR 1717891
  • [37] Yuzhi Sun, Z. J. Wang, and Yen Liu, High-order multidomain spectral difference method for the Navier-Stokes equations on unstructured hexahedral grids, Commun. Comput. Phys. 2 (2007), no. 2, 310-333. MR 2303929
  • [38] Eitan Tadmor, Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal. 26 (1989), no. 1, 30-44. MR 977947, https://doi.org/10.1137/0726003
  • [39] Kris Van den Abeele, Chris Lacor, and Z. J. Wang, On the connection between the spectral volume and the spectral difference method, J. Comput. Phys. 227 (2007), no. 2, 877-885. MR 2442378, https://doi.org/10.1016/j.jcp.2007.08.030
  • [40] Kris Van den Abeele, Chris Lacor, and Z. J. Wang, On the stability and accuracy of the spectral difference method, J. Sci. Comput. 37 (2008), no. 2, 162-188. MR 2453217, https://doi.org/10.1007/s10915-008-9201-0
  • [41] Hervé Vandeven, Family of spectral filters for discontinuous problems, J. Sci. Comput. 6 (1991), no. 2, 159-192. MR 1140344, https://doi.org/10.1007/BF01062118
  • [42] P. E. Vincent, P. Castonguay, and A. Jameson, Insights from von Neumann analysis of high-order flux reconstruction schemes, J. Comput. Phys. 230 (2011), no. 22, 8134-8154. MR 2835413, https://doi.org/10.1016/j.jcp.2011.07.013
  • [43] P. E. Vincent, P. Castonguay, and A. Jameson, A new class of high-order energy stable flux reconstruction schemes, J. Sci. Comput. 47 (2011), no. 1, 50-72. MR 2781148, https://doi.org/10.1007/s10915-010-9420-z
  • [44] Z. J. Wang, High-order methods for the Euler and Navier-stokes equations on unstructured grids, Progress in Aerospace Sciences 43 (2007), no. 1, 1-41.
  • [45] Z. J. Wang and Haiyang Gao, A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids, J. Comput. Phys. 228 (2009), no. 21, 8161-8186. MR 2573350, https://doi.org/10.1016/j.jcp.2009.07.036
  • [46] Z. J. Wang, Yen Liu, Georg May, and Antony Jameson, Spectral difference method for unstructured grids. II. Extension to the Euler equations, J. Sci. Comput. 32 (2007), no. 1, 45-71. MR 2320559, https://doi.org/10.1007/s10915-006-9113-9
  • [47] M. Wirz, Ein Spektrale-Differenzen-Verfahren mit modaler Filterung und zweidimensionaler Kantendetektierung mithilfe konjugierter Fourierreihen, Cuvillier, 2012.
  • [48] M. Wirz, Detecting edges in high order methods for hyperbolic conservation laws, High Order Nonlinear Numerical Schemes for Evolutionary PDEs, Springer, 2014, pp. 151-167.
  • [49] Meilin Yu, Z. J. Wang, and Yen Liu, On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods, J. Comput. Phys. 259 (2014), 70-95. MR 3148560, https://doi.org/10.1016/j.jcp.2013.11.023

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M12, 65M70, 42C10

Retrieve articles in all journals with MSC (2010): 65M12, 65M70, 42C10


Additional Information

Jan Glaubitz
Affiliation: Technische Universität Braunschweig, Institut Computational Mathematics, Pockelsstraße 14, D-38106 Braunschweig, Germany
Email: j.glaubitz@tu-bs.de

Philipp Öffner
Affiliation: Technische Universität Braunschweig, Institut Computational Mathematics, Pockelsstraße 14, D-38106 Braunschweig, Germany
Email: p.oeffner@tu-bs.de

Thomas Sonar
Affiliation: Technische Universität Braunschweig, Institut Computational Mathematics, Pockelsstraße 14, D-38106 Braunschweig, Germany
Email: t.sonar@tu-bs.de

DOI: https://doi.org/10.1090/mcom/3257
Keywords: Hyperbolic conservation laws, high order methods, Spectral Difference Method, orthogonal polynomials, modal filtering
Received by editor(s): April 2, 2016
Received by editor(s) in revised form: September 13, 2016
Published electronically: August 7, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society