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SHARP BOUNDS FOR THE MODULUS AND PHASE

OF HANKEL FUNCTIONS WITH APPLICATIONS

TO JAEGER INTEGRALS

PEDRO FREITAS

Abstract. We prove upper and lower bounds for a class of Jaeger integrals
Gν(τ) appearing in axisymmetric diffusive transport related to several physical
applications. In particular, we show that these integrals are globaly bounded
either from above or from below by the first terms in their corresponding
asymptotic expansions in τ , both at zero and infinity. In the case of G0(τ) we
show that it is bounded from below by the Ramanujan integral.

These bounds are obtained as a consequence of sharp bounds derived for
the modulus and phase of Hankel functions, and for the Ramanujan integral,
which we believe to be new and of independent interest, complementing the
asymptotic and numerical results in the literature.

1. Introduction

The family of integrals defined by

(1.1) J (p, q; τ ) =

∫ ∞

0

e−τu2

[pJ1(u) + qJ0(u)]
2 + [pY1(u) + qY0(u)]

2

du

u
,

for positive τ and where Jν and Yν are the Bessel functions of the first and second
kind, respectively, was derived in [J] in connection with the flow of heat in domains
with cylindrical symmetry. These integrals have received much attention from the
numerical analysis community since their introduction, beginning with the work of
Jaeger and his collaborators; see [PM] and the references therein.

Recently, some work of a more theoretical nature has been devoted to integrals
of the above type and their extensions to general indexes, such as the family

(1.2) Gν(τ ) =

∫ ∞

0

e−τu2

uM2
ν (u)

du (ν ≥ 0)

studied in [BPPR]. Here Mν is the modulus of the Hankel function

H(1)
ν (u) = Jν(u) + iYν(u) (ν ∈ R),

that is,

Mν(u) =
[
J2
ν (u) + Y 2

ν (u)
]1/2

,
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corresponding to the functions appearing in J (1, 0; τ ) and J (0, 1; τ ) when ν equals
1 or 0, respectively.

The present work, although falling into the latter category, was inspired by
Figures 1 and 3 in [PM], where it is seen that the integrals J (1, 0; τ ) and J (0, 1; τ )
(G1 and G0, respectively, in our notation) seem to be bounded by the dominant
terms in the corresponding asymptotic expansions as τ approaches 0 and +∞. This,
together with the fact that a similar behaviour is known for the functionsMν defined
above for large values of the argument ([OM, p. 231] and [Wa]), has prompted us
to study the family of integrals (1.2) from this perspective. In particular, and while
the majority of the results in the literature address either the asymptotic behaviour
of such functions or their numerical approximation [B,BOS,DNT,J,JC,N,L], here
we will be mostly concerned with bounding the functions Gν by terms in their
asymptotic expansions. These bounds are thus sharp as τ approaches either zero
or infinity, complementing both the asymptotic and numerical results given in the
literature.

While the existing bounds for M2
ν already yield bounds for Gν(τ ), which are

sharp for small τ , in order to obtain sharp bounds for large τ we need to obtain
first bounds for M2

ν (or for the phase function) which are sharp for small argument.
To the best of our knowledge the bounds given here are new and, in one case, quite
striking, in that they are actually asymptotically sharp both for small and large
arguments; see Theorem A.

In some studies such as those in [N,L], the functions J0 and Y0 in G0 are approx-
imated by their expansions for small argument, namely, 1 and 2[γ + log(x/2)]/π,
respectively. The resulting integral is known in the literature as Ramanujan’s inte-
gral [Hd,L], and we shall see that it yields a lower bound to the original integral.
Furthermore, this is quite accurate for large values of the argument, as at least the
first three terms in the corresponding expansions coincide.

There are some points which should be made at this stage. First it is important to
note that these bounds are global and do not hold only for sufficiently small or large
values of the argument, although of course they are not necessarily very accurate
far away from these limiting values. Second, they are not a direct consequence of
an alternating series-type result and, at least in some cases, adding higher-order
terms does not necessarilly produce further global bounds; see Remark 4 following
Corollary B. Finally, the existing bounds for the functions Mν mentioned above,
being for large values of the argument, yield bounds for Gν which are accurate only
for small τ , while the most interesting case corresponds precisely to large τ , which
requires the new bounds developed here. Note also that in order to be able to
replace directly M2

ν by a bound in (1.2), it is actually necessary that its asymptotic
behaviour at zero is appropriate in order to make the singularity of the integrand
integrable; see Remark 2 after Theorem A.

The structure of the paper is as follows. In the next section we gather some
basic facts pertaining to Jaeger integrals of the form given by (1.2) and to the

modulus and phase of the Hankel function H
(1)
ν . This is followed by a section

where we state the main results of the paper. The proofs of the results concerning
the Hankel functions and the Ramanujan integral may be found in Sections 4 and 5,
respectively, while those concerning Jaeger integrals appear in Section 6.

Throughout Section 5 we shall make use of some inequalities that we were not
able to find in the literature relating the function 1/Γ(1 − x) to the first terms in
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its Taylor expansions around 0 and 1 on certain intervals. For completeness, and
also because this is largely in the spirit of the paper, we provide the corresponding
proofs in Appendix A.

2. Preliminaries and basic facts about Gν

We shall first collect some properties of the functions Gν which will be used
throughout the paper. The first of these is the monotonicity in both its argument
and in the parameter ν, which are a direct consequence of the monotonicity for
Mν . This, in turn, follows easily from Nicholson’s integral formula for M2

ν (see [Wa,
pp. 441ff] or [Wi]). More precisely we have

(2.1) M2
ν (x) =

8

π2

∫ +∞

0

K0(2x sinh(t)) cosh(2νt) dt

and thus, due to the positivity of all the functions involved and the fact that K0

and cosh are (strictly) decreasing and increasing in their arguments, respectively,
we have that Mν(x) is (strictly) decreasing in x and increasing in ν.

From the dependence of Gν on M2
ν we then have

Gν(τ ) < Gμ(τ ), ∀ν>μ≥0 and ∀τ>0.

Since the integrals Gν are known explicitly when ν equals n−1/2 for positive integer
values of n (see [BPPR, p. 1261]), this immediately provides the simple lower and
upper bounds

(2.2) G�ν+1/2�−1/2(τ ) ≤ Gν(τ ) ≤ G�ν−1/2�+1/2(τ ),

where, as usual, we have denoted by �x� and 	x
 the smallest integer not less than
and the largest integer not greater than x, respectively. The left inequality holds
for all non-negative values of ν, while that on the right holds for ν larger than or
equal to 1/2.

Another straightforward observation is that Gν may be related directly to the

argument of the Hankel function H
(1)
ν which is defined by

θν(x) = arctan

[
Yν

Jν

]
.

Here θν is the continuous real function with branch defined by

lim
x→0+

θν(x) = −π

2
.

Using the identity [OM, 10.18.8]

(2.3) θ′ν(x) =
2

πxM2
ν (x)

in the definition (1.2) yields

Gν(τ ) = π
2

∫ ∞

0

e−τu2

θ′ν(u) du = π2

4 + πτ

∫ ∞

0

ue−τu2

θν(u) du

upon integration by parts. In fact, by performing the change of variables u =
√
v

in the above integral we are led to

(2.4) Gν(τ ) =
π2

4
+

πτ

2

∫ ∞

0

θν
(√

v
)
e−τv dv,
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and we thus see that the function

2

πτ

[
Gν(τ )−

π2

4

]

is the Laplace transform of θν (
√
v).

As we will see below, using bounds for θν in the above relation will, in some
cases, allow us to obtain estimates for Gν which are different from those obtainable
by using known bounds for M2

ν directly.

3. Main results

Our main results are as follows. We first consider the modulus and phase of the

Hankel function H
(1)
ν , for which we obtain several bounds. These are then used to

derive the corresponding estimates for the Jaeger integrals. For the integral G0 a
lower bound is obtained by relating it to the Ramanujan integral, for which we also
derive estimates. These allow us to bound G0 from below by the first three terms
in its asymptotic expansion for large argument.

3.1. Hankel functions. In [Wa, p. 446] it is shown that xM2
ν (x) is increasing

(resp. decreasing) for ν < 1/2 (resp. ν > 1/2). The motivation for studying this
is the fact that the first term in the asymptotic expansion of Mν(x) for large x is
2/(πx). Here we consider the analogous result but now for small x. More precisely,
we study the monotonicity of x2νM2

ν (x), from which it is then possible to obtain
that the first term in the series expansion of the function M2

ν around zero does
yield a bound for that function, providing a counterpart to the well-known bounds
given by successive terms in the asymptotic expansion of M2

ν at infinity [OM,Wa].

Theorem A. For all positive x,

d
dx

(
x2νM2

ν (x)
) < 0, 0 ≤ ν < 1/2,

≥ 0, ν ≥ 1/2.

Furthermore,

M2
ν (x) ≤ 4νΓ2(ν)

π2x2ν , 0 < ν ≤ 1/2,

4νΓ2(ν)
π2x2ν < M2

ν (x) ≤ 4νΓ2(ν)
π2x2ν + 2

πx, 1/2 < ν ≤ 3/2,

4νΓ2(ν)
π2x2ν + 2

πx < M2
ν (x), 3/2 < ν,

with equality if and only if ν = 1/2 (first line) and ν = 3/2 (second line). For ν = 0
and positive x we have

M2
0 (x) < 1 +

4

π2 (γ + log(x/2))
2
,

where γ denotes Euler’s constant.
The above bounds contain the first term in the series expansion of Mν at zero,

and are sharp (asymptotically) in that limit. Those containing the term 2/(πx) are
also sharp as x goes to infinity.
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Remark 1. Taking into consideration that 2/(πx) = M2
1/2(x), it is tempting to

consider the possibility that there is a sequence of improved bounds for M2
ν on

intervals of the form ((2n− 1)/2, (2n+ 1)/2) for integer n which would follow the
above pattern. However, this will not be the case in general as may be seen from
the fact that

16

π2x4 +M2
1/2(x) < M2

2 (x) �
16

π2x4 +M2
3/2(x),

for instance.

Remark 2. There exists another type of bounds for M2
ν , originally developed by

Schafheitlin and which may be found in [Wa, p. 447] or [Ht, Section 4], for instance.
One such example is given by

xM2
ν (x)

[
1− (ν2 − 1/4)x−2

]
<

2

π
(ν > 1/2).

However, this and similar bounds will not have the appropriate asymptotic be-
haviour for x close to zero to ensure convergence of the resulting integral, when
replaced in (1.2).

We shall now state results concerning the phase of H
(1)
ν . The first is a straight-

forward application of Theorem A above, yielding the following bounds for θν .

Corollary B. For all positive x,

θν(x)

≥ −π
2 + π

ν4νΓ2(ν)
x2ν , 0 < ν ≤ 1/2,

≤ −π
2 + π

ν4νΓ2(ν)
x2ν , 1/2 ≤ ν.

These bounds correspond to the first two terms in the series expansion of θ at the
origin and are thus asymptotically sharp as x approaches zero. When ν = 0 we
have

θ0(x) > arctan

[
2

π

(
γ + log

(x
2

))]
.

Remark 3. These bounds correspond to the inequalities in Theorem A which do
not include the term 2/(πx). Although it is also possible to use these, they will,
in general, yield fairly complicated expressions upon integration of the expression
obtained after replacing the bound for M2

ν in 2/(πxM2
ν (x)). Some exceptions will

be low-integers and half-integers for which the expressions obtainable are still fairly
manageable. As an example, it is possible to derive

x− π

2
+

log(4)− 2 log(2 + πx)

π
< θ1(x) (x > 0)

which, although not very good for large x, is asymptotically correct up to the second
term around zero.

Remark 4. The bounds above are what may be obtained in full generality with
respect to successive terms in the series expansion of θν , as the case of ν = 1 shows.
In that instance

θ1(x) = −π

2
+

πx2

4
+

1

32
[4π log(x) + 4γπ − 3π − 4π log(2)]x4 + · · ·
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and while θ1(x) will be smaller than the first two terms as indicated by the theorem,
although adding the term in log(x)x4 may possibly improve the bound for small x,
it definitely makes it worse for x larger than 1. Furthermore, if one adds the full
term shown above, θ1(x) will be larger than the resulting expression for small x,
but again smaller for larger values.

The next result is a consequence of the more general but less explicit Theo-
rems 4.1 and 4.2 in Section 4.5.

Theorem C. For all positive x,

x− π

2
≤ θν(x) ≤ x−

(
ν

2
+

1

4

)
π, 0 ≤ ν ≤ 1/2,

x−
(
ν

2
+

1

4

)
π ≤ θν(x) ≤ x−

(
ν

2
− 1

4

)
π − arctan(x), 1/2 ≤ ν ≤ 3/2,

x−
(
ν

2
− 1

4

)
π − arctan(x) ≤ θν(x) ≤ x− π

2
− arctan(x), 3/2 ≤ ν.

Remark 5. All the above bounds are sharp asymptotically to the second (constant)
term as x goes to +∞, with the exception of the lower bound for ν in [0, 1/2) and
the upper bound for ν larger than 3/2, which are only sharp in the first term.

3.2. Jaeger integrals. By taking advantage of the monotonicity properties of
Gν(τ ) mentioned in Section 2 and the fact that Gn+1/2(τ ) may be computed ex-
plicitly for integer n (see [BPPR, p. 1261]), it is possible to derive a set of general
bounds for Gν .

Theorem D. Let n = 	ν + 1/2
. For all positive τ we have

G1/2(τ ) ≤ Gν(τ ) ≤ G1/2(τ ) +
π2

8
(1− 2ν), 0 ≤ ν < 1/2,

Gn−1/2(τ ) +
π2

8
[2(n− ν)− 1] ≤ Gν(τ ) ≤ Gn+1/2(τ ) +

π2

8
[2(n− ν) + 1] , 1/2≤ν.

The lower bound above for 0 ≤ ν < 1/2 is already in [BPPR]. As an application
of this result we obtain, for instance, the following bounds. For 0 ≤ ν < 1/2,

Gν(τ ) ≤
π3/2

4
√
τ
+ (1− 2ν)

π2

8
,

while for 1/2 ≤ ν < 3/2 Theorem D yields

π3/2

4
√
τ
+ (1− 2ν)

π2

8
≤ Gν(τ ) ≤

π3/2

4
√
τ
− π2

4
eτ erfc(

√
τ ) +

π2

8
(3− 2ν).

Here erfc denotes the complementary error function defined by

erfc(x) =
2√
π

∫ +∞

x

e−t2 dt.

Both bounds are sharp, in the sense that their series expansions as τ approaches
zero coincide with those of Gν(τ ) up to the second term and we thus see that in
this range Gν is bounded from below by the first two terms in its expansion at zero.
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Clearly for large values of τ these bounds become worse than those given by (2.2),
which in this instance are

π3/2

4
√
τ
− π2

4
eτ erfc(

√
τ) ≤ Gν(τ ) ≤

π3/2

4
√
τ

(1/2 ≤ ν ≤ 3/2).

The bounds for M2
ν given in Theorem A may again be used directly, now to

derive corresponding bounds for Gν , which are sharp in the asymptotic limit when
τ approaches infinity.

Theorem E. The integrals Gν satisfy

Gν(τ )

> π2

22ν+1Γ(ν)
τ−ν , 0 < ν ≤ 1/2,

< π2

22ν+1Γ(ν)
τ−ν , 1/2 < ν,

with G1 further satisfying

π2

8τ
− π7/2

32τ3/2
<

π2

2

∫ +∞

0

ue−τu2

2 + πu
du < G1(τ ) <

π2

8τ
.

All bounds are asymptotically correct to the first term as τ goes to +∞.

From Theorem A and Corollary B above, we expect the results for ν equal to
zero to be of a different form and this is indeed the case. We will proceed in two
steps, first by relating G0 to the Ramanujan integral and then by obtaining explicit
sharp bounds for the latter.

Theorem F. For ν equal to zero we have

π2

2
N

(
4e−2γτ

)
< G0(τ ),

where N is the Ramanujan integral defined by

(3.1) N(x) =

∫ ∞

0

e−xu

u
[
π2 + log2(u)

] du.
This integral is mentioned by Hardy in [Hd, p. 25 and Chapter XI]. As a partic-

ular case of what is referred to in [Hd] as formula (C), we have

N(x) = ex −
∫ +∞

0

xu

Γ(u+ 1)
du.

It also appears in connection with diffusion and neutron transport problems and
was considered in [B,DNT,N] and, more recently, in [L]. It arises precisely from an
approximation of an integral of Jaeger type which may already be found in [N], for
instance, where a heuristic argument is used to replace J0(u) and Y0(u) by 1 and
2(log(u/2) + γ), respectively.

The asymptotic behaviour for N(x) as x becomes large was studied in some of
these papers and is given by

N(x) =
1

log(x)
− γ

log2(x)
+

γ2 − ζ(2)

log3(x)
+ O

(
log−4(x)

)
,
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where ζ is Riemann’s zeta function. Comparing this with the asymptotic behaviour
of G0 for the large argument given in [J, p. 228], namely,

2

π2G0(τ ) =
1

y
− γ

y2
+

γ2 − ζ(2)

y3
+O

(
y−4

)
,

where y = log(4τ )− 2γ, we see that the functions

2

π2G0(τ ) and N
(
4e−2γτ

)
do not differ in the first three terms of their asymptotic expansions for large τ .

As in the case of the Hankel functions, we also present sharp bounds for the
Ramanujan integral together with an identity for N based on Bouwkamp’s ap-
proach [B].

Theorem G. The function N satisfies the identity

(3.2) N(x) = −
∫ +∞

0

e−xu

π2 + log2(u)
du+

∫ 1

0

1

Γ(1− u)
x−u du

for all positive values of x. Furthermore,

1

log x
− γ

log2 x
+

γ − ζ(2)

log3 x
< N(x) <

1

log x
− γ

log2 x
− 1

x log x

(
1− γ − γ

log x

)
,

where the left-hand side inequality holds for x larger than one and the right-hand
side inequality for all positive x.

Remark 6. From this we see that N is bounded from below by the first three terms
in its asymptotic expansion at infinity and, since the last term on the right becomes
negative for sufficiently large x (in fact, for x larger than approximately 3.92), N
is then smaller than the first two terms in the same expansion. Using the same
method as in the proof of this inequality, it is possible to show that N is also smaller
than the first term in the expansion minus 1/(x log(x)), showing that the results
above may not be obtained as a consequence of an alternating series type result.

Remark 7. The infinite integral in the above identity is in fact equal to N ′(x) and
thus this may also be written as

N ′(x)−N(x) = −
∫ 1

0

1

Γ(1− u)
x−u du,

which we will use in the proof of the theorem.

As an immediate corollary, we obtain a lower bound for G0 from the last two
results.

Corollary H. For τ > e2γ/4 ≈ 0.793 we have

π2

2

[
1

y
− γ

y2
+

γ2 − ζ(2)

y3

]
< G0(τ ),

where y = log(4τ )− 2γ.
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Finally, and since to the best of our knowledge only in the cases of ν equal to zero
and one are the asymptotic expansions of Gν both as τ approaches zero and plus
infinity known (see [J, pp. 227–228], [JC, p. 229] and also [PM]), we complement
these with the first few terms in both expansions for general ν.

Theorem I. For positive values of ν we have the following asymptotic expansions:

Gν(τ ) =
π3/2

4
√
τ
+ (1− 2ν)

π2

8
+
(
4ν2 − 1

) π3/2

16
τ1/2 +O(τ ) as τ → 0

and

Gν(τ ) =
π2

22ν+1Γ(ν)
τ−ν + o(τ−ν) as τ → +∞.

4. Bounds for the modulus and phase of Hankel functions

4.1. The modulus of Hankel functions: Proof of Theorem A. By using
standard properties of the Bessel functions Jν and Yν it is possible to obtain the
following expression for the derivative of x2νM2

ν (x):

d

dx

[
x2νM2

ν (x)
]
= 2x2ν [Jν−1(x)Jν(x) + Yν−1(x)Yν(x)] .

We shall now make use of a Nicholson-type integral representation formula for the
above combination of Bessel functions. More precisely, it is stated in [Wa, p. 445]
that

Jμ(x)Jν(x) + Yμ(x)Yν(x) =
4

π2

∫ +∞

0

Kν−μ(2x sinh(t))

×
[
e(μ+ν)t + cos [(ν − μ) π] e−(μ+ν)t

]
dt,

for |Re(μ − ν)| < 1. The case μ = ν − 1 which interests us does not satisfy
this last condition. However, it is not difficult to see that, since the function
e(μ+ν)t+cos [(ν − μ) π] e−(μ+ν)t becomes 2 sinh [(2ν − 1)] in this limit, the function
in the integral will be integrable on (0,+∞) and we have

Jν−1(x)Jν(x) + Yν−1(x)Yν(x) =
8

π2

∫ +∞

0

K1(2x sinh(t)) sinh [(2ν − 1)t] dt.

The monotonicity of x2νM2
ν (x) then follows immediately from the sign of 2ν − 1.

To prove the upper and lower bounds for ν less than 1/2 and ν between 1/2 and
3/2, respectively, it remains to integrate this differential inequalty between y and
x with 0 < y < x and then let y converge to zero while taking into account the
behaviour of M2

ν at zero.

4.2. 1/2 < ν ≤ 3/2. From the expressions above we obtain

d

dx

[
x2νM2

ν (x)
]
=

16x2ν

π2

∫ +∞

0

K1 (2x sinh(t)) sinh [(2ν − 1)t] dt.
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This last integral may be written as∫ +∞

0

K1 (2x sinh(t)) sinh [(2ν − 1)t] dt

= −
∫ +∞

0

dK0 (2x sinh(t))

dt

sinh [(2ν − 1)t]

2x cosh(t)
dt

= −K0 (2x sinh(t))
sinh [(2ν − 1)t]

2x cosh(t)

∣∣∣+∞

0

+
1

2x

∫ +∞

0

K0 (2x sinh(t))
gν(t)

cosh2(t)
dt

=
1

2x

∫ +∞

0

K0 (2x sinh(t))
gν(t)

cosh2(t)
dt,

where

gν(t) = (2ν − 1) cosh(t) cosh [(2ν − 1)t]− sinh(t) sinh [(2ν − 1)t] .

Note that gν(0) = 2ν − 1 and that its derivative with respect to t may be written
as

g′ν(t) = 4ν(ν − 1) cosh(t) sinh [(2ν − 1)t] .

We shall now first consider 1/2 < ν ≤ 1. In this range we have g′ν(t) < 0, gν(x) <
2ν − 1 for positive x and

d
dx

[
x2νM2

ν (x)
]

<
8(2ν − 1)x2ν−1

π2

∫ +∞

0

K0 (2x sinh(t))

cosh2(t)
dt

<
8(2ν − 1)x2ν−1

π2

∫ +∞

0

K0 (2xt) dt

=
2(2ν − 1)x2ν−2

π2 .

Integrating both sides between 0 and x yields the bound for 1/2 < ν < 1.
To proceed in the case of 1 < ν < 3/2 we write

(4.1)
d

dx

[
x2νM2

ν (x)
]
=

8x2ν−1

π2

∫ +∞

0

K0 (2x sinh(t)) cosh(t)hν(t) dt,

where

hν(t) =
2ν − 1

cosh3(t)

[
cosh(t) cosh [(2ν − 1)t]− sinh(t) sinh [(2ν − 1)t]

2ν − 1

]
.

In this range of values we have 0 < 2ν − 1 < 2 and so

hν(t) < 2ν − 1
cosh3(t)

[
cosh(t) cosh [(2ν − 1)t]− 1

2 sinh(t) sinh [(2ν − 1)t]
]

= 2ν − 1
cosh3(t)

[
cosh [2(ν − 1)t] + 1

2 sinh(t) sinh [(2ν − 1)t]
]

< 2ν − 1
cosh3(t)

[
cosh(t) + 1

2 sinh(t) sinh(2t)
]

= 2ν − 1.

Replacing this back in (4.1) and proceeding as in the previous case yields the result
in this range of the parameter.
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4.3. 3/2 < ν. This case follows in the same way as when 1 < ν < 3/2, except that
now 2 < 2ν − 1 so that the first inequality is reversed. In the case of the second
inequality, ν = 3/2 is now the smallest possible value of ν, which implies that the
second inequality is also reversed. The rest of the proof follows in the same way.

4.4. The case ν = 0. We now write

h0(x) = M2
0 (x)−

[
1 +

4

π2

(
γ + log

(x
2

))2
]

and begin by noting that, from the expansion of M2
0 around zero, for instance,

we know that h0(0) vanishes. Writing h0 by means of Nicholson’s integral and
differentiating with respect to x yields

(4.2)

h′
0(x) = 8

π2

∫ +∞

0

K ′
0 (2x sinh(t)) 2 sinh(t) dt−

8

π2x

[
γ + log

(x
2

)]

= − 8
π2x

[∫ +∞

0

K0 (2x sinh(t))

cosh2(t)
dt+ γ + log

(x
2

)]
,

where the last step follows by integrating by parts.
We now observe that from the series expansion of K0 around zero (see, for

instance, [OM, p. 252, 10.31.2]) we have

K0(z) ≥ −
[
γ + log

(z
2

)]
I0(z).

Clearly if the term multiplying I0 is negative we always have

(4.3) K0(z) ≥ −
[
γ + log

(z
2

)]
while if it is positive, using I0(z) > 1 for positive z also yields the same inequality.
Thus∫ +∞

0

K0 (2x sinh(t))

cosh2(t)
dt > −

∫ +∞

0

γ + log(x) + log [sinh(t)]

cosh2(t)
dt

= − [γ + log(x)]

∫ +∞

0

1

cosh2(t)
dt−

∫ +∞

0

log [sinh(t)]

cosh2(t)
dt

= −γ − log(x) + log(2).

Replacing this in identity (4.2) yields h′
0(x) < 0 for all positive x. Combining

this with the fact that h0(0) vanishes yields the result and completes the proof of
Theorem A.

Remark 8. The above bound is of interest only for small values of x, since we know
that M2

0 is decreasing in x. Using the monotonicity of M2
ν (x) we know that

M2
0 (x) ≤

2

πx
,

which is better than the above for x larger than or equal to approximately 0.5065.
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4.5. The phase of Hankel functions: Proof of Theorem C.

Theorem 4.1. Given ν greater than or equal to 1/2, let n = 	ν + 1/2
. Then, for
all positive x,

− 2
π

∫ +∞

x

[
1

tM2
n−1/2(t)

− π

2

]
dt ≤ θν(x)− x+

(
ν

2
+

1

4

)
π

≤ − 2
π

∫ +∞

x

[
1

tM2
n+1/2(t)

− π

2

]
dt.

The upper bound holds for any non-negative value of ν and equality holds for the
lower bound when ν is of the form m− 1/2 for integer m.

Remark 9. All the above bounds are sharp asymptotically to the second (constant)
term as x goes to +∞.

Proof. Due to the monotonicity of Mν with respect to ν we have

(4.4) M2
n−1/2(x) ≤ M2

ν (x) ≤ M2
n+1/2(x), for n = 	ν + 1/2


and ν larger than or equal to 1/2; note that the upper bound is valid for all non-
negative ν, and thus the proof also holds in that case.

From (2.3) and using the above monotonicity of M2
ν we obtain

2

πxM2
n+1/2

≤ θ′ν(x) ≤
2

πxM2
n−1/2

.

Integrating between x and y (0 < x < y) yields

(4.5)
2

π

∫ y

x

1

tM2
n+1/2(t)

dt ≤ θν(y)− θν(x) ≤
2

π

∫ y

x

1

tM2
n−1/2(t)

dt

and

2

π

∫ y

x

[
1

tM2
n+1/2(t)

− π

2

]
dt ≤ θν(y)− y− θν(x)+x ≤ 2

π

∫ y

x

[
1

tM2
n−1/2(t)

− π

2

]
dt.

Letting y go to infinity and taking into account the asymptotic expansion of θν(y)
at infinity [OM, p. 231] we have

2

π

∫ +∞

x

[
1

tM2
n+1/2(t)

− π

2

]
dt ≤ x−

(
ν

2
+

1

4

)
π − θν(x)

≤ 2

π

∫ +∞

x

[
1

tM2
n−1/2(t)

− π

2

]
dt

yielding the bounds in the theorem; note that convergence of the above integral on
[x,+∞) for any positive x follows from the asymptotic expansion of M2

ν at infinity.
Equality follows directly from the fact that, when ν is of the form m−1/2, we have
equality in the lower bound in (4.4) �

For values of ν in intervals of the form (m− 1/2,m+1/2), m integer, the above
theorem provides different bounds for θν , with the resulting expressions becoming
increasingly more complex as m gets larger. For ν in [0, 1/2) only the upper bound
holds and we have

M2
1/2 =

2

πx
,
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yielding the corresponding upper bound in Theorem C. For ν in [1/2, 3/2) we have

M2
3/2 =

2

πx

(
1 +

1

x2

)

and then

x−
(
ν

2
+

1

4

)
π ≤ θν(x) ≤ x−

(
ν

2
+

1

4

)
π +

1

2
[π − 2 arctan(x)] ,

for 1/2 ≤ ν ≤ 3/2, yielding the corresponding lower and upper bounds in Theo-
rem C.

If instead of letting the upper limit in the integral in (4.5) go to infinity we let
the lower limit converge to zero, we obtain the following result.

Theorem 4.2. Given ν greater than or equal to 1/2, let n = 	ν + 1/2
. Then, for
all positive x,

2

π

∫ x

0

1

tM2
n+1/2(t)

dt ≤ θν(x) +
π

2
≤ 2

π

∫ x

0

1

tM2
n−1/2(t)

dt.

The lower bound holds for any non-negative value of ν and equality holds for the
upper bound when ν is of the form m− 1/2 for integer m.

Remark 10. These bounds are now asymptotically sharp as x approaches zero.

As above, by picking ν in different ranges we obtain different specific bounds.
Thus for ν in [0, 1/2) we get the lower bound given in Theorem C for this range,
while for ν in [1/2, 3/2) we obtain

x− arctan(x)− π

2
≤ θν(x) ≤ x− π

2
.

To obtain the bounds in Theorem C which hold for ν larger than 3/2 we proceed
as above using the inequality M2

3/2 ≤ M2
ν for ν in that range, and let y go to infinity

to obtain the lower bound and x go to zero to obtain the upper bound.

5. Ramanujan integral: Proof of Theorem G

We begin by proving identity (3.2). In order to do this, we proceed as in [B] and
define the function

g(s) = −eiπs

π

∫ +∞

0

us+σ−1e−xu

πi+ log u
du

for positive σ and s. Then

Im[g(0)] =

∫ +∞

0

uσ−1e−xu

π2 + log2 u
du

and by differentiating g with respect to s we have

g′(s) = −eiπs

π

∫ +∞

0

us+σ−1e−xu du = −eiπs

π

Γ(s+ σ)

xs+σ .

Integrating this between 0 and 1 yields

g(1)− g(0) = −
∫ 1

0

eiπs

π

Γ(s+ σ)

xs+σ ds
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which, upon taking the imaginary parts, yields

(5.1)

∫ +∞

0

uσe−xu

π2 + log2 u
du+

∫ +∞

0

uσ−1e−xu

π2 + log2 u
du =

∫ 1

0

sin(πs)

π

Γ(s+ σ)

xs+σ ds.

Identity (3.2) now follows by taking limits as σ → 0+ and using the identity

sin(πs)

π
Γ(s) =

1

Γ(1− s)
.

We will now prove the upper bound for N . As pointed out in Remark 7, iden-
tity (3.2) is equivalent to

(5.2) N ′(x)−N(x) = −
∫ 1

0

x−s

Γ(1− s)
ds.

From Lemma A.2 we have that on (0, 1),

0 <
1

Γ(1− s)
< 1− γx

and we obtain, by replacing this in (5.2),

N ′(x)−N(x) > −
∫ 1

0

(1− γs)x−s ds = − 1

log x
+

1

log2 x
+

1− γ

x log x
− γ

x log2 x
.

Multiplying now by e−x and integrating between x and +∞ yields

−e−xN(x) >

∫ +∞

x

e−s

(
− 1

log s
+

1

log2 s
+

1− γ

s log s
− γ

s log2 s

)
ds

and

N(x) < ex
∫ +∞

x

e−s

(
1

log s
− 1

log2 s
− 1− γ

s log s
+

γ

s log2 s

)
ds.

From the fact that the function multiplying e−s inside the integral equals∫ 1

0

(1− γs)x−s ds,

which is easily seen to be positive and decreasing in x, it follows that

N(x) < ex
∫ +∞

x

e−s ds

(
1

log x
− 1

log2 x
− 1− γ

x log x
+

γ

x log2 x

)
,

proving the upper bound in Theorem G.
Finally, to obtain the lower bound we shall again start from equation (5.2) but

we will now first obtain a direct bound on N ′ in order to bound N . To this end,
we consider equation (5.1) but now with σ equal to one, that is,∫ +∞

0

ue−xu

π2 + log2 u
du+

∫ +∞

0

e−xu

π2 + log2 u
du =

∫ 1

0

sin(πs)

π

Γ(s+ 1)

xs+1 ds.

Writing

P (x) = −N ′(x) =

∫ +∞

0

e−xu

π2 + log2 u
du

and making the change of variables s → s+1 in the integral on the right-hand side
yields the equation

P ′(x)− P (x) =

∫ 2

1

x−s

Γ(1− s)
ds.
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For our purposes now it is enough to consider the inequality

1

Γ(1− x)
> 1− x

for x in (1, 2) given by Lemma A.1. Then

P ′(x)− P (x) >

∫ 2

1

(1− s)x−s ds = − 1

x log2 x
+

1

x2 log x
+

1

x2 log2 x
.

Again multiplying by e−x on both sides, integrating between x and +∞ and using
the monotonicity of the function in the integrand multiplying the exponential yields

P (x) <
1

x log2 x
− 1

x2 log x
− 1

x2 log2 x
.

Recalling equation (5.2) with P = −N ′ we have

N(x) =

∫ 1

0

x−s

Γ(1− s)
ds− P (x).

Using the above bound for P and the lower bound from A.2 on (0, 1),

1

Γ(1− x)
> 1− γx+

γ2 − ζ(2)

2
x2,

we obtain

N(x) >

∫ 1

0

[
1− γs+

γ2 − ζ(2)

2
s2
]
x−s ds− 1

x log2 x
+

1

x2 log x
+

1

x2 log2 x

= 1
log x

− γ
log2 x

+
γ − ζ(2)

log3 x

+
γ − γ2/2 + ζ(2)/2− 1

x log x
+

γ − γ2 + ζ(2)− 1

x log2 x
+

ζ(2)− γ2

x log3 x

+ 1
x2 log x

+ 1
x2 log2 x

.

Since the coefficients of all the terms other than the three log−k x (k = 1, 2, 3) terms
are positive, we see that N must become larger than those first three terms for x
larger than one, concluding the proof of Theorem G.

6. Jaeger integrals: Proof of Theorems D, E, F and I

Proof of Theorem D. For ν < 1/2 it is only necessary to prove the upper bound,
as the lower bound is known. As derived in Section 2 we have

(6.1) Gν(τ ) =
π2

4
+ πτ

∫ ∞

0

ue−τu2

θν(u) du.

Replacing θ by the upper bound for ν < 1/2 given in Theorem C yields

Gν(τ ) ≤
π2

4
+ πτ

∫ ∞

0

u

[
u−

(
ν

2
+

1

4

)
π

]
e−τu2

du,

providing the upper bound for Gν in this range upon integration.
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For ν larger than 1/2 we replace the upper bound for θν in Theorem 4.1 in the
expression for Gν given by (6.1) to obtain

Gν(τ ) ≤
π2

4
+ πτ

∫ +∞

0

ue−τu2

[
u−

(
ν

2
+

1

4
π

)

− 2

π

∫ +∞

u

[
1

tM2
n+1/2(t)

− π

2

]
dt

]
du

=
π3/2

4
√
τ
+

π2

8
(1− 2ν)− 2τ

∫ +∞

0

[
1

tM2
n+1/2(t)

− π

2

]∫ t

0

ue−τu2

du dt

=
π3/2

4
√
τ
+

π2

8
(1− 2ν)−

∫ +∞

0

[
1

tM2
n+1/2(t)

− π

2

](
1− e−τt2

)
dt

=
π3/2

4
√
τ
+

π2

8
(1− 2ν)−

∫ +∞

0

[
1

tM2
n+1/2(t)

− π

2

]
dt

+ Gn+1/2(τ )−
π

2

∫ +∞

0

e−τt2 dt

= Gn+1/2(τ ) +
π2

8
(2n+ 1− 2ν) ,

yielding the upper bound for 1/2 ≤ ν. The lower bound in this range may be
obtained in the same way, but using the lower bound for θν in Theorem 4.1 instead.

�

Proof of Theorem E. The proof of the one-term bounds is a direct application of
the corresponding bounds in Theorem A, where for ν larger than 3/2 we use the
weaker bound without the 2/(πx) term. To prove the lower bound for G1 we first
use the upper bound for M2

1 in Theorem A to obtain

π2

2

∫ +∞

0

ue−τu2

2 + πu
du < G1(τ ).

This integral may be evaluated in terms of other special integrals, yielding a bound
that is sharp asymptotically for both small and large arguments. We shall, however,
simplify things in order to obtain a simple bound, while losing the sharpness for
small τ in the process. To do this, we just use the fact that

1

2 + πu
≥ 1

2
− π

4
u,

which upon replacement in the above integral yields the desired bound. �

Proof of Theorem F. Using the lower bound for M0 given by Theorem A we obtain

G0(τ ) ≥ π2

∫ +∞

0

e−τu2

u
[
π2 + (2γ + 2 log(u/2))

2
] du,

and the result follows by making the change of variables v = e2γu2/4. �
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Proof of Theorem I. We shall first consider the case when τ approaches zero. From
equation (6.1) we have

Gν(τ ) = π2

4 + πτ

∫ ∞

0

ue−τu2

θν(u) du

= π2

4 + πτ

∫ ∞

0

ue−τu2

[
θν(u)−

(
u−

(
1

2
ν +

1

4

)
π +

4ν2 − 1

8u

)]
du

+πτ

∫ ∞

0

ue−τu2

[
u−

(
1

2
ν +

1

4

)
π +

4ν2 − 1

8u

]
du.

Writing

gν(u) = θν(u)−
[
u−

(
1

2
ν +

1

4

)
π +

4ν2 − 1

8u

]
we have

gν(u) = O(u−3), as u → +∞,

from the asymptotic behaviour of θν(u) as u goes to +∞. Hence∣∣∣∣
∫ ∞

0

ue−τu2

gν(u) du

∣∣∣∣ ≤
∫ 1

0

ue−τu2 |gν(u)| du+

∫ ∞

1

ue−τu2 |gν(u)| du

≤
∫ 1

0

u |gν(u)| du+

∫ ∞

1

u |gν(u)| du

= C

for some constant C, yielding that

πτ

∫ ∞

0

ue−τu2

[
θν(u)−

(
u−

(
1

2
ν +

1

4

)
π +

4ν2 − 1

8u

)]
du = O(τ )

as τ goes to zero. On the other hand,

πτ

∫ ∞

0

ue−τu2

[
u−

(
1

2
ν +

1

4

)
π +

4ν2 − 1

8u

]
du

=
π3/2

4
√
τ
− (2ν + 1)π2

8
+

4ν2 − 1

16
π3/2

√
τ ,

yielding the desired asymptotics.
For large τ and strictly positive ν, the first term in the asymptotic expansion of

Gν follows directly by combining expression (2.4) with the asymptotic expansion of
θν(u) for small v given by

θν(
√
v) = −π

2
+

π

ν4νΓ2(ν)
vν + o(vν), as ν → 0,

and then using Watson’s lemma. �

Appendix A. Bounds for the Γ function

Here we prove the three estimates for the Γ function which were used in the
paper. In all cases we prove that this function is bounded by the first one, two, or
three terms in a certain Taylor series. The first and simplest case corresponds to
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the expansion around 1, namely,

1

Γ(1− x)
= −(x− 1) + γ(x− 1)2 +O((x− 1)3),

for which we have the following result.

Lemma A.1. For all x ∈ (1, 2)

1− x <
1

Γ(1− x)
< 0.

Proof. It is enough to notice that, since Γ(1− x) is negative on (1, 2), the result is
equivalent to showing 1 < (1− x)Γ(1− x) = Γ(2− x) = Γ(y) for y ∈ (0, 1), which
holds, since Γ is decreasing on (0, 1) and Γ(1) = 1. �

The second result is related to the expansion around 0 which now reads

1

Γ(1− x)
= 1− γx+

γ2 − ζ(2)

2
x2 +O(x3),

and its proof is more involved.

Lemma A.2. For all x ∈ (0, 1)

1− γx+
γ2 − ζ(2)

2
x2 <

1

Γ(1− x)
< 1− γx.

Proof. In both cases we shall make use of the expansion

(A.1) log Γ(1− x) = − log(1− x)− (1− γ)x+

∞∑
k=2

ζ(k)− 1

k
xk, |x| < 2,

which may be found, for instance, in [AR, p. 139]. The upper bound in the lemma
is equivalent to showing that (1−γx)Γ(1−x) > 1. Upon taking logarithms on both
sides this becomes equivalent to log(1− γx) + log Γ(1− x) > 0 which, using (A.1),
then becomes

log(1− γx)− log(1− x)− (1− γ)x+
∞∑
k=2

ζ(k)− 1

k
xk > 0.

To prove this, it will be sufficient to look at the function g(x) = log(1 − γx) −
log(1− x)− (1− γ)x, since the remaining term is positive and we have

g′(x) =
γ

γx− 1
+

1

1− x
+ γ − 1 =

x

(1− x)(1− γx)

[
(γ − 1)γx+ 1− γ2

]
.

Hence, since the term (γ− 1)γx+1−γ2 is decreasing in x and equals 1−γ when x
is one, we see that g′(x) is always positive. Since g(0) vanishes, the result follows.

To prove the lower bound we shall use a similar strategy. We first observe that

1− γx+
γ2 − ζ(2)

2
x2

vanishes at two points, one negative that needs not concern us, and the other which
we shall denote by x0 given by

x0 =
−γ +

√
2ζ(2)− γ2

ζ(2)− γ2 ≈ 0.87.
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Since Γ(1−x) is positive on (0, 1), the result holds for x ∈ (x0, 1). From now on we
shall thus assume x ∈ (0, x0). On this interval the lower bound is positive and we
may thus take logarithms on both sides of the left-hand inequality in the lemma to
obtain that this is equivalent to showing that

log

[
1− γx+

γ2 − ζ(2)

2
x2

]
+ log Γ(1− x) < 0.

Again using the series for log Γ(1 − x), we see that the left-hand side, which we
shall now denote by h, equals

h(x) = log

[
1− γx+

γ2 − ζ(2)

2
x2

]
− log(1− x)− (1− γ)x+

∞∑
k=2

ζ(k)− 1

k
xk.

Since we now which to show that h is negative on (0, x0), it is no longer possible to
ignore the series and we shall begin by bounding this. We have

∞∑
k=2

ζ(k)− 1

k
xk =

∞∑
k=2

ζ(k)

k
xk −

∞∑
k=2

xk

k

<
ζ(2)
2 x2 + [ζ(3)− 1]

∞∑
k=3

xk

k
− x2

2

=
ζ(2)
2 x2 +

ζ(3)− 1
2

[
−x2 − 2x− 2 log(1− x)

]
− x2

2

=
ζ(2)− ζ(3)

2 x2 + [1− ζ(3)] [x+ log(1− x)] ,

and thus,

h(x) < h0(x) = log

[
1− γx+

γ2 − ζ(2)

2
x2

]

− ζ(3) log(1− x) + [γ − ζ(3)]x+
ζ(2)− ζ(3)

2
x2

It is easily seen that h0(0) = h′
0(0) = h′′

0(0) = 0 and

h′′′
0 (0) = −3γζ(2) + 2ζ(3) + γ3 ≈ −0.25 < 0.

Since

h′
0(x) = x2

[
(γ2 − ζ(2))ζ(2)x− 3γζ(2) + γ3

(γ2 − ζ(2))x2 − 2γx+ 2
− ζ(3)

x− 1

]
,

we see that h0 will have a double zero root and two other roots which are situated
approximately at −0.24 and 1.78 and thus outside the range of interest; note also
that the singularities inside the interval [0, 1] are at x0 and 1. We thus have that
h′
0(x) must remain negative on (0, x0), proving the lemma. �
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