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USING KATSURADA’S DETERMINATION OF THE EISENSTEIN

SERIES TO COMPUTE SIEGEL EIGENFORMS

OLIVER D. KING, CRIS POOR, JERRY SHURMAN, AND DAVID S. YUEN

Abstract. We compute Hecke eigenform bases of spaces of level one, de-
gree three Siegel modular forms and 2-Euler factors of the eigenforms through
weight 22. Our method uses the Fourier coefficients of Siegel Eisenstein series,
which are fully known and computationally tractable by the work of H. Kat-
surada; we also use P. Garrett’s decomposition of the pullback of the Eisenstein
series through the Witt map. Our results support I. Miyawaki’s conjectural
lift, and they give examples of eigenforms that are congruence neighbors.

1. Introduction

Eisenstein series are central in the theory of Siegel modular forms. The algorith-
mic computation of the Fourier coefficients of Siegel Eisenstein series began with
C. L. Siegel [24] and was completed by H. Katsurada [14], whose work deserves
to be widely known. For any positive integer degree n and even integer weight
k > n+ 1, the Siegel Eisenstein series of weight k and degree n is

E
(n)
k (z) =

∑
γ∈PZ\Γn

j(γ, z)−k.

Here z lies in the Siegel upper half-space Hn, and the summand j(γ, z)−k is 1
for the Siegel parabolic subgroup PZ = {

[
a b
0 d

]
} of the integral symplectic group

Γn = Spn(Z). (Section 2 will review the background for this paper.) This Eisenstein
series has the Fourier series representation

E
(n)
k (z) =

∑
t∈X semi

n

a(t;E
(n)
k ) e(〈t, z〉),

where X semi
n denotes the set of semi-integral positive semidefinite n-by-n matrices.

The Siegel Φ map takes Eisenstein series to Eisenstein series, ΦE
(n)
k = E

(n−1)
k and

ΦE
(1)
k = 1, so it suffices to compute the Fourier coefficients of Eisenstein series for

definite indices t; the set of such matrices is denoted Xn. The Fourier coefficient
formula for definite indices (in which ζ is the Euler–Riemann zeta function, and
L(χDt

, ·) is the Dirichlet L-function of the quadratic character of the fundamental
discriminant Dt that will be explained below, and Fp is a polynomial to be discussed
below) is

a(t;E
(n)
k ) =

2�
n+1
2 � ∏

p Fp(t, p
k−n−1)

ζ(1− k)
∏�n/2�

i=1 ζ(1− 2k + 2i)
·
{
L(χDt

, 1− k + n/2), n even,

1, n odd.
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The Fourier coefficient depends only on the genus of its index t. In fact the polyno-
mial Fp(t,X) ∈ Z[X] depends only on the class of t over Zp. Algorithmic specifica-
tion of these Fp polynomials was the last impediment to evaluating Siegel Eisenstein
series Fourier coefficients, and it was overcome by recursion relations due to Kat-
surada [14]. This article explains how the Fourier coefficients of Siegel Eisenstein
series are computationally accessible, and it makes computer programs to evaluate
them publicly available.

For example, consider the Fourier coefficient index

t =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎣

2 1 1 0 1 2
1 4 2 2 0 1
1 2 4 2 0 0
0 2 2 4 2 2
1 0 0 2 4 2
2 1 0 2 2 8

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ X6.

Our genus symbol program takes 2t as an input and returns the genus symbol
4−2
4 3−1. Our Fp polynomial program takes this genus symbol and the determinant
det(2t) = 48 as input and returns the Fp(t,X) polynomials for all p | 2 det(2t),

[F2(t,X), F3(t,X)] =
[
1 + 24X + 256X2 + 3072X3 + 16384X4, 1

]
.

These data make no reference to any particular Eisenstein series degree or weight.
With these Fp polynomials and the weight k = 16 as input, our Eisenstein series
Fourier coefficient program returns

a(t;E
(6)
16 ) =

9780154654408147370255260881715200

13912726954911229324966739363569
.

We hope that our programs [28] will be useful to researchers. The programs are in
various computer languages, including Mathematica.

This article describes our computation of the 2-Euler factors of Hecke eigenform
bases of the degree 3 cusp form spaces Sk(Γ3) for even k up through 22. Along with
Katsurada’s completion of the Siegel Eisenstein series Fourier coefficient formula,
which makes a coefficient readily computable from a genus symbol of its index,
the second idea of our method is P. Garrett’s decomposition of the pulled back
Eisenstein series [8]. Thus we call our algorithm the pullback-genus method.

Our computation naturally continues the computational work in [20], where
I. Miyawaki studied the weights k = 12, 14 and conjectured two kinds of lift in
consequence of his results. The standard L-function part of Miyawaki’s first lifting
conjecture with an additional natural nonvanishing condition has been settled by
T. Ikeda [13], who gave a construction in general degree that generalizes the degree 3
case; we call these lifts Ikeda–Miyawaki lifts. Miyawaki’s second lifting conjecture
is still open. Our computations in weights 16 through 22 support the conjecture,
exhibiting eigenforms whose 2-Euler factors agree with all of Miyawaki’s predicted
lifts of the second type. Some of our results were announced in [12], which forward
referenced this article.

Besides the Ikeda-Miyawaki lifts and the apparent Miyawaki lifts, we see appar-
ent nonlift eigenforms that have unimodular Satake parameters at 2. So far, each
nonlift eigenform has at least one lift eigenform as a congruence neighbor . Two
eigenforms f and g are congruence neighbors if all their eigenvalues are congruent
modulo some prime ideal p in the ring of integers of the field of eigenvalues, and the
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k dim(Sk(Γ3)) M I lifts Apparent M II lifts Apparent nonlifts
16 3 2 1
18 4 2 2
20 6 3 2 1
22 9 3 3 3

Figure 1. Siegel cusp eigenforms in degree three

ideal p is a congruence prime. Thus, although not all eigenforms are lifts, through
weight 22 all eigenforms are lifts or congruence neighbors of lifts.

We summarize our results here, but the reader is encouraged to examine the
database [28], which includes Fourier coefficients, Euler factors, noncusp forms,
and more.

• dim(S16(Γ3)) = 3, with a conjugate pair M I
16(f28,±, g16) of Ikeda–Miyawaki

lifts over the quadratic number field of the S28(SL2(Z)) Hecke eigenbasis,
and one apparent nonlift over Q with unimodular Satake parameters at 2.
The apparent nonlift is a congruence neighbor of the Ikeda–Miyawaki lifts
modulo a prime over 107. This result was announced in [12].

• dim(S18(Γ3)) = 4, with a conjugate pair M I
18(f32,±, g18) of Ikeda–Miyawaki

lifts over the quadratic number field of the S32(SL2(Z)) Hecke eigenbasis,
and a conjugate pair M II

18(f34,±, g16) of apparent Miyawaki II lifts over the
quadratic number field of the S34(SL2(Z)) Hecke eigenbasis. This space has
no congruence neighbors for large primes.

• dim(S20(Γ3)) = 6, with a conjugate triple M I
20(f36,(1,2,3), g20) of Ikeda–

Miyawaki lifts over the cubic number field of the S36(SL2(Z)) Hecke eigen-
basis, a conjugate pair M II

20(f38,±, g18) of apparent Miyawaki II lifts over
the quadratic number field of the S38(SL2(Z)) Hecke eigenbasis, and one
apparent nonlift over Q with unimodular Satake parameters at 2. The ap-
parent nonlift is a congruence neighbor of the Ikeda–Miyawaki lifts modulo
a prime over 157. This result was announced in [12].

• dim(S22(Γ3)) = 9, with a conjugate triple M I
22(f40,(1,2,3), g22) of Ikeda–

Miyawaki lifts over the cubic number field of the S40(SL2(Z)) Hecke eigen-
basis, a conjugate triple of apparent Miyawaki II lifts M II

22(f42,(1,2,3), g20)
over the cubic number field of the S42(SL2(Z)) Hecke eigenbasis, and a con-
jugate triple of apparent nonlifts over a real cubic field with unimodular
Satake parameters at 2. The apparent nonlifts are congruence neighbors of
the Ikeda–Miyawaki lifts modulo a prime over 1753, and they are congru-
ence neighbors of the apparent Miyawaki II lifts modulo two primes, one
over 613 and the other over 677.

A table of these results is given in Figure 1. For computations and conjectures
related to the work in this paper, see [3].

Heim [10] has raised the question of whether the twisted spinor L-function as-
sociated to a pair of eigenforms G ∈ Sk(Γ2) and h ∈ Sk−2(SL2(Z)) occurs as the
spinor L-function of an eigenform in Sk(Γ3). When G is a Saito–Kurokawa lift this
is consistent with the Miyawaki II lift, but when G is not a Saito–Kurokawa lift
our computations show that there is no corresponding spinor L-function from an
eigenform in Sk(Γ3) for k ≤ 22.
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Section 2 reviews the setting for our computations. Section 3 reviews the Eisen-
stein series Fourier coefficient formula. Section 4 describes the pullback-genus
method, which gives a rational basis of Mk(Γn). Section 5 reviews how to com-
pute Hecke eigenform Euler factors. Section 6 explains the pullback-genus method’s
implementation, which is essential for making these computations tractable.

2. Background

Let n be a positive integer. Let Vn denote the vector space Mn(R)
sym of sym-

metric n×n real matrices, carrying the inner product 〈t, u〉 = tr(tu). Let Cn denote
the cone of positive definite elements of Vn. The Siegel upper half-space of de-
gree n is Hn = {z = x + iy : x ∈ Vn, y ∈ Cn}. The symplectic group Sp(n) is
defined by the 2n × 2n matrix condition J [g] = J where J =

[
0 −1
1 0

]
with each

block n×n, and J [g] = g′Jg with g′ the transpose of g. The real symplectic group
acts on the Siegel space, g〈z〉 = (az + b)(cz + d)−1 where g =

[
a b
c d

]
. For any

g ∈ Spn(R) and any z ∈ Hn the factor of automorphy j(g, z) is det(cz + d). For
any integer k, the weight k action [ · ]k of Spn(R) on functions f : Hn −→ C is
f [g]k(z) = j(g, z)−kf(g〈z〉).

The integral symplectic group Spn(Z) is denoted Γn. For any integer k, a func-
tion f : Hn −→ C is a Siegel modular form of weight k and degree n if (1) f is
holomorphic, (2) f [γ]k = f for all γ ∈ Γn, (3) for any yo ∈ Cn, f is bounded on the
set {z ∈ Hn : Im(z) > yo}. The vector space of such Siegel modular forms is de-
noted Mk(Γn). For any positive integer n, Siegel’s map Φ : Mk(Γn) −→ Mk(Γn−1)
is given by (Φf)(z) = limη→+∞ f(

[
z 0
0 iη

]
). The kernel of Siegel’s Φ-map on Mk(Γn)

is the vector space of Siegel cusp forms of degree n and weight k, denoted Sk(Γn).
By convention Mk(Γ0) = Sk(Γ0) = C.

The Euclidean space Vn contains the integer lattice Vn(Z) = Vn ∩ Mn(Z) =
Mn(Z)

sym, whose dual lattice Vn(Z)
∗ is all v ∈ Vn such that vii ∈ Z and vij ∈ 1

2Z

for all i, j. Let Xn = Vn(Z)
∗ ∩ Cn and X semi

n = Vn(Z)
∗ ∩ Cn denote the positive

definite elements and the positive semidefinite elements of the dual lattice. Any
Siegel modular form has a Fourier series representation, setting e(x) = e2πix,

f(z) =
∑

t∈X semi
n

a(t; f) e(〈t, z〉),

and f is a cusp form if and only its Fourier series is supported on t ∈ Xn.
As already discussed, the Siegel parabolic subgroup of Γn-elements

[
a b
0 d

]
is de-

noted PZ, and the Siegel Eisenstein series of degree n ≥ 1 and even weight k > n+1

is E
(n)
k (z) =

∑
γ∈PZ\Γn j(γ, z)−k for z ∈ Hn, and the Fourier coefficients a(t;E

(n)
k )

of the Eisenstein series have been fairly well understood since C. L. Siegel’s work
of 1939 [24] but their practical description for arbitrary n was completed by Kat-
surada only in 1999 [14]. In general the Fourier coefficients of a Siegel modular
form f of even weight are GLn(Z)-equivalence class functions, meaning that a(·; f)
is constant over each class t[GLn(Z)]. But a key computational point here is that,
given any decomposition t ∼ u⊕0n−m where u ∈ Xm is strictly positive, the Eisen-

stein series Fourier coefficient a(t;E
(n)
k ) is determined by only the genus of u, i.e.,

by the set of matrices in Xm that lie in u[GLm(Zp)] for every prime p. The genus
is a coarser equivalence class than t[GLn(Z)], and a symbol for it is much faster to
compute than the GLn(Z)-class.
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The symplectic similitude group GSp(n) is defined by the condition J [g] = m(g)J
for some invertible multiplier m(g). The rational symplectic positive similitude
group GSp+n (Q), carrying the condition m(g) ∈ Q>0, acts on Hn via f [g]k(z) =
m(g)ej(g, z)−kf(g〈z〉), where the classical choice of the multiplier power is e =
kn − 〈n〉 with 〈n〉 = n(n + 1)/2. Any double coset in Γn\GSp+n (Q)/Γn decom-

poses as finitely many right cosets, ΓngΓn =
⊔d

i=1 Γngi, and it acts correspondingly

on Mk(Γn) by f [ΓngΓn]k(z) =
∑d

i=1 f [gi]k(z). The double cosets generate a com-

mutative algebra over Q, the Hecke algebra H(Γn,GSp+n (Q)). The space Mk(Γn)
has a basis of Hecke eigenforms. Using standard generators of the Hecke alge-
bra, any f ∈ Mk(Γn) is a Hecke eigenform if for each prime it is an eigenform
of T (p) = Γndiag(1n, p1n)Γn and of Ti(p

2) = Γndiag(1n−i, p1i, p
21n−i, p1i)Γn for

i = 1, · · · , n− 1.
Let z1 ⊕ z2 =

[
z1 0
0 z2

]
for z1, z2 ∈ Hn. The symplectic embedding ι(z1 × z2) =

z1⊕z2 pulls back to a map of functions, (ι∗f)(z1×z2) = f(z1⊕z2). The pullback ι∗

takesMk(Γ2n) toMk(Γn)⊗Mk(Γn) and takes Sk(Γ2n) to Sk(Γn)⊗Sk(Γn) by results
of E. Witt [27]. These maps and variants of them are often called the Witt map.
Garrett’s formula [8] (originally appearing in a 1979 preprint by Garrett, then in
S. Böcherer’s Ph.D. directed by H. Klingen and in a paper of M. Harris) decomposes

the pulled back Eisenstein series ι∗E
(2n)
k as a sum of nonzero multiples of the

diagonal tensor products over a Hecke eigenform basis {f1, · · · , fd} of Mk(Γn),

ι∗E
(2n)
k =

d∑
�=1

c� f� ⊗ f�, all c� nonzero.

That is, E
(2n)
k (z1 ⊕ z2) =

∑
� c�f�(z1)f�(z2) for z1, z2 ∈ Hn. This connection be-

tween the Hecke eigenform basis and the Eisenstein series is what guarantees that
the pullback-genus method works. However, when the dimension of Mk(Γn) is al-
ready known, the computations can be rigorously executed using only the existence
of the Witt map.

Let Q[x±1] denote the algebra of rational Laurent polynomials in indeterminates
x0, x1, · · · , xn. The Weyl group W of this algebra is generated by the permutations
of {x1, · · · , xn} and the involutions τi for i = 1, · · · , n taking x0 to x0xi and xi

to x−1
i . Fix a prime p, and letHp = H(Γn,GSp+n (Z[1/p])). The Satake isomorphism

Ω = Ωp from Hp to the subalgebra Q[x±1]W of Laurent polynomials invariant under
the Weyl group is defined on any double coset ΓgΓ by taking each of its constituent
cosets Γb, with Borel subgroup representative b =

[
pe0d∗ ∗

0 d

]
whose d-block has

diagonal (pe1 , · · · , pen), to Ω(Γb) = xe0
0 (x1/p)

e1(x2/p
2)e2 · · · (xn/p

n)en . For any
Siegel Hecke eigenform f , the eigenvalue homomorphism λf : Hp −→ C is defined
by the condition Tf = λf (T )f for T ∈ Hp. There exists a Satake parameter
α = αf,p ∈ Cn+1 such that λf (T ) = (Ω(T ))(αf,p) for all T ∈ Hp. The standard
L-function of a Siegel Hecke eigenform f is the product of Euler factors defined in
terms of the Satake parameters. Specifically, for each prime p let the pth Satake
parameter be αp,f = (α0,p, α1,p, · · · , αn,p); then Lst(f, s) =

∏
p Q

st
p (f, p

−s)−1 where

Qst
p (f,X) = (1−X)

∏n
i=1(1− αi,pX)(1− α−1

i,pX) (see for example [2]).

Miyawaki [20] computed for the generator F12 of S12(Γ3) that Lst(F12, s) has
the same 2-Euler factor as L(f20, s + 10)L(f20, s + 9)Lst(g12, s) where f20 and
g12, respectively, generate S20(SL2(Z)) and S12(SL2(Z)), and he computed for the
generator F14 of S14(Γ3) that Lst(F14, s) has the same 2-Euler factor as
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L(f26, s+13)L(f26, s+12)Lst(g12, s). He conjectured that for any even weight k, and
for each pair of elliptic Hecke eigenforms f ∈ S2k−4(SL2(Z)) and g ∈ Sk(SL2(Z)),
there exists a Siegel Hecke eigenform F ∈ Sk(Γ3) whose standard L-function fac-
tors as Lst(F, s) = L(f, s + k − 2)L(f, s + k − 3)Lst(g, s), and for each pair of
elliptic Hecke eigenforms f ∈ S2k−2(SL2(Z)) and g ∈ Sk−2(SL2(Z)) there ex-
ists a Siegel Hecke eigenform F ∈ Sk(Γ3) whose standard L-function factors as
Lst(F, s) = L(f, s + k − 1)L(f, s + k − 2)Lst(g, s). Granting a nonvanishing con-
dition and restricting attention to standard L-functions, Ikeda [13] established a
general lift subsuming Miyawaki’s first conjectured lift. The Hecke eigenfunction
behavior of this lift was shown by Ikeda, Heim [11], and Hayashida [9].

Let c
(2n)
k = 2−nζ(1−k)

∏n
i=1 ζ(1−2k+2i). The dilated Eisenstein series E(2n)

k =

c
(2n)
k E

(2n)
k has rational Fourier coefficients that are integral at all primes p > 2k−1.

Garrett’s formula with E(2n)
k in place of E

(2n)
k can quickly show congruences between

Hecke eigenform basis elements. Specifically, the Fourier coefficients of a Hecke
eigenform can be taken to lie in the integer ring OK of a number field K, and the
constants c� in the formula to lie in K×. Call a maximal ideal p of OK big if it
lies over a rational prime p > 2k − 1 ([12], and see [15, 17]). Suppose that there
exists a big prime p of OK such that ordp(c1) = ordp(c2) = −1 and ordp(c�) ≥ 0
for 	 = 3, · · · , d. Then for any index s such that ordp(a(s; f1)) = 0, we deduce
f1/a(s; f1) = f2/a(s; f2) mod p, and especially, if a(s; f1) = a(s; f2) = 1, then
f1 = f2 mod p. Thus f1 and f2 are congruence neighbors and p is a congruence
prime.

3. Eisenstein series Fourier coefficients

3.1. Fp-polynomials. Polynomials Fp(u,X) ∈ Z[X] for p prime and u ∈ Xm ap-
pear in the Siegel Eisenstein series Fourier coefficient formula. The first author of
this paper wrote a program to compute these polynomials [18], which has since been
modified to accept higher degree input. We refer to [14] for the definition of the Fp

polynomials; there Katsurada proved a functional equation for these polynomials,
which was an important step in his establishment of their recurrence relations. We
review this functional equation because it serves as a check on computations. The
functional equation makes reference to the Hilbert symbol and to the Hasse invari-
ant. To review, for a, b ∈ Q×

p the Hilbert symbol (a, b)p is 1 if aX2 + bY 2 = Z2 has

nontrivial solutions in Q3
p and −1 if not. For u ∈ GLm(Qp)

sym the Hasse invariant
of u is hp(u) =

∏
i≤j(ai, aj)p where u is GLm(Qp)-equivalent to the diagonal matrix

having entries a1, · · · , am. If m is even, then (−1)m/2 det(2u) takes the form Duf
2
u

where Du is 1 or the fundamental discriminant of a quadratic number field and fu
is a positive integer; let χDu

denote the quadratic Dirichlet character of conduc-
tor |Du|. For rank m = 0, the empty matrix has determinant 1 by convention and
so Du = fu = 1.

Theorem 3.1 (Katsurada’s functional equation). Let u ∈ Xm. Set

ep(u) =

{
2(� ordp(det(2u))−1−δp,2

2 + χDu
(p)2) if m is even,

ordp(det(2u)/2) if m is odd.

Here δp,2 is the Kronecker delta. Then

Fp(u, p
−m−1X−1) = ±(p(m+1)/2X)−ep(u)Fp(u,X),
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where if m is even, then the “±” sign is positive, and if m is odd, then it is(
det(u), (−1)(m−1)/2 det(u)

)
p
(−1,−1)(m

2−1)/8
p hp(u)

with (·, ·)p the Hilbert symbol and hp the Hasse invariant as described above.

3.2. Fourier coefficient formula. Let n be a positive integer. For any t ∈ X semi
n

we have t ∼ u ⊕ 0n−m under GLn(Z)-equivalence, where m = rank(t) ∈ Z≥0 and
u ∈ Xm. The following result may be found in [14, 16].

Theorem 3.2 (Siegel Eisenstein Fourier coefficient formula). Let n be a positive
integer and k > n+ 1 an even integer. Let t ∈ X semi

n , and let u, Du, fu, and χDu

be as above. Let c
(m)
k = 2−�(m+1)/2�ζ(1− k)

∏�m/2�
i=1 ζ(1− 2k + 2i). Then

a(t;E
(n)
k ) = 1/c

(m)
k ·

{
L(χDu

, 1− k +m/2)
∏

p|fu Fp(u, p
k−m−1), m even,∏

p:ordp((1/2) det(2u))>0 Fp(u, p
k−m−1), m odd.

The Riemann zeta values and the quadratic L value in the formula have the
form ζ(1− j) = −Bj/j and L(χ, 1− j) = −Bj(χ)/j with the Bj basic or quadratic
Bernoulli numbers, and so they are known rational numbers: If f is the conductor

of χ, then
∑f

a=1 χ(a)
teat

eft−1
=

∑∞
j=0 Bj(χ)

tj

j! ([1], page 53). The genus symbol of any

u ∈ Xm is easy to compute (section 4.2), and then our program gives Fp(u, p
k−m−1).

Thus Siegel Eisenstein series Fourier coefficients are tractable.
The Clausen–von Staudt theorem for basic and quadratic Bernoulli numbers

shows that the dilated Eisenstein series E(n)
k = c

(n)
k E

(n)
k has rational Fourier coeffi-

cients that are integral at all primes p > 2k − 1. While the monic Eisenstein series
has the computational advantage that its Fourier coefficients depend only on the
nonsingular part of their indices, with no reference to the degree n, the integrality
of the dilated Eisenstein lets us identify congruence neighbors.

For lower weights �(n + 1)/2� ≤ k ≤ n + 1, excluding a few cases, a Siegel

Eisenstein series E
(n)
k (z, s) with a complex parameter s can be continued leftward

from its half-plane of absolute convergence Re(k + 2s) > n + 1 to s = 0, where it
is a Siegel modular form in z (see [23], or a summary in the introduction to [26]).
Because our work here uses weights k > 2n+ 1 we do not discuss these issues.

4. The pullback-genus method

Recall Garrett’s formula, ι∗E
(2n)
k =

∑d
�=1 c� f� ⊗ f� for even k > 2n + 1, where

{f1, · · · , fd} is a Hecke eigenform basis of Mk(Γn). Garrett’s conjecture that the c�
are nonzero was proved by Garrett for n = 2 and for general degree n by Böcherer
[4], and this result is important in the proof of our Proposition 4.1. For any two
indices t1, t2 ∈ X semi

n , equate the t1 × t2 Fourier coefficients on the two sides of
Garrett’s formula to get a relation among Fourier coefficients and the c�,

(4.1)
∑

r∈R(t1×t2)

a(
[
t1 r
r′ t2

]
;E

(2n)
k ) =

d∑
�=1

c� a(t1; f�)a(t2; f�),

summing the left side over R(t1×t2) = {r ∈ Mn(
1
2Z) :

[
t1 r
r′ t2

]
∈ X semi

2n }. This set is

finite because
[
t1ii rij
rij t2jj

]
is positive semidefinite for all i, j, bounding r2ij by t1iit2jj .

The summand on the left side is tractable, and additionally the set of summation
can be traversed quickly enough to make the left side computationally accessible
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(section 4.1). Conceptually, for each fixed t1 ∈ X semi
n , equation (4.1) gives the

Fourier coefficient at t2 of an element in Mk(Γn) with rational Fourier coefficients.
We use enough different t1 to obtain a rational basis. If we additionally want eigen-
forms and Euler factors, we apply Hecke operators to this rational basis to obtain
a basis of eigenforms f�, with some convenient choice of normalization. Sufficiently
many Fourier coefficients of a eigenform basis of Sk(Γn) enable us to compute Euler
factors of their L-functions (section 5). If we want to identify congruence neighbors
among the f�, we then use equation (4.1) to solve for the coefficients c�.

4.1. Index enumeration. Given t1, t2 ∈ X semi
n , the following algorithm traverses

R(t1×t2) quickly enough for our programs to terminate. Immediately multiply by 2
to work with integers; that is, double the ti for this algorithm and introduce the

matrix s =
[
t1 r
r′ t2

]
, find all integral r that make s positive semidefinite, and divide

each such r by 2 before returning it. The algorithm builds matrices s by filling r
columnwise. Thus, when determining possible provisional values for some ri,j , a
set of provisional values is already present for all other r-entries having row index
at most i and column index at most j.

As noted, |ri,j | ≤ m where m =
√
t1,i,it2,j,j . A first version of the algorithm is

therefore n2 nested loops: For each |ri1,j1 | ≤ m1, for each |ri2,j2 | ≤ m2, . . . , for
each |rin2 ,jn2 | ≤ mn2 , test s for positive semidefiniteness. We refer to these mi as
the default loop-bounds. The algorithm admits two refinements that cut down the
nested looping at the cost of further bounds-checking. The refinements are most
easily explained by example. Let s̃ denote a submatrix of s as in the following
diagram, in which n = 3:

s =

⎡
⎢⎢⎢⎢⎢⎢⎣

◦ ◦ · ∗ ∗ ·
◦ ◦ · ∗ ri,j ·
· · · · · ·
∗ ∗ · ◦ ◦ ·
∗ ri,j · ◦ ◦ ·
· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦
, s̃ =

⎡
⎢⎢⎣

◦ ◦ ∗ ∗
◦ ◦ ∗ ri,j
∗ ∗ ◦ ◦
∗ ri,j ◦ ◦

⎤
⎥⎥⎦ .

The circles are entries of t1 and t2 and the asterisks are some of the outer loop
variables. First, the loop-bounds of ri,j can be improved. Introduce three auxiliary
matrices a, b, and c by setting a to s̃ but with the row and column of the two
ri,j-entries deleted, b to s̃ but with 0 in place of the higher ri,j and with the row
and column of the lower ri,j deleted, and c to s̃ but with 0 in place of both ri,j
entries. Then det s̃ = − det a ·r2i,j+(−1)j2 det b ·ri,j+det c. The algorithm needs to
have checked the positive semidefiniteness of previous matrices to ensure that det a
is nonnegative. In our implementation of columnwise traversal, the check needs
to happen at the bottom of each column. When det a is positive, the condition
det s̃ ≥ 0 is quadratic and yields bounds of ri,j , generally tighter than the default
loop-bounds. As a second refinement, we may check whether a value of ri,j makes s̃
positive semidefinite before proceeding to more inner loops. In practice there are
tradeoffs between näıve looping and checking to tighten loop-bounds or abort inner
loops. Our current implementation is to improve the loop-bounds and to check s̃ ≥ 0
at the bottom of each column of r.
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4.2. Genus symbol. Consider any t ∈ Xn. A symbol for the genus of t is described
in chapter 15, section 7 of [6]. We summarize it briefly. As in the index-set traver-
sal algorithm, immediately double t to ensure integral entries. The finitely many
equivalence classes {t[GLn(Zp)] : p | 2 det t} determine every other class t[GLn(Zp)]
where p � 2 det t. Thus the genus symbol of t need only describe its local integral
equivalence class for each p | 2 det t.

For an odd prime divisor p of det t, t is GLn(Zp)-equivalent to some
⊕k

i=1 p
eiδi

where 0 ≤ e1 < · · · < ek and each δi is a diagonal matrix having p-adic units on the
diagonal. Each peiδi is a constituent of t, and pei is the scale of the constituent. The
GLn(Zp)-equivalence symbol of t is qε1n1

1 qε2n2
2 · · · qεknk

k where for i = 1, · · · , k, qi =
pei and εi is the Legendre symbol (det δi/p) and ni is the size of δi. The GLn(Zp)-
equivalence symbol of t is uniquely defined by t, and it completely characterizes
t[GLn(Zp)].

Also, t is GLn(Z2)-equivalent to some
⊕k

i=1 2
eidi where 0 ≤ e1 < · · · < ek

and each di is either a diagonal matrix with units on the diagonal or a direct sum

di =
⊕�i

j=1 δij where each δ is a 2× 2 matrix
[
2αa b
b 2γc

]
. The GLn(Z2)-equivalence

symbol of t is (q1)
ε1n1
t1 (q2)

ε2n2
t2 · · · (qk)εknr

tk
, where for i = 1, · · · , k, qi = 2ei and εi is

the Kronecker symbol (det di/2) (1 if det di = ±1 mod 8, −1 if det di = ±3 mod 8)
and ni is the size of di and ti is tr di (mod 8) if di is diagonal, while it is undefined
or ∞ if di is a sum of 2 × 2 subblocks. The GLn(Z2)-equivalence symbol of t
determines t[GLn(Z2)], but not conversely. A unique symbol can be produced as
explained in [6], but there are computational tradeoffs between actually computing
a canonical 2-adic symbol and using a method to compute Fp polynomials that
accepts different symbols for the same genus. Since our program accepts any 2-adic
symbol, we do not discuss how to make the 2-part of the genus symbol unique.

4.3. Determining bases. The next proposition shows how to find a rational basis
for any level one space of Siegel modular forms, Mk(Γn), for even k > 2n + 1. It
is an application of Garrett’s formula and highlights the importance of the work of
Katsurada, which makes the computation of the Fourier coefficients of Eisenstein
series practical.

Proposition 4.1 (Pullback-genus method). Consider even k > 2n + 1. Let T =
{t1, · · · , tm} be a determining set of Fourier coefficient indices for Mk(Γn). Define

an m-by-m matrix M = [a(ti × tj ; ι
∗E

(2n)
k )]m×m. Then dim(Mk(Γn)) = rank(M).

Column reduce M to get a matrix
[
∗ 0

]
. The nonzero columns describe the

T -truncations of a basis of Mk(Γn), i.e., each nonzero column contains the T th
Fourier coefficients of a basis element. Further stipulating that T is ordered with
the singular indices at the beginning, let the column reduction of M take the form

M ∼
[

∗ 0 0
∗ ∗ 0

]
(column space equivalence),

with the horizontal dividing line after the rows indexed by singular t. The columns
between the vertical dividing lines describe the T -truncations of a basis of Sk(Γn).
In particular, dim(Sk(Γn)) is the number of columns between the vertical dividing
lines.
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Proof. Garrett’s formula gives M =
∑d

�=1 c�[a(ti; f�)a(tj ; f�)]m×m, where d =
dim(Mk(Γn)) is the desired dimension. Each summand matrix is an outer product
v�v

′
� where the column vector v� encodes a determining truncation of the Fourier

series of f�, M =
∑d

�=1 c�v�v
′
� where v� = [a(t1; f�) · a(tm; f�)]

′ for 	 = 1, · · · , d.
The matrix sum thus has the form M = V CV ′ where V = [v1 · · · vd]m×d and
C = diag(c1, · · · , cd). Because T is a determining set, the d columns of V are lin-
early independent. Because each c� is nonzero, C is invertible. Therefore the column
space of CV ′ is Cd and, consequently, col sp(V CV ′) = col sp(V ) = span(v1, · · · , vd),
which has dimension d. This shows that dim(Mk(Γn)) = rank(M). For any

j ∈ {1, · · · ,m}, the jth column of M is
∑d

�=1 cj,�[a(t1; f�) · a(tm; f�)]
′ with each

cj,� = c� a(tj ; f�). This is [a(t1; gj) · · · a(tm; gj)]
′ where gj =

∑d
�=1 cj,�f�. After

column reducing M to the form
[

∗ 0 0
∗ ∗ 0

]
described in the proposition, the de-

sired statements about the reduced matrix are immediate since its rows are indexed
by a determining set and its rank is dim(Mk(Γn)). �

We make a few comments about Proposition 4.1. We have methods available to
obtain a finite determining set T of indices forMk(Γn) as needed by the proposition;
see [21]. These determining sets are not needed when the dimension is known. In
degree three, Tsuyumine gave the generating function for dim(Mk(Γ3)) over all
weights k ([25], p. 831, though the factor (1− T 12)3 in the denominator at the top
of p. 832 should be (1−T 12)2 instead). So for n = 3 we do not need the full strength
of Proposition 4.1. Instead, we may simply grow the rows of M columnwise until
we have a basis, or even take a subset of the rows of M and grow that matrix
columnwise until getting a basis.

5. Computing Euler factors

This section condenses section 3 of [22]. The Hecke action on Fourier expan-
sions is explained in [5]. Thus, given a basis of Mk(Γn) with sufficiently long
Fourier expansions, we may compute a basis {f�} of eigenforms and their eigenval-
ues T (p)f = λf (T (p))f and Tj(p

2)f = λf (Tj(p
2))f .

Letting square brackets connote Weyl group symmetrization, introduce elements
of the invariant Laurent polynomial algebra Q[x±1]W , g = [x0] = x0

∏n
i=1(xi + 1)

and g� = [x2
0x1 · · ·xn−�] for 	 = 0, · · · , n. Altogether g, g0, g1, · · · , gn−1, g

−1
0 gen-

erate Q[x±1]W ; gn = [x2
0] is not needed as a generator but it will be used be-

low. For any prime p, the Hecke algebra generators T (p), {Ti(p
2)} and the invari-

ant polynomial algebra generators g, {g�} are related via the Satake isomorphism
Ω : Hp −→ Q[x±1]W and linear relations as follows (Hilfssatz 3.14 and Hilfssatz 3.17
in [7]).

Proposition 5.1 (Satake isomorphism on generators). Let n ≥ 2 be an integer,
and let p be prime. Then Ω(T (p)) = g. Also, there exists an upper triangular matrix
K = Kn(p

2) ∈ Mn+1(Z[1/p]), with positive entries on and above the diagonal, such
that (applying Ω componentwise on the left side of the next equation)

Ω
[
Tn(p

2) · · · T1(p
2) T0(p

2)
]
= [g0 g1 · · · gn]Kn(p

2).
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A. Krieg [19] gave the entries of the matrix for n ≥ 2, and a program that
computes the matrix is at the author’s website [28]. In particular,

K3(p
2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

p6
p3 − 1

p6
3p3 − p2 − p− 1

p4
(p− 1)(3p3 − p2 − p− 1)

p4

0
1

p3
p2 − 1

p3
2(p− 1)

p

0 0
1

p

p− 1

p
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

We introduce further Weyl-invariant polynomials r0, r1, · · · , r2n, defined by the
relation

∏n
i=1(1− xiX)(1− x−1

i X) =
∑2n

�=0(−1)�r�X
�, with r2n−� = r�. Thus the

standard p-Euler factor Qst
p (f,X) = (1−X)

∏n
i=1(1−αi,pX)(1−α−1

i,pX) of a Hecke

eigenform f ∈ Mk(Γn) is Qst
p (f,X) = (1 −X)

∑2n
�=0(−1)�r�(α)X

�. The r� and g�
Laurent polynomials are related by the condition

[r0 r1 · · · rn] = p〈n〉−kn[g0 g1 · · · gn]P,

where P = Pn is the Pascal-like upper triangular matrix whose nonzero entries are(
n−i

(j−i)/2

)
in the (i, j)th position if j− i ∈ 2Z≥0, the row and column indices starting

at 0. In particular,

P3 =

⎡
⎢⎢⎣
1 0 3 0
0 1 0 2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Given a Hecke eigenform, if we can compute its eigenvalues under T (p) and under
Ti(p

2) for i = 0, · · · , n, then we can produce the values ri(α) that specify its
standard p-Euler factor, as follows [22].

Theorem 5.2 (Standard Euler factor from eigenvalues). Let n ≥ 2 and k be positive
integers, and let p be prime. Let f ∈ Mk(Γn) be a Hecke eigenform of Hp. Let α be
the Satake parameter of the eigenvalue function λf . Introduce the vector of eigenval-

ues and the vector of polynomial coefficients, �λ = [λf (Tn(p
2)) · · · λf (T0(p

2))]

and �r = [r0(α) · · · rn(α)]. Then �r = p〈n〉−kn�λK−1P , where the matrices P
and K are as above.

Indeed, introducing �g = [g0(α) · · · gn(α)] we have �r = p〈n〉−kn�gP , and the

Satake mapping property and Proposition 5.1 combine to give �g = �λK−1.
Computing the spinor Euler factor from the eigenvalues is similar. In degree 3,

the spinor p-Euler factor is

Qspin
p (f,X) = (1− α0X) · (1− α0α1X)(1− α0α2X)(1− α0α3X)

· (1− α0α1α2X)(1− α0α1α3X)(1− α0α2α3X)(1− α0α1α2α3X).
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Denote its expansion
∑8

�=0(−1)�s�X
�. By direct computation, or [20], p. 310,

s0 = 1, s8 = g40(α)s0,

s1 = g(α), s7 = g30(α)s1,

s2 = (4g0 + 2g1 + g2)(α), s6 = g20(α)s2,

s3 = g(α)(g0 + g1)(α), s5 = g0(α)s3,

s4 = (2g20 + 4g0g1 + g0g3 + g21)(α).

By the Satake mapping property and Proposition 5.1, g(α) = λf (T (p)) and (as

above) �g = �λK−1. The spinor factor follows from the previous display.

6. Implementation

Implementing the pullback-genus method is not a purely mechanical matter.
For a given weight k, one wants to choose a small determining set of indices T

that aptly comprises matrices of rank 1, 2, and 3 in light of the known dimensions of
Mk(Γ1), Mk(Γ2), and Mk(Γ3). These matrices should have small entries. But also
the space that we are trying to determine can have an element that vanishes to high
order, such as Igusa’s χ18 ∈ S18(Γ3), requiring a bigger index to “see” it in order
for the method to succeed. Guessing a small determining set for a given degree k
requires a combination of software experimentation and mathematical insight into
the structure of Mk(Γ3).

The index-enumeration algorithm of section 4.1 is a significant bottleneck, quickly
growing expensive as the entries of the elements of the determining set grow. To
carry out our computations through weight 22 we processed 1965 Fourier coefficient

indices t1 × t2 of the pullback ι∗E
(6)
k , leading to 1 561 537 201 Fourier coefficient in-

dices
[
t1 r
r′ t2

]
of E

(6)
k itself. This multitude of indices gave rise to only 54 314 genus

symbols, showing the crucial role of genus coarseness in the pullback-genus method.
Indeed, the indices probably lie in considerably fewer genera, because we allow genus
symbols that are not unique at 2 and the entries of our indices often are divisible
by 2. The genera are recorded with multiplicity and the Fourier coefficient for each
genus is computed only once.

Not only do large collections of indices t give rise to far fewer genus symbols
than equivalence classes but, furthermore, the genus symbols are much faster and
more space-efficient to compute because equivalence class computations require a
sophisticated algorithm that uses lattice reduction and maintains an elaborate,
memory-expensive tree structure. For example, the pair

t1 × t2 =

⎡
⎢⎢⎣
1 1

2
1
2

1
2 2 1

1
2 1 2

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
4 2 2

2 4 2

2 2 4

⎤
⎥⎥⎦

arose in weight 22 and gave rise to 6 755 849 semidefinite indices t =
[
t1 r
r′ t2

]
. Some

36 hours of computation on a typical server determined that these indices fell into
9132 equivalence classes. On the other hand, only five minutes of laptop computa-
tion produced 4238 distinct genus symbols from the indices, and, as in the previous
paragraph, the actual number of genera is smaller. Another pair t1 × t2 that we
tested separately from our main computation took about 50 hours of computation
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on the server, using over 1.3 gigabytes of space, to determine that the resulting
4 002 643 indices t fell into 33 440 lattice classes, whereas the laptop computation
to produce 9114 genus symbols from the indices took only several minutes and
under 100 megabytes of space.

Separately from computing the pulled back Eisenstein series Fourier coefficients,
which are rational, as the weight k grows so do the number fields underlying the
Hecke eigenforms on the right side

∑
� c�f�⊗f� of Garrett’s formula, and this posed

various programming challenges. The right side summand does not determine c�
or f� individually, and considerable care was required to scale them in a way that
allowed congruence primes to be diagnosed.
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128 (2000), no. 6, 1595–1604, DOI 10.1090/S0002-9939-00-05586-6. MR1707138

[6] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 290, Springer-Verlag, New York, 1999. MR1662447

[7] E. Freitag, Siegelsche Modulfunktionen (German), Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 254, Springer-Verlag,
Berlin, 1983. MR871067

[8] P. B. Garrett, Pullbacks of Eisenstein series; applications, Automorphic Forms of Several
Variables (Katata, 1983), Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984,
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