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A PRIMAL-DUAL WEAK GALERKIN FINITE ELEMENT

METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS

IN NON-DIVERGENCE FORM

CHUNMEI WANG AND JUNPING WANG

Abstract. This article proposes a new numerical algorithm for second or-
der elliptic equations in non-divergence form. The new method is based on
a discrete weak Hessian operator locally constructed by following the weak
Galerkin strategy. The numerical solution is characterized as a minimization
of a non-negative quadratic functional with constraints that mimic the sec-
ond order elliptic equation by using the discrete weak Hessian. The resulting
Euler-Lagrange equation offers a symmetric finite element scheme involving
both the primal and a dual variable known as the Lagrange multiplier, and
thus the name of primal-dual weak Galerkin finite element method. Error
estimates of optimal order are derived for the corresponding finite element ap-
proximations in a discrete H2-norm, as well as the usual H1- and L2-norms.
The convergence theory is based on the assumption that the solution of the
model problem is H2-regular, and that the coefficient tensor in the PDE is
piecewise continuous and uniformly positive definite in the domain. Some nu-
merical results are presented for smooth and non-smooth coefficients on convex
and non-convex domains, which not only confirm the developed convergence
theory but also a superconvergence result.

1. Introduction

This paper is concerned with development of numerical methods for second order
elliptic problems in non-divergence form. For simplicity, we consider the model
problem that seeks an unknown function u = u(x) satisfying

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

d∑
i,j=1

aij∂
2
iju = f, in Ω,

u = 0, on ∂Ω,

where Ω is an open bounded domain in Rd(d = 2, 3) with Lipschitz continuous

boundary ∂Ω, L :=
∑d

i,j=1 aij∂
2
ij is the second order partial differential operator

with coefficients aij ∈ L∞(Ω), and f ∈ L2(Ω) is a given function.
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Assume that the coefficient tensor a(x) = (aij(x))d×d is symmetric, uniformly
bounded and positive definite. Namely, there exist positive constants α and β such
that

(1.2) αξT ξ ≤ ξTa(x)ξ ≤ βξT ξ ∀ξ ∈ Rd, x ∈ Ω.

If the coefficient tensor a(x) is smooth in the domain Ω, then the operator L can
be written in a divergence form,

Lu =

d∑
i,j=1

∂j(aij∂iu)−
d∑

i,j=1

(∂jaij)∂iu,

so that the existing finite element methods (see [3,6] for example) can be employed
for an accurate approximation of the problem (1.1). In this paper, we assume that
the coefficient tensor a(x) ∈ L∞(Ω) is non-smooth so that a variational formulation
using integration by parts is not possible.

Problems in the form of (1.1) arise in many applications from applied areas
such as probability and stochastic processes [10]. They also appear in the study
of fully non-linear partial differential equations in conjunction with linearization
techniques such as Newton’s iterative method [2, 18]. In many such applications,
the coefficient tensor a(x) is hardly smooth nor even continuous. For example, the
coefficient a(x) is merely essentially bounded in the application to Hamilton-Jacobi-
Bellman equations [10]. For fully non-linear PDEs discretized by discontinuous
finite elements, their linearization involves at most piecewise smooth coefficients.
Therefore, it is important and crucial to develop efficient numerical methods for
problem (1.1) with rough coefficient tensor.

Several numerical methods were recently designed and studied for PDEs in non-
divergence form by using finite element approaches based on ad hoc variational
forms. In [14], a Galerkin type method was introduced by using C0-conforming
finite elements via a finite element Hessian computed in the same finite element
space without boundary constraints. This finite element scheme was further mod-
ified and analyzed for its convergence in [18]. In [9], a non-standard primal finite
element method, which uses finite-dimensional subspaces consisting globally contin-
uous piecewise polynomial functions, was proposed and analyzed when the coeffi-
cient tensor a(x) is continuous over the domain. The main idea of [9] is to augment a
non-symmetric piecewise defined bilinear form by using an interior penalty term for
the jump of the flux across the interior element edges/faces. In [21], an hp-version
discontinuous Galerkin finite element method was designed and analyzed for a class
of such problems that satisfy the Cordès condition. The numerical scheme of [21]
was based on a variational form arising from testing the original PDE against the
Laplacian of sufficiently smooth functions (e.g., twice differentiable functions in L2).
It was proved in [21] that the method exhibits a convergence rate that is optimal
with respect to the meshsize h and suboptimal with respect to the polynomial de-
gree p by half an order. The result in [21] is limited to PDEs satisfying the Cordès
condition, but is applicable to the case of discontinuous coefficient tensor a(x). In
[20], a two-scale finite element method was presented and analyzed for the model
problem (1.1), in which the fine scale is given by the meshsize h whereas the coarse
scale is dictated by an integro-differential approximation of the PDE. It was shown
that the corresponding numerical solution satisfies the discrete maximum principle
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provided that the mesh is weakly acute. Furthermore, a convergence of the nu-
merical solution to the viscosity solution was established under some assumptions,
including a(x) ∈ C(Ω)d×d, f ∈ C(Ω), and the restriction of ε ≥ Ch| ln(h)| for the
coarse scale.

The goal of this paper is to develop a new finite element method for the model
problem (1.1) by using the weak Galerkin strategy recently introduced in [16,24–26]
for partial differential equations. One of the two basic principles for weak Galerkin is
the use of locally constructed differential operators, called discrete weak differential
operators, in the space of discontinuous functions including necessary boundary
information. The discrete weak differential operators form the critical building
block in discretization of the underlying PDEs. For the model problem (1.1), the
Hessian is the primary differential operator which shall be locally reconstructed by
using the weak Galerkin approach. The resulting discrete weak Hessian, denoted
by {∂2

ij,dv}d×d to be detailed in Sections 3 and 4, is then employed to approximate

(1.1) as

(1.3)
d∑

i,j=1

(aij∂
2
ij,duh, w) = (f, w), ∀w ∈ Wh,k,

where Wh,k is a test space and uh is sought from a trial space Vh,k. The discrete
problem (1.3), however, is not well-posed unless an inf-sup condition of Babus̆ka
[1] and Brezzi [4] is satisfied. To overcome this difficulty, this paper proposes a
constraint optimization algorithm which seeks uh ∈ Vh,k as a minimization of a
prescribed non-negative quadratic functional J(v) = 1

2s(v, v) with constraint given
by equation (1.3). The functional J(v) measures the “continuity” of v ∈ Vh,k in
the sense that v ∈ Vh,k is a classical C1-conforming element if and only if s(v, v) =
0. The weak continuity of the finite element approximation uh as characterized
by the functional J(v) forms the second basic principle of weak Galerkin. The
resulting Euler-Lagrange equation for the constraint optimization problem gives
rise to a symmetric numerical algorithm involving not only the primal variable uh

but also a dual variable λh known as the Lagrange multiplier. This numerical
scheme, called primal-dual weak Galerkin finite element method (PD-WG), is the
main contribution of the present paper.

Our theory for the primal-dual weak Gelerkin finite element method is based
on the assumption that the solution of (1.1) is H2-regular, and that the coefficient
tensor a(x) is piecewise continuous and satisfies the uniform ellipticity condition
(1.2). Under those assumptions, an optimal order error estimate is derived in a
discrete H2-norm for the primal variable and in the L2-norm for the dual variable.
We shall also establish a convergence theory and a superconvergence result for
the primal variable in the H1- and L2-norms under some smoothness assumptions
for the coefficient tensor. Numerical experiments are presented to illustrate the
accuracy and to confirm the theory developed for the primal-dual weak Galerkin
finite element method.

The primal-dual weak Galerkin method has the following advantages over the
schemes in [9, 14, 21]: (1) PD-WG offers a symmetric numerical scheme while the
other three are all non-symmetric; (2) PD-WG works for finite element partitions
consisting of arbitrary polygons or polyhedra, while [9, 14] are limited to those on
which C0 elements are possible; (3) PD-WG covers a wider class of PDE problems
than those in [9,14,21], as globally continuous coefficient tensor a(x) is required in
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[9] and the Cordés condition is essential in [21]. On the other hand, the numerical
schemes in [9,14,21] involve a fewer number of degrees of freedom than PD-WG in
general.

The paper is organized as follows. In Section 2, we present some preliminary
results on strong solutions for the model problem (1.1). Section 3 is devoted to
a discussion of weak Hessian and its discretizations. In Section 4, we describe
the primal-dual weak Galerkin finite element method for the model problem (1.1).
Section 5 is devoted to a stability analysis for the new finite element method. In
Section 6, we derive an optimal order error estimate for the numerical method in a
discrete H2-norm for piecewise continuous coefficient tensors. Section 7 continues
the error analysis by establishing some error estimates in the usual H1- and L2-
norms for the primal variable under some smoothness assumptions on the coefficient
tensor. Finally in Section 8, we conduct some numerical experiments for the model
problem (1.1) with smooth and non-smooth coefficients a(x) on convex and non-
convex domains.

2. Preliminaries

Let D ⊂ Rd be an open bounded domain with Lipschitz continuous boundary.
We use the standard definition for the Sobolev space Hs(D) and the associated
inner product (·, ·)s,D, norm ‖ · ‖s,D, and seminorm | · |s,D for any s ≥ 0 [3, 6]. We
also use 〈·, ·〉∂D to denote the usual inner products in L2(∂D). For simplicity, we
shall drop the subscript D in the norm and inner product notation when D = Ω.
In addition, ‖ · ‖0,D and ‖ · ‖0,∂D are simplified as ‖ · ‖D and ‖ · ‖∂D, respectively.

The classical Schauder’s theory [11] states that if the coefficient matrix a = a(x)
is of C0,α(Ω) and ∂Ω ∈ C2,α, then there exists a unique solution u ∈ C2,α(Ω)
satisfying the model problem (1.1). The Calderón-Zygmund theory states that if
a = a(x) is of C0(Ω̄) and ∂Ω ∈ C1,1, then there exists a unique solution u ∈ W 2,p(Ω)
satisfying (1.1); see Theorem 9.15 in [11] for details. Furthermore, one has the
following a priori estimate:

(2.1) ‖u‖2,p ≤ C‖f‖0,p.
Here p ∈ (1,∞) is any given real number and ‖ · ‖m,p stands for the standard norm
in the Sobolev space Wm,p(Ω) for any m ≥ 0.

The solution uniqueness may break down when d ≥ 3 for coefficients a(x) that
are not continuous. One such example is given by

(2.2) a(x) = Id×d +
(d+ λ− 2)xxT

(1− λ)|x|2 .

With Ω = B1(0), d > 2(2 − λ), it can be verified that u = |x|λ ∈ H2(Ω) ∩ H1
0 (Ω)

satisfies the partial differential equation in (1.1) with f = 0. For this reason, in the
case a(x) is discontinuous, we assume the following Cordès condition is satisfied:
There exists an ε ∈ (0, 1] such that

(2.3)

∑d
i,j=1 a

2
ij

(
∑d

i=1 aii)
2
≤ 1

d− 1 + ε
in Ω.

Theorem 2.1 ([21]). Let Ω ⊂ Rd be a bounded convex domain, and let the dif-
ferential operator defined in (1.1) satisfy a ∈ [L∞(Ω)]d×d, the ellipticity condition
(1.2), and the Cordès condition (2.3). Then, for any given f ∈ L2(Ω), there exists
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a unique u ∈ H2(Ω) ∩ H1
0 (Ω) that is a strong solution of (1.1), and this strong

solution satisfies

(2.4) ‖u‖2 ≤ C‖f‖0,

where C is a constant depending only on d, the diameter of Ω, α, β, and ε.

For problems in two dimensions, the uniform ellipticity assumption (1.2) implies
the validity of the Cordès condition (2.3); see [21] and the references cited therein.
In fact, let λ1 and λ2 be the smallest and the largest eigenvalues of a(x). Using the
identities

(2.5)
2∑

i,j=1

a2ij = λ2
1 + λ2

2,
2∑

i=1

aii = λ1 + λ2,

we arrive at ∑2
i,j=1 a

2
ij

(
∑2

i=1 aii)
2
=

λ2
1 + λ2

2

(λ1 + λ2)2
=

1

1 + 2κ/(1 + κ2)
,

where κ = λ2/λ1 is the condition number of the matrix a(x). It follows that the
Cordès condition is satisfied with ε = 2κ/(1+κ2). Note that the uniform ellipticity
(1.2) implies κ ∈ [1, β/α]. Since the minimum value of 2κ/(1 + κ2) in the interval
[1, β/α] is given by ε0 = 2αβ/(α2+β2), then the Cordès condition (2.3) is satisfied
with ε = 2αβ/(α2 + β2) under the condition (1.2) for two-dimensional problems.

Throughout this paper, we assume that the problem (1.1) has a unique strong
solution in H2(Ω) ∩H1

0 (Ω) with the a priori estimate

(2.6) ‖u‖2 ≤ C‖f‖0,

where C is a generic constant which represents different values at different appear-
ances.

Let X = H2(Ω) ∩H1
0 (Ω) and Y = L2(Ω). Introduce the following bilinear form

in X × Y :

(2.7) b(v, σ) := (Lv, σ), v ∈ X, σ ∈ Y.

Then, the strong solution of the problem (1.1) satisfies the following variational
equation: Find u ∈ X such that

(2.8) b(u,w) = (f, w) ∀w ∈ Y.

It follows from the regularity assumption (2.6) that the bilinear form b(·, ·) satisfies
the following inf-sup condition

sup
v∈X,v �=0

b(v, σ)

‖v‖X
≥ Λ‖σ‖Y

for all σ ∈ Y , where Λ is a generic constant related to the constant C in the H2

regularity estimate (2.6). Here ‖ · ‖X stands for the H2(Ω)-norm, and ‖ · ‖Y is the
standard L2(Ω)-norm.

Remark 2.1. If the problem (1.1) has the W 2,p-regularity (2.1) instead of (2.6),

then the variational equation (2.8) still holds true with X = W 2,p(Ω) ∩ W 1,p
0 (Ω)

and Y = Lq(Ω), where q is the conjugate of p ∈ (1,∞) so that p−1 + q−1 = 1.



520 CHUNMEI WANG AND JUNPING WANG

3. Weak Hessian and discrete weak Hessian

For classical functions, the Hessian is a square matrix of second order partial
derivatives if they all exist. Note that Hessian is the primary differential operator
in the composition of the second order elliptic problem (1.1) in the non-divergence
form. It is therefore necessary to develop numerical techniques targeted at the
Hessian operator. The objective of this section is to review the discrete weak
Hessian operator introduced in [23].

Let K be a polygonal or polyhedral domain with boundary ∂K. By a weak
function on K we mean a triplet v = {v0, vb,vg} such that v0 ∈ L2(K), vb ∈
L2(∂K) and vg ∈ [L2(∂K)]d. The first and second components, namely v0 and
vb, represent the value of v in the interior and on the boundary of K. The third
one, vg = (vg1, . . . , vgd) ∈ Rd, intends to represent the gradient vector ∇v on the
boundary of K. Note that vb and vg may or may not be related to the trace of v0
and ∇v0 on ∂K. In the case that traces are used (if they exist), the weak function v
is uniquely determined by its first component v0, and it becomes a classical function.
It is also possible to take vb as the trace of v0 and leave vg completely free or vice
versa. Denote by W (K) the space of all weak functions on K:

(3.1) W (K) = {v = {v0, vb,vg} : v0 ∈ L2(K), vb ∈ L2(∂K),vg ∈ [L2(∂K)]d}.
For any v ∈ W (K), the generalized weak second order partial derivative is defined

as a bounded linear functional ∂2
ij,wv on the Sobolev space H2(K) so that its action

on each ϕ ∈ H2(K) is given by

(3.2) 〈∂2
ij,wv, ϕ〉K := (v0, ∂

2
jiϕ)K − 〈vbni, ∂jϕ〉∂K + 〈vgi, ϕnj〉∂K .

Here, n = (n1, . . . , nd) is the unit outward normal direction on ∂K. The weak
Hessian of v ∈ W (K) is defined as ∇2

w,Kv =
{
∂2
ij,wv

}
d×d

.

Let Sr(K) be a finite-dimensional linear space consisting of polynomials on K. A
discrete analogy of ∂2

ij,w, denoted by ∂2
ij,w,r,K , is defined as the unique polynomial

∂2
ij,w,r,Kv ∈ Sr(K) such that

(3.3) (∂2
ij,w,r,Kv, ϕ)K = (v0, ∂

2
jiϕ)K−〈vbni, ∂jϕ〉∂K+〈vgi, ϕnj〉∂K , ∀ϕ ∈ Sr(K).

Analogously, for any v ∈ W (K), its discrete weak Hessian is given by

∇2
w,r,Kv =

{
∂2
ij,w,r,Kv

}
d×d

.

If v ∈ W (K) has a smooth component v0 ∈ H2(K), then the usual integration
by parts can be applied to the first term on the right-hand side of (3.3), yielding

(3.4) (∂2
ij,w,r,Kv, ϕ)K = (∂2

ijv0, ϕ)K − 〈(vb − v0)ni, ∂jϕ〉∂K + 〈vgi − ∂iv0, ϕnj〉∂K ,

for all ϕ ∈ Sr(K).

4. Primal-dual weak Galerkin

Let Th be a finite element partition of the domain Ω into polygons in 2D or
polyhedra in 3D. Denote by Eh the set of all edges or flat faces in Th and E0

h =
Eh \∂Ω the set of all interior edges or flat faces. Assume that Th satisfies the shape
regularity conditions described as in [25]. Denote by hT the diameter of T ∈ Th and
h = maxT∈Th

hT the meshsize of the partition Th. For any integer m ≥ 0, denote
by Pm(T ) the set of all polynomials of total degree m or less.
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For any given integer k ≥ 2, let Wk(T ) ⊂ W (T ) be a subspace consisting of
(piecewise) polynomials in the following form:

(4.1) Wk(T ) := {v = {v0, vb,vg} ∈ Pk(T )× Pk(e)× [Pk−1(e)]
d, e ∈ ∂T ∩ Eh}.

By patching Wk(T ) over all T ∈ Th through a common value on the interface E0
h

for vb and vg, we arrive at the following weak finite element space

Wh,k :=
{
{v0, vb,vg} : {v0, vb,vg}|T ∈ Wk(T ), T ∈ Th

}
.

Denote by W 0
h,k the subspace of Wh,k with vanishing boundary value for vb on ∂Ω:

(4.2) W 0
h,k = {{v0, vb,vg} ∈ Wh,k, vb|e = 0, e ⊂ ∂Ω}.

Next, let Sk(T ) be a linear space of polynomials satisfying

(4.3) Pk−2(T ) ⊆ Sk(T ) ⊆ Pk−1(T ).

Correspondingly, we have the following finite element space

(4.4) Sh,k =
{
σ : σ|T ∈ Sk(T ), T ∈ Th

}
.

For simplicity of notation, we denote by ∂2
ij,d the discrete weak second order

partial differential operator defined by (3.3) with Sr(T ) = Sk(T ) on each element
T ; i.e.,

(∂2
ij,dv)|T = ∂2

ij,w,r,T (v|T ), v ∈ Wh,k.

On each element T , we introduce

bT (v, σ) =
d∑

i,j=1

(aij∂
2
ij,dv, σ)T ,(4.5)

sT (u, v) = h−3
T 〈u0 − ub, v0 − vb〉∂T + h−1

T 〈∇u0 − ug,∇v0 − vg〉∂T ,(4.6)

for u, v ∈ Wk(T ) and σ ∈ Sk(T ). Summing up over T ∈ Th gives the following two
bilinear forms:

bh(v, σ) =
∑
T∈Th

bT (v, σ), v ∈ Wh,k, σ ∈ Sh,k,(4.7)

sh(u, v) =
∑
T∈Th

sT (u, v), u, v ∈ Wh,k.(4.8)

Using the bilinear forms defined in (4.7) and (4.8), the second order elliptic
problem (1.1) can be discretized as a constrained optimization problem read as
follows: Find uh ∈ W 0

h,k such that

(4.9) uh = arg min
v∈W 0

h,k, bh(v,σ)=(f,σ), ∀σ∈Sh,k

(
1

2
sh(v, v)

)
.

The Euler-Lagrange equation for the constrained minimization problem (4.9) gives
rise to the following numerical scheme.

Algorithm 4.1 (Primal-dual weak Galerkin FEM). For a numerical approximation
of the second order elliptic problem (1.1) in the non-divergence form, find (uh;λh) ∈
W 0

h,k × Sh,k satisfying

sh(uh, v) + bh(v, λh) = 0, ∀v ∈ W 0
h,k,(4.10)

bh(uh, σ) = (f, σ), ∀σ ∈ Sh,k.(4.11)
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Remark 4.1. The primal-dual weak Galerkin finite element scheme (4.10)-(4.11) is
symmetric with respect to the unknown variables uh and λh. Note that the primal
variable uh contributes the majority of the degrees of freedom so that the dual
variable λh does not add much computational complexity to the linear system.

From (4.3), the finite element space Sk(T ) for the Lagrange multiplier can be
chosen as any linear space between Pk−2(T ) and Pk−1(T ). The choice of Sk(T ) =
Pk−2(T ) has the least degrees of freedom, but the resulting numerical solution may
not be as accurate as the case of Sk(T ) = Pk−1(T ). Numerical results will be
presented in Section 8 for a comparison on the approximation accuracies and their
order of convergence.

Of interest to us is the special case of the weak finite element space Wh,k in which
vb = v0|∂T for each weak function v = {v0, vb,vg} on each element T ∈ Th. The
corresponding finite element method shall be called C0-type, and will be numerically
investigated in Section 8. Analogously, C−1-type primal-dual WG methods refer
to the general case of vb being totally independent of v0. It is clear that C0-type
finite element schemes involve less number of degrees of freedom than C−1-type,
as the boundary component vb has already been represented by v0. However, for
C−1-type primal-dual WG schemes, it is possible to devise a hybridized formulation
that involves only the degrees of freedom corresponding to the dual of vb and vg.
Results on the hybridized primal-dual weak Galerkin will be reported in forthcoming
papers.

5. Stability and solvability

In this section, we first derive an inf-sup condition for the bilinear form bh(·, ·),
and then show the existence and uniqueness for the solution of the Algorithm 4.1
defined by the equations (4.10)-(4.11).

For each element T , denote by Q0 the L2-projection onto Pk(T ), k ≥ 2. For each
edge or face e ⊂ ∂T , denote by Qb and Qg = (Qg1, Qg2, . . . , Qgd) the L

2-projections

onto Pk(e) and [Pk−1(e)]
d, respectively. For any w ∈ H2(Ω), denote by Qhw the

L2-projection onto the weak finite element space Wh,k such that on each element T ,

(5.1) Qhw = {Q0w,Qbw,Qg(∇w)}.
Next, denote by Qh the L2-projection onto the space Sh,k, which is clearly a com-
position of local L2-projections into Sk(T ).

Lemma 5.1 ([23]). The projection operators Qh and Qh satisfy the commutative
property

(5.2) ∂2
ij,d(Qhw) = Qh(∂

2
ijw), i, j = 1, . . . , d,

for all w ∈ H2(T ).

Proof. For any ϕ ∈ Sk(T ) and w ∈ H2(T ), from (3.3) and the usual integration by
parts we have

(∂2
ij,d(Qhw), ϕ)T = (Q0w, ∂

2
jiϕ)T − 〈Qbw, ∂jϕni〉∂T + 〈Qgi(∂iw), ϕnj〉∂T

= (w, ∂2
jiϕ)T − 〈w, ∂jϕni〉∂T + 〈∂iw,ϕnj〉∂T

= (∂2
ijw,ϕ)T

= (Qh∂
2
ijw,ϕ)T .

It follows that (5.2) holds true. This completes the proof of the lemma. �
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In the weak finite element space Wh,k, let us introduce the following seminorm:

(5.3) ‖v‖22,h =
∑
T∈Th

‖
d∑

i,j=1

Qh(aij∂
2
ijv0)‖2T + sh(v, v).

The following lemma shows that ‖·‖2,h is indeed a norm in the subspace W 0
h,k when

the meshsize h is sufficiently small.

Lemma 5.2. Assume that the coefficient functions aij are uniformly piecewise
continuous in Ω with respect to the finite element partition Th. There exists a fixed
h0 > 0 such that if v = {v0, vb,vg} ∈ W 0

h,k satisfies ‖v‖2,h = 0, then one must have
v ≡ 0 when h ≤ h0.

Proof. Assume that v = {v0, vb,vg} ∈ W 0
h,k satisfies ‖v‖2,h = 0. It follows from

(5.3) and (4.8) that

(5.4)
d∑

i,j=1

Qh(aij∂
2
ijv0) = 0, v0|∂T = vb, ∇v0|∂T = vg

for all T ∈ Th. Thus, v0 ∈ C1
0 (Ω) and satisfies

(5.5)
d∑

i,j=1

Qh(aij∂
2
ijv0) = 0.

Hence,

d∑
i,j=1

aij∂
2
ijv0 =

d∑
i,j=1

(I −Qh)
(
aij∂

2
ijv0

)

=

d∑
i,j=1

(I −Qh)
(
(aij − āij)∂

2
ijv0

)
=: F,

(5.6)

where āij is the average of aij on T ∈ Th. Using the H2-regularity assumption
(2.6), there exists a constant C such that

(5.7) ‖v0‖2 ≤ C‖F‖0.
Note that aij is uniformly piecewise continuous in Ω with respect to Th. Thus, for
any ε > 0, there exists a h0 > 0 such that ‖aij − āij‖L∞ ≤ ε. Using the stability of
the L2-projection Qh, we arrive at

‖F‖0 ≤ Cε‖v0‖2.
Substituting the above into (5.7) yields

(5.8) ‖v0‖2 ≤ Cε‖v0‖2.
This implies that v0 = 0 if ε is so small that it satisfies Cε < 1, which can be easily
achieved by adjusting the parameter h0. �

For convenience, in the weak finite element space Wh,k, we introduce another
seminorm

(5.9) |||v|||22 =
∑
T∈Th

‖
d∑

i,j=1

Qh(aij∂
2
ij,dv)‖2T + sh(v, v).
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Observe that the only difference between ‖v‖2,h and |||v|||2 lies in the first term of
(5.3) and (5.9) where the strong second order partial derivatives are replaced by
the discrete weak second order partial derivatives. The following lemma shows that
they are indeed equivalent.

Lemma 5.3. Assume that the coefficient functions aij are uniformly piecewise
continuous in Ω with respect to the finite element partition Th. There exist α1 > 0
and α2 > 0 such that

(5.10) α1‖v‖2,h ≤ |||v|||2 ≤ α2‖v‖2,h
for all v ∈ Wh,k.

Proof. Note that, for any φ ∈ Sk(T ), we have

(Qh(aij∂
2
ij,dv), φ)T = (∂2

ij,dv,Qh(aijφ))T .

With ϕ = Qh(aijφ), we have

(∂2
ijv0, ϕ)T = (∂2

ijv0,Qh(aijφ))T = (Qh(aij∂
2
ijv0), φ)T .

Thus, using (3.4) we arrive at

(Qh(aij∂
2
ij,dv), φ)T =(∂2

ij,dv, aijφ)T = (∂2
ij,dv, ϕ)T

=(∂2
ijv0, ϕ)T − 〈(vb − v0)ni, ∂jϕ〉∂T

+ 〈vgi − ∂iv0, njϕ〉∂T
=(Qh(aij∂

2
ijv0), φ)T − 〈(vb − v0)ni, ∂jϕ〉∂T

+ 〈vgi − ∂iv0, njϕ〉∂T .

(5.11)

It now follows from the Cauchy-Schwarz and the trace inequality (6.7) that

∣∣(Qh(aij∂
2
ij,dv), φ)T

∣∣ ≤ ‖Qh(aij∂
2
ijv0)‖T ‖φ‖T + ‖vb − v0‖∂T ‖∂jϕ‖∂T

+ ‖vgi − ∂iv0‖∂T ‖ϕ‖∂T

≤ ‖Qh(aij∂
2
ijv0)‖T ‖φ‖T + Ch

− 3
2

T ‖vb − v0‖∂T ‖ϕ‖T

+ Ch
− 1

2

T ‖vgi − ∂iv0‖∂T ‖ϕ‖T .

(5.12)

It is easy to see that ‖ϕ‖T ≤ C‖φ‖T . Thus, by choosing φ = Qh(aij∂
2
ij,dv) in

(5.12) we obtain

‖Qh(aij∂
2
ij,dv)‖2T ≤ C

(
‖Qh(aij∂

2
ijv0)‖2T + h−3

T ‖vb − v0‖2∂T + h−1
T ‖vgi − ∂iv0‖2∂T

)
,

which, after summing over all T ∈ Th, gives the upper-bound estimate of |||v|||2 in
(5.10). The lower-bound estimate of |||v|||2 can be established in a similar manner by
representing (Qh(aij∂

2
ijv0), φ)T in terms of (Qh(aij∂

2
ij,dv), φ)T and the other two

boundary integrals in (5.11). This completes the proof of the lemma. �

Lemma 5.4 (inf-sup condition). Assume that the coefficient matrix a = {aij}d×d

is uniformly piecewise continuous in Ω with respect to the finite element partition
Th. For any σ ∈ Sh,k, there exists vσ ∈ W 0

h,k satisfying

bh(vσ, σ) ≥ 1

2
‖σ‖20,(5.13)

‖vσ‖22,h ≤ C‖σ‖20,(5.14)
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provided that the meshsize h < h0 for a sufficiently small, but fixed parameter
h0 > 0.

Proof. Consider the following second order elliptic problem:

d∑
i,j=1

aij∂
2
ijw = σ, in Ω,(5.15)

w = 0, on ∂Ω.(5.16)

By the H2-regularity assumption (2.6), the problem (5.15)-(5.16) has a unique
solution in H2(Ω) satisfying

(5.17) ‖w‖2 ≤ C‖σ‖0.

We claim that vσ = Qhw satisfies (5.13)-(5.14). In fact, by setting v = vσ = Qhw
in bh(v, σ), we have from the commutative property (5.2), the equation (5.15), and
the a priori estimate (5.17) that

bh(vσ, σ) =
∑
T∈Th

(
d∑

i,j=1

aij∂
2
ij,dQhw, σ)T

=
∑
T∈Th

(

d∑
i,j=1

aijQh∂
2
ijw, σ)T

=
∑
T∈Th

(
d∑

i,j=1

aij∂
2
ijw, σ)T +

∑
T∈Th

(
d∑

i,j=1

aij(Qh − I)∂2
ijw, σ)T

=
∑
T∈Th

‖σ‖2T +
∑
T∈Th

d∑
i,j=1

((Qh − I)∂2
ijw, (aij − āij)σ)T

≥ ‖σ‖20 − ε(h)‖w‖2‖σ‖0
≥ (1− Cε(h))‖σ‖20,

(5.18)

where ε(h) is given by ‖aij−āij‖L∞(Ω). Since aij is uniformly piecewise continuous,

there exists a small, but fixed h0, such that 1−Cε(h) ≥ 1
2 when h < h0. It follows

that

bh(vσ, σ) ≥
1

2
‖σ‖20,

which verifies the inequality (5.13).
Next, for the same vσ = Qhw, from the commutative property (5.2) and the

stability of the L2-projection Qh, we have

∑
T∈Th

‖Qh(
d∑

i,j=1

aij∂
2
ij,dvσ)‖2T ≤C

∑
T∈Th

d∑
i,j=1

‖aij∂2
ij,dQhw‖2T

=C
∑
T∈Th

d∑
i,j=1

‖aijQh∂
2
ijw‖2T

≤C‖w‖22 ≤ C‖σ‖20.

(5.19)
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For v = Qhw, by the trace inequality (6.6) and (5.17), the estimate (6.8) with
m = 1, we have∑

T∈Th

h−3
T ‖v0 − vb‖2∂T =

∑
T∈Th

h−3
T ‖Q0w −Qbw‖2∂T

≤
∑
T∈Th

h−3
T ‖Q0w − w‖2∂T

≤ C
∑
T∈Th

h−4
T

(
‖Q0w − w‖2T + h2

T ‖∇Q0w −∇w‖2T
)

≤ C‖w‖22 ≤ C‖σ‖20.

(5.20)

A similar argument can be applied to yield the following estimate:

(5.21)
∑
T∈Th

h−1
T ‖∇v0 − vg‖2∂T ≤ C‖σ‖20.

Now combining (5.19) with (5.20) and (5.21) gives |||v|||22 ≤ C‖σ‖20, and hence from
(5.10) we obtain

‖vσ‖22,h ≤ C‖σ‖20,
which, together with (5.18), completes the proof of the lemma. �

Lemma 5.5 (Boundedness). The following inequalities hold true:

|sh(u, v)| ≤ ‖u‖2,h‖v‖2,h, ∀u, v ∈ W 0
h,k,(5.22)

|bh(v, σ)| ≤ C‖v‖2,h‖σ‖0, ∀v ∈ W 0
h,k, σ ∈ Sh,k.(5.23)

Proof. To derive (5.22), we use the Cauchy-Schwarz inequality to obtain

|sh(u, v)| =
∣∣∣ ∑
T∈Th

h−3
T 〈u0 − ub, v0 − vb〉∂T + h−1

T 〈∇u0 − ug,∇v0 − vg〉∂T
∣∣∣

≤
( ∑

T∈Th

h−3
T ‖u0 − ub‖2∂T

) 1
2
( ∑

T∈Th

h−3
T ‖v0 − vb‖2∂T

) 1
2

+
( ∑

T∈Th

h−1
T ‖∇u0 − ug‖2∂T

) 1
2
( ∑

T∈Th

h−1
T ‖∇v0 − vg‖2∂T

) 1
2

≤‖u‖2,h‖v‖2,h.
As to (5.23), by the definition of Qh and the Cauchy-Schwarz inequality, for any

v ∈ W 0
h,k and σ ∈ Sh, we have

bh(v, σ) =
∑
T∈Th

(
d∑

i,j=1

aij∂
2
ij,dv, σ)T

=
∑
T∈Th

d∑
i,j=1

(Qh(aij∂
2
ij,dv), σ)T

≤
( ∑

T∈Th

‖
d∑

i,j=1

Qh(aij∂
2
ij,dv)‖2T

) 1
2
( ∑

T∈Th

‖σ‖2T
) 1

2

≤ |||v|||2‖σ‖0.
This, along with (5.10), completes the proof. �



A PRIMAL-DUAL WEAK GALERKIN FINITE ELEMENT METHOD 527

Introduce the following subspace of W 0
h,k:

Zh = {v ∈ W 0
h,k : bh(v, σ) = 0, ∀σ ∈ Sh,k}.

Lemma 5.6 (Coercivity). There exists a constant α > 0 such that

(5.24) sh(v, v) ≥ α‖v‖22,h, ∀v ∈ Zh.

Proof. Given any v ∈ Zh, we have bh(v, σ) = 0 for all σ ∈ Sh,k. Using (4.7) and
(4.5) we obtain

0 = bh(v, σ)

=
∑
T∈Th

(

d∑
i,j=1

aij∂
2
ij,dv, σ)T

=
∑
T∈Th

(

d∑
i,j=1

Qh(aij∂
2
ij,dv), σ)T

for all σ ∈ Sh,k. Thus, on each element T ∈ Th we have

d∑
i,j=1

Qh(aij∂
2
ij,dv) = 0.

It follows that |||v|||22 = sh(v, v), which, together with (5.10), implies the desired
coercivity (5.24) for some α > 0. �

Using the abstract theory for saddle-point problems developed by Babus̆ka [1]
and Brezzi [4], we arrive at the following result.

Theorem 5.7. Assume that the coefficient functions aij are uniformly piecewise
continuous in Ω with respect to the finite element partition Th. The primal-dual
weak Galerkin finite element scheme (4.10)-(4.11) has a unique solution (uh;λh) ∈
W 0

h,k × Sh,k, provided that the meshsize h < h0 holds true for a sufficiently small,
but fixed parameter value h0 > 0. Moreover, there exists a constant C such that the
solution uh and λh satisfies

‖uh‖2,h + ‖λh‖0 ≤ C‖f‖0.

6. Error estimates

Let (uh;λh) ∈ W 0
h,k × Sh,k be the approximate solution of problem (1.1) arising

from the primal-dual weak Galerkin finite element scheme (4.10)-(4.11). Note that
λ = 0 is the solution of the trivial dual problem of b(v, λ) = 0 for all v ∈ H2(Ω) ∩
H1

0 (Ω). Define the error functions by

(6.1) eh = uh −Qhu, γh = λh −Qhλ,

where Qh and Qh are the corresponding L2-projection operators.

Lemma 6.1. The error functions eh and γh given by (6.1) satisfy the equations

sh(eh, v) + bh(v, γh) = −sh(Qhu, v), ∀v ∈ W 0
h,k,(6.2)

bh(eh, σ) = �u(σ), ∀σ ∈ Sh,k,(6.3)
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where

(6.4) �u(σ) =
∑
T∈Th

d∑
i,j=1

((I −Qh)∂
2
iju, aijσ)T .

Proof. First, by subtracting sh(Qhu, v) from both sides of (4.10) we obtain

sh(uh −Qhu, v) + bh(v, λh) = −sh(Qhu, v), ∀v ∈ W 0
h,k.

It follows from λ = 0 that γh = λh. Thus, the above equation can be rewritten as

(6.5) sh(eh, v) + bh(v, γh) = −sh(Qhu, v), ∀v ∈ W 0
h,k,

which is the first error equation (6.2).
To derive (6.3), we use (1.1) and (5.2) in Lemma 5.1 to obtain

bh(Qhu, σ) =
∑
T∈Th

(
d∑

i,j=1

aij∂
2
ij,dQhu, σ)T

=
∑
T∈Th

(

d∑
i,j=1

aijQh∂
2
iju, σ)T

=
∑
T∈Th

(
d∑

i,j=1

aij∂
2
iju, σ)T +

∑
T∈Th

(
d∑

i,j=1

aij(Qh − I)∂2
iju, σ)T

=(f, σ) +
∑
T∈Th

d∑
i,j=1

((Qh − I)∂2
iju, aijσ)T ,

for all σ ∈ Sh,k. Now subtracting the above equation from (4.11) yields the desired
equation (6.3). This completes the proof of the lemma. �

The equations (6.2) and (6.3) are called error equations for the primal-dual WG
finite element scheme (4.10)-(4.11). This is a saddle point system for which Brezzi’s
Theorem [4] can be applied for a stability analysis.

Recall that Th is a shape-regular finite element partition of the domain Ω. For
any T ∈ Th and ϕ ∈ H1(T ), the following trace inequality holds true [25]:

(6.6) ‖ϕ‖2∂T ≤ C(h−1
T ‖ϕ‖2T + hT ‖∇ϕ‖2T ).

If ϕ is a polynomial on the element T ∈ Th, then from the inverse inequality (see
also [25]) we have

(6.7) ‖ϕ‖2∂T ≤ Ch−1
T ‖ϕ‖2T .

The following estimates for the L2-projections are extremely useful in the forth-
coming error analysis.

Lemma 6.2 ([25]). Let Th be a finite element partition of Ω satisfying the shape
regularity assumptions given in [25]. Then, for any 0 ≤ s ≤ 2 and 1 ≤ m ≤ k, one
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has ∑
T∈Th

h2s
T ‖u−Q0u‖2s,T ≤ Ch2(m+1)‖u‖2m+1,(6.8)

∑
T∈Th

d∑
i,j=1

h2s
T ‖u−Qhu‖2s,T ≤ Ch2(m−1)‖u‖2m−1,(6.9)

∑
T∈Th

d∑
i,j=1

h2s
T ‖∂2

iju−Qh∂
2
iju‖2s,T ≤ Ch2(m−1)‖u‖2m+1.(6.10)

Theorem 6.3. Assume that the coefficient functions aij are uniformly piecewise
continuous in Ω with respect to the finite element partition Th. Let u and (uh;λh) ∈
W 0

h,k × Sh,k be the solutions of (1.1) and (4.10)-(4.11), respectively. Assume that

the exact solution u of (1.1) is sufficiently regular such that u ∈ Hk+1(Ω). There
exists a constant C such that

(6.11) ‖uh −Qhu‖2,h + ‖λh −Qhλ‖0 ≤ Chk−1‖u‖k+1,

provided that the meshsize h < h0 holds true for a sufficiently small, but fixed
h0 > 0.

Proof. It follows from Lemma 5.4, Lemma 5.5, and Lemma 5.6 that Brezzi’s sta-
bility conditions are satisfied for the saddle-point system (6.2)-(6.3). Thus, there
exists a constant C such that

(6.12) ‖eh‖2,h + ‖γh‖0 ≤ C

(
sup

v∈W 0
h,k,v �=0

|sh(Qhu, v)|
‖v‖2,h

+ sup
σ∈Sh,σ �=0

|�u(σ)|
‖σ‖0

)
.

Recall that

sh(Qhu, v) =
∑
T∈Th

h−3
T 〈Q0u−Qbu, v0 − vb〉∂T

+
∑
T∈Th

h−1
T 〈∇Q0u−Qg(∇u),∇v0 − vg〉∂T .

(6.13)

The first term on the right-hand side of (6.13) can be estimated by using the
Cauchy-Schwarz inequality, the trace inequality (6.6), and the estimate (6.8) with
m = k as follows:∣∣∣∣∣

∑
T∈Th

h−3
T 〈Q0u−Qbu, v0 − vb〉∂T

∣∣∣∣∣
=

∣∣∣∣∣
∑
T∈Th

h−3
T 〈Q0u− u, v0 − vb〉∂T

∣∣∣∣∣
≤
( ∑

T∈Th

h−3
T ‖u−Q0u‖2∂T

) 1
2
( ∑

T∈Th

h−3
T ‖v0 − vb‖2∂T

) 1
2

≤C
( ∑

T∈Th

h−4
T

(
‖u−Q0u‖2T + h2

T ‖u−Q0u‖21,T
)) 1

2 ‖v‖2,h

≤Chk−1‖u‖k+1‖v‖2,h.

(6.14)
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Similarly, the second term on the right-hand side of (6.13) has the following estimate

(6.15)

∣∣∣∣∣
∑
T∈Th

h−1
T 〈∇Q0u−Qg(∇u),∇v0 − vg〉∂T

∣∣∣∣∣ ≤ Chk−1‖u‖k+1‖v‖2,h.

Combining (6.13) with (6.14) and (6.15) gives

(6.16) |sh(Qhu, v)| ≤ Chk−1‖u‖k+1‖v‖2,h.

As to the second term on the right-hand side of (6.12), using (6.4) and the
estimate (6.10) with m = k we have

|�u(σ)| =

∣∣∣∣∣∣
∑
T∈Th

d∑
i,j=1

(I −Qh)∂
2
iju, aijσ)T

∣∣∣∣∣∣
≤

d∑
i,j=1

‖aij‖L∞ ‖(I −Qh)∂
2
iju‖0 ‖σ‖0

≤ Chk−1‖u‖k+1‖σ‖0.

(6.17)

Substituting (6.16) and (6.17) into (6.12) gives the error estimate (6.11). �

7. Error estimates in H1
and L2

We first establish an estimate for the discrete weak second order partial deriva-
tives.

Lemma 7.1. There exists a constant C such that for any v ∈ Wk(T ), we have

(7.1) ‖∂2
ij,dv‖2T ≤ C

(
‖∂2

ijv0‖2T + sT (v, v)
)
,

where C is a generic constant independent of T ∈ Th.

Proof. From (3.4), for any ϕ ∈ Sk(T ), we have

(∂2
ij,dv, ϕ)T = (∂2

ijv0, ϕ)T − 〈vb − v0, ∂jϕni〉∂T + 〈vgi − ∂iv0, ϕnj〉∂T .

Using the Cauchy-Schwarz inequality, the trace inequality (6.7), and the inverse
inequality we arrive at

|(∂2
ij,dv, ϕ)T | ≤‖∂2

ijv0‖T ‖ϕ‖T + ‖vb − v0‖∂T ‖∂jϕ‖∂T + ‖vgi − ∂iv0‖∂T ‖ϕ‖∂T

≤
(
‖∂2

ijv0‖T + Ch
− 3

2

T ‖vb − v0‖∂T + Ch
− 1

2

T ‖vgi − ∂iv0‖∂T
)
‖ϕ‖T .

Thus,

‖∂2
ij,dv‖2T ≤ C

(
‖∂2

ijv0‖2T + h−3
T ‖vb − v0‖2∂T + h−1

T ‖vgi − ∂iv0‖2∂T
)
,

which verifies the inequality (7.1). This completes the proof of the lemma. �

Consider the problem of solving an unknown function w such that

d∑
i,j=1

∂2
ji(aijw) = θ, in Ω,(7.2)

w = 0, on ∂Ω,(7.3)
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where θ is a given function. With the bilinear form b(·, ·) given by (2.7), a variational
formulation for (7.2)-(7.3) reads as follows: Find w ∈ L2(Ω) such that

(7.4) b(v, w) = (θ, v) ∀v ∈ H2(Ω) ∩H1
0 (Ω).

The problem (7.2)-(7.3) is said to beH1+s-regular, s ∈ [0, 1], if for any θ ∈ Hs−1(Ω),
there exists a unique w ∈ H1+s(Ω)∩H1

0 (Ω) satisfying (7.4) and the following a priori
estimate:

(7.5) ‖w‖1+s ≤ C‖θ‖s−1.

Lemma 7.2. Assume that the coefficients aij are in C1(Ω). Then, for any v =
{v0, vb,vg} ∈ W 0

h,k, the following identity holds true:

(v0, θ) =
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,dv, w)T − 〈(vgi − ∂iv0)nj , (Qh − I)(aijw)〉∂T

+ 〈(vb − v0)ni, ∂j(Qh − I)(aijw)〉∂T .
(7.6)

Proof. By testing (7.2) with v0 on each element T ∈ Th, we obtain from the usual
integration by parts,

(θ, v0) =
∑
T∈Th

(

d∑
i,j=1

∂2
ji(aijw), v0)T

=
∑
T∈Th

d∑
i,j=1

(aijw, ∂
2
ijv0)T − 〈aijwnj , ∂iv0〉∂T + 〈∂j(aijw), v0ni〉∂T

=
∑
T∈Th

d∑
i,j=1

(aijw, ∂
2
ijv0)T − 〈aijwnj , ∂iv0 − vgi〉∂T

+ 〈∂j(aijw)ni, v0 − vb〉∂T ,

(7.7)

where we have used the homogeneous boundary condition (7.3) in the third line
and the fact that aij ∈ C1(Ω) and vb = 0 on ∂Ω in the fourth line.

From (3.4) with ϕ = Qh(aijw), we have

(∂2
ij,dv,Qh(aijw))T =(∂2

ijv0,Qh(aijw))T − 〈vb − v0, ni∂jQh(aijw)〉∂T
+ 〈vgi − ∂iv0, njQh(aijw)〉∂T

=(∂2
ijv0, aijw)T − 〈vb − v0, ni∂jQh(aijw)〉∂T

+ 〈vgi − ∂iv0, njQh(aijw)〉∂T ,

which leads to

(∂2
ijv0, aijw)T = (∂2

ij,dv,Qh(aijw))T

− 〈vgi − ∂iv0, njQh(aijw)〉∂T + 〈vb − v0, ni∂jQh(aijw)〉∂T .
(7.8)
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Using (7.8), we can rewrite (7.7) as

(v0, θ) =
∑
T∈Th

d∑
i,j=1

(∂2
ij,dv,Qh(aijw))T − 〈vgi − ∂iv0, njQh(aijw)〉∂T

+ 〈vb − v0, ni∂jQh(aijw)〉∂T − 〈aijwnj , ∂iv0 − vgi〉∂T
+ 〈ni∂j(aijw), v0 − vb〉∂T

=
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,dv, w)T − 〈(vgi − ∂iv0)nj , (Qh − I)(aijw)〉∂T

+ 〈(vb − v0)ni, ∂j(Qh − I)(aijw)〉∂T ,

(7.9)

which is the desired identity (7.6). �

The following lemma is developed for an estimate of the last two terms on the
right-hand side of (7.6) with the H1-regularity assumption for the dual problem
(7.4).

Lemma 7.3. Assume that the coefficient matrix {aij}d×d is regular so that aij ∈
ΠT∈Th

W 1,∞(T ). Then, there exists a constant C such that for any v ∈ W 0
h,k, we

have ∣∣∣∣∣∣
∑
T∈Th

d∑
i,j=1

〈(vgi − ∂iv0)nj , (Qh − I)(aijw)〉∂T

∣∣∣∣∣∣ ≤ Ch ‖v‖2,h‖θ‖−1,(7.10)

provided that the dual problem (7.4) has the H1-regularity estimate (7.5) with s = 0.

Proof. From the Cauchy-Schwarz inequality, the trace inequality (6.6), and the
estimates in Lemma 6.2 we have∣∣∣∣∣∣

∑
T∈Th

d∑
i,j=1

〈(vgi − ∂iv0)nj , (Qh − I)(aijw)〉∂T

∣∣∣∣∣∣
≤

∑
T∈Th

d∑
i,j=1

‖vgi − ∂iv0‖∂T ‖(Qh − I)(aijw)‖∂T

≤ C

⎛
⎝ ∑

T∈Th

d∑
i,j=1

hT ‖(Qh − I)(aijw)‖2∂T

⎞
⎠

1
2

‖v‖2,h

≤ Ch‖w‖1‖v‖2,h ≤ Ch‖θ‖−1‖v‖2,h,

(7.11)

where we have used the H1-regularity assumption in the last line. This completes
the proof of the lemma. �

Note that if P1(T ) ⊆ Sk(T ) for all T ∈ Th and aij ∈ ΠT∈Th
W 2,∞(T ), then from

the trace inequality (6.6) and the standard error estimate for the L2-projection Qh

we have

‖(Qh − I)(aijw)‖2∂T ≤Ch−1
T (‖(Qh − I)(aijw)‖2T + h2

T ‖(Qh − I)(aijw)‖21,T )
≤Ch3

T ‖aij‖22,∞,T ‖w‖22,T .

(7.12)
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By substituting the above inequality into the third line of (7.11) and then assuming
the H2-regularity (7.5) we obtain the following result.

Lemma 7.4. Assume that the coefficients aij are sufficiently smooth on each ele-
ment such that aij ∈ ΠT∈Th

W 2,∞(T ). In addition, assume P1(T ) ⊂ Sk(T ) for each
element T ∈ Th. Then, there exists a constant C such that for any v ∈ W 0

h,k, we
have

∣∣∣∣∣∣
∑
T∈Th

d∑
i,j=1

〈(vgi − ∂iv0)nj , (Qh − I)(aijw)〉∂T

∣∣∣∣∣∣ ≤ Ch2 ‖v‖2,h‖θ‖0,(7.13)

∣∣∣∣∣∣
∑
T∈Th

d∑
i,j=1

〈(vb − v0)ni, ∂j(Qh − I)(aijw)〉∂T

∣∣∣∣∣∣ ≤ Ch2 ‖v‖2,h‖θ‖0,(7.14)

provided that the regularity estimate (7.5) holds true with s = 1.

Theorem 7.5. Let uh = {u0, ub,ug} ∈ W 0
h,k be the approximate solution of (1.1)

arising from the primal-dual weak Galerkin finite element algorithm (4.10)-(4.11)
with C0-type elements. Assume that aij ∈ C1(Ω) and the exact solution u of (1.1)
satisfies u ∈ Hk+1(Ω). Then, there exists a constant C such that

(7.15)

( ∑
T∈Th

‖∇u0 −∇u‖2T

) 1
2

≤ Chk‖u‖k+1,

provided that the meshsize h is sufficiently small and the dual problem (7.2)-(7.3)
has the H1-regularity estimate (7.5) with s = 0.

Proof. For any η ∈ [C1(Ω)]d with η = 0 on Eh, let w be the solution of the dual
problem (7.2)-(7.3) with θ = −∇ · η. Thus, from Lemma (7.2) with v = eh given
as in (6.1) we obtain

−(e0,∇ · η) =
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,deh, w)T − 〈(egi − ∂ie0)nj , (Qh − I)(aijw)〉∂T

=I1 − I2,

where Ij are defined in the obvious way. Since η vanishes on the wired basket Eh,
then from the integration by parts we have

(7.16) (∇e0, η) = I1 − I2.

Using the two estimates in Lemma 7.3, we can bound the term I2 as follows:

(7.17) |I2| ≤ Ch‖θ‖−1‖eh‖2,h ≤ Ch‖η‖0‖eh‖2,h.
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As to the term I1, we use the error equation (6.3) to obtain

I1 =
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,deh, w)T

=
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,deh,Qhw)T + (aij∂

2
ij,deh, (I −Qh)w)T

=
∑
T∈Th

d∑
i,j=1

((I −Qh)∂
2
iju, aijQhw)T +

∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,deh, (I −Qh)w)T .

(7.18)

Note that

|((I −Qh)∂
2
iju, aijQhw)T | =|((I −Qh)∂

2
iju, (I −Qh)aijQhw)T |

≤‖(I −Qh)∂
2
iju‖T ‖(I −Qh)aijQhw‖T

≤ChT‖(I −Qh)∂
2
iju‖T ‖w‖1,T

(7.19)

and by (7.1)

|(aij∂2
ij,deh,(I −Qh)w)T | = |((aij − āij)∂

2
ij,deh, (I −Qh)w)T |

≤ ‖aij − āij‖L∞(T )‖∂2
ij,deh‖T ‖(I −Qh)w‖T

≤ ε(hT )hT ‖w‖1,T
(
‖∂2

ije0‖2T + sT (eh, eh)
) 1

2 ,

(7.20)

where ε(hT ) → 0 as h → 0. Using (7.19) and (7.20), we obtain the following
estimate for the term I1:

|I1| ≤Ch

⎛
⎝ε(h)‖∇2e0‖0 + ‖eh‖2,h +

d∑
i,j=1

‖(I −Qh)∂
2
iju‖0

⎞
⎠ ‖w‖1

≤C

⎛
⎝ε(h)‖∇e0‖0 + h‖eh‖2,h + h

d∑
i,j=1

‖(I −Qh)∂
2
iju‖0

⎞
⎠ ‖η‖0,

(7.21)

where we have used the inverse inequality and the estimate ‖w‖1 ≤ C‖θ‖−1 ≤
C‖η‖0. Substituting (7.21) and (7.17) into (7.16) yields

|(∇e0, η)| ≤ C

⎛
⎝ε(h)‖∇e0‖0 + h‖eh‖2,h + h

d∑
i,j=1

‖(I −Qh)∂
2
iju‖0

⎞
⎠ ‖η‖0.

Since the set of all such η is dense in L2(Ω), then the above inequality implies

‖∇e0‖0 ≤ C

⎛
⎝ε(h)‖∇e0‖0 + h‖eh‖2,h + h

d∑
i,j=1

‖(I −Qh)∂
2
iju‖0

⎞
⎠ ,

which leads to

(7.22) ‖∇e0‖0 ≤ Ch

⎛
⎝‖eh‖2,h +

d∑
i,j=1

‖(I −Qh)∂
2
iju‖0

⎞
⎠

for sufficiently small meshsize h. The inequality (7.22), together with the error
estimate (6.11) and the usual triangle inequality, verifies the estimate (7.15). �
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The following is an error estimate for the primal variable uh in the usual L2-
norm.

Theorem 7.6. Assume that each entry of the coefficient matrix {aij}d×d is in
C1(Ω) ∩

[
ΠT∈Th

W 2,∞(T )
]
. In addition, assume that the dual problem (7.2)-(7.3)

has H2-regularity with the a priori estimate (7.5) (i.e., s = 1), and P1(T ) ⊂ Sk(T )
for all T ∈ Th. Then, there exists a constant C such that

(7.23) ‖u0 − u‖0 ≤ Chk+1‖u‖k+1,

provided that the meshsize h is sufficiently small.

Proof. Let w be the solution of the dual problem (7.2)-(7.3) with θ ∈ L2(Ω). From
Lemma 7.2 with v = eh given by (6.1), we have

(e0, θ) =
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,deh, w)T − 〈(egi − ∂ie0)nj , (Qh − I)(aijw)〉∂T

+ 〈(eb − e0)ni, ∂j(Qh − I)(aijw)〉∂T
=J1 − J2 + J3,

(7.24)

where Jm are defined accordingly. Using the two estimates in Lemma 7.4 we obtain
the following estimates:

(7.25) |J2|+ |J3| ≤ Ch2‖θ‖0‖eh‖2,h.

For the term J1, we use the error equation (6.3) to obtain

J1 =
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,deh, w)T

=
∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,deh,Qhw)T + (aij∂

2
ij,deh, (I −Qh)w)T

=
∑
T∈Th

d∑
i,j=1

((I −Qh)∂
2
iju, aijQhw)T +

∑
T∈Th

d∑
i,j=1

(aij∂
2
ij,deh, (I −Qh)w)T .

(7.26)

Since P1(T ) ⊆ Sk(T ) and Qh is the L2-projection onto Sk(T ), then

|((I −Qh)∂
2
iju, aijQhw)T | =|((I −Qh)∂

2
iju, (I −Qh)aijQhw)T |

≤‖(I −Qh)∂
2
iju‖T ‖(I −Qh)aijQhw‖T

≤Ch2
T‖(I −Qh)∂

2
iju‖T ‖w‖2,T

(7.27)

and by (7.1) we arrive at

|(aij∂2
ij,deh, (I −Qh)w)T |

= |((aij − āij)∂
2
ij,deh, (I −Qh)w)T |

≤ ‖aij − āij‖L∞(T )‖∂2
ij,deh‖T ‖(I −Qh)w‖T

≤ Ch3
T ‖w‖2,T

(
‖∂2

ije0‖2T + sT (eh, eh)
) 1

2 .

(7.28)
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It follows from (7.27) and (7.28) that

|J1| ≤C

⎛
⎝h3‖∇2e0‖0 + h3‖eh‖2,h + h2

d∑
i,j=1

‖(I −Qh)∂
2
iju‖0

⎞
⎠ ‖w‖2

≤C

⎛
⎝h‖e0‖0 + h3‖eh‖2,h + h2

d∑
i,j=1

‖(I −Qh)∂
2
iju‖0

⎞
⎠ ‖θ‖0,

(7.29)

where we have used the inverse inequality and the regularity assumption (7.5) with
s = 1. Substituting (7.29) and (7.25) into (7.24) yields

|(e0, θ)| ≤ Ch2

⎛
⎝h−1‖e0‖0 + h‖eh‖2,h +

d∑
i,j=1

‖(I −Qh)∂
2
iju‖0

⎞
⎠ ‖θ‖0.

Thus, we have

‖e0‖0 ≤ Ch2

⎛
⎝h−1‖e0‖0 + h‖eh‖2,h +

d∑
i,j=1

‖(I −Qh)∂
2
iju‖0

⎞
⎠ ,

which, together with the error estimate (6.11) and the usual triangle inequality,
gives rise to the L2-error estimate (7.23) when the meshsize h is sufficiently small.
This completes the proof of the theorem. �

Remark 7.1. The optimal order error estimate (7.23) is based on the assumption
that P1(T ) ⊆ S2(T ). This assumption was used in the derivation of the inequalities
(7.25), (7.27), and (7.28). In the case of P1(T ) � S2(T ), those inequalities need

to be modified by replacing ‖w‖2,T by h−1
T ‖w‖1,T . As a result, the following sub-

optimal order error estimate holds true

(7.30) ‖u0 − u‖0 ≤ Chk‖u‖k+1

provided that (1) the coefficient matrix {aij}d×d satisfies aij ∈ C1(Ω), (2) the
meshsize h is sufficiently small, and (3) the dual problem (7.2)-(7.3) has the H1-
regularity with s = 0 in the a priori estimate (7.5). On the other hand, the last
inequality in the proof of Theorem 7.6 implies the superconvergence estimate of
‖e0‖0 ≤ Chk+2‖u‖k+2 if Sk(T ) = Pk−1(T ) is used in the construction of the finite
element space Sh,k.

To establish some error estimates for the two boundary components ub and ug,
we introduce the following norms

(7.31) ‖eb‖L2 :=
( ∑

T∈Th

hT ‖eb‖2∂T
) 1

2

, ‖eg‖L2 :=
( ∑

T∈Th

hT ‖eg‖2∂T
) 1

2

.

Theorem 7.7. Under the assumptions of Theorem 7.6, there exists a constant C
such that

‖ub −Qbu‖L2 ≤ Chk+1‖u‖k+1,(7.32)

‖ug −Qb∇u‖L2 ≤ Chk‖u‖k+1.(7.33)

Proof. On each element T ∈ Th, we have from the triangle inequality that

‖eb‖∂T ≤ ‖e0‖∂T + ‖eb − e0‖∂T .



A PRIMAL-DUAL WEAK GALERKIN FINITE ELEMENT METHOD 537

Thus, by the trace inequality (6.7) we obtain∑
T∈Th

hT ‖eb‖2∂T ≤ 2
∑
T∈Th

hT ‖e0‖2∂T + Ch4
∑
T∈Th

h−3
T ‖eb − e0‖2∂T

≤ C(‖e0‖20 + h4‖eh‖22,h),
which, together with the error estimates (6.11) and (7.23), gives rise to (7.32).

To derive (7.33), we apply the same approach to the error component eg =
ug −Qb∇u as follows:∑

T∈Th

hT ‖eg‖2∂T ≤ 2
∑
T∈Th

hT ‖∇e0‖2∂T + Ch2
∑
T∈Th

h−1
T ‖eg −∇e0‖2∂T

≤ C(
∑
T∈Th

h−2‖e0‖2T + h2‖eh‖22,h).

It then follows from the error estimates (6.11) and (7.24) that (7.33) holds true. �

8. Numerical results

In this section, we present some numerical results for the primal-dual WG finite
element method proposed and analyzed in the previous sections. The test problems
are defined in 2D polygonal domains in the following form: Find u ∈ H2(Ω) such
that

2∑
i,j=1

aij∂
2
iju =f, in Ω,

u =g, on ∂Ω.

(8.1)

For simplicity, in the numerical scheme (4.10)-(4.11), we shall make use of the lowest
order WG element on triangular partitions; i.e., k = 2 in Wk(T ) on triangles T ∈ Th
given by (4.1). The goal is to illustrate the efficiency and confirm the convergence
theory established in the previous sections through numerical experiments.

For the lowest order WG element with k = 2, the corresponding finite element
spaces are given by

Wh,2 = {v = {v0, vb,vg} : v0 ∈ P2(T ), vb ∈ P2(e),vg ∈ [P1(e)]
2, ∀T ∈ Th, e ∈ Eh}

and
Sh,2 = {σ : σ|T ∈ S2(T ), ∀T ∈ Th}.

A finite element function v ∈ Wh,2 is said to be of C0-type if vb = v0|∂T for each
element T . For C0-type WG elements, the boundary component vb can be merged
with v0 in all the formulations since it coincides with the trace of v0 on the element
boundary. This clearly results in a linear system that has less computational com-
plexity than fully discontinuous type WG elements. But the C0 continuity limits
the pool of availability of polygonal elements due to the obvious constraints.

The local finite element space S2(T ) is chosen such that P0(T ) ⊆ S2(T ) ⊆ P1(T ).
Our numerical experiments are conducted for the case of both S2(T ) = P1(T ) and
S2(T ) = P0(T ) with C0-type Wh,2. For convenience, the C

0-type WG element with
S2(T ) = P1(T ) shall be called the P2(T )/[P1(∂T )]

2/P1(T ) element. Analogously,
the C0-type WG element with S2(T ) = P0(T ) is called the P2(T )/[P1(∂T )]

2/P0(T )
element.

It should be pointed out that all of the theoretical results developed in the previ-
ous sections can be extended to C0-type triangular elements without any difficulty.
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For C0-type elements, the discrete weak second order partial derivative ∂2
ij,dv should

be computed as a polynomial in S2(T ) on each element T by solving the following
equation:

(∂2
ij,dv, ϕ)T = −(∂iv0, ∂jϕ)T + 〈vgi, ϕnj〉∂T , ∀ϕ ∈ S2(T ).(8.2)

For the convergence theory to work, one needs to establish the commutative prop-
erty (5.2) for a properly defined projection operator Qh given as in (5.1). It turns
out that Qg should remain to be the usual L2-projection into the space of poly-
nomials of degree k − 1 on each side and Q0 can be chosen as the interpolation
operator Ĩk given as in Lemma A.3 of [12]. Note that for any v ∈ H2(T ), the

interplant polynomial Ĩkv ∈ Pk(T ) satisfies∫
e

(v − Ĩkv)φds = 0 ∀ φ ∈ Pk−2(e), ∀ sides e of T ,(8.3) ∫
T

(v − Ĩkv)φds = 0 ∀ φ ∈ Pk−3(T ).(8.4)

Thus, from the integration by parts, (8.3), and (8.4), we have

(∂iĨkv, ∂jϕ)T = −(Ĩkv, ∂
2
jiϕ)T + 〈Ĩkv, ∂jϕni〉∂T

= −(v, ∂2
jiϕ)T + 〈v, ∂jϕni〉∂T

= (∂iv, ∂jϕ)T

(8.5)

for all ϕ ∈ Pk−1(T ). It follows from (8.2) and (8.5) that

(∂2
ij,dQhv, ϕ)T = −(∂iĨkv, ∂jϕ)T + 〈(Qg∇v)i, ϕnj〉∂T

= −(∂iv, ∂jϕ)T + 〈(∇v)i, ϕnj〉∂T
= (∂2

ijv, ϕ)T

= (Qh∂
2
ijv, ϕ)T

for all ϕ ∈ Pk−1(T ), which gives rise to the commutative property (5.2). Readers
are referred to [17] for a detailed discussion on the use of C0-type elements in the
context of weak Galerkin approach.

Three domains are used in our numerical experiments: the unit square Ω =
(0, 1)2, the reference domain Ω = (−1, 1)2, and the L-shaped domain with vertices
A0 = (0, 0), A1 = (2, 0), A2 = (1, 1), A3 = (1, 2), and A4 = (0, 2). Given an initial
coarse triangulation of the domain, a sequence of triangular partitions are obtained
successively through a uniform refinement procedure that divides each coarse level
triangle into four congruent sub-triangles by connecting the three mid-points on
the edges of each triangle.

We use uh = {u0,ug} ∈ Wh,2 and λh ∈ Sh,2 to denote the primal-dual WG-FEM
solution arising from (4.10)-(4.11). These numerical solutions are compared with
some interpolants of the exact solution in various norms. Specifically, the numerical
component u0 is compared with the standard Lagrange interpolation of the exact
solution u on each triangular element by using three vertices and three mid-points
on the edge, which is denoted as Ihu. The vector component ug is compared
with the linear interpolant of ∇u, denoted as Ig(∇u), on each edge e ∈ Eh. The
Lagrange multiplier λh is compared with λ = 0, as it is the trivial solution of the
dual problem. Denote their differences by

eh = {e0, eg} := {u0 − Ihu, ug − Ig(∇u)}, γh = λh − 0.
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The following norms are used to measure the magnitude of the error:

L2- norm: ‖e0‖0 =
( ∑

T∈Th

∫
T

|e0|2dT
) 1

2

,

H1-seminorm: ‖eg‖L2 =
( ∑

T∈Th

hT

∫
∂T

|eg|2ds
) 1

2

,

L2-norm: ‖γh‖0 =
( ∑

T∈Th

∫
T

|γh|2dT
) 1

2

.

8.1. Numerical experiments with continuous coefficients. Tables 1–2 illus-
trate the performance of the primal-dual WG finite element method for the test
problem (8.1) with exact solution given by u = sin(x1) sin(x2) on the unit square
domain and the L-shaped domain. The right-hand side function and the Dirichlet
boundary condition are chosen to match the exact solution. The results indicate
that the convergence rates for the solution of the weak Galerkin algorithm (4.10)-
(4.11) is of order r = 4.0 and r = 3.5 in the discrete L2-norm for u0 on the
unit square domain and the L-shaped domain, respectively. For the discrete H1-
seminorm (i.e., the L2-norm for eg), the numerical order of convergence is r = 2.0 on
both domains. For the Lagrange multiplier λh, the numerical order of convergence
is r = 1.0 in the L2-norm on the square and the L-shaped domain. In comparison,
the theoretical order of convergence for u0 in the L2-norm is r = 3.0, and that for
ug and λh are r = 2.0 and r = 1.0, respectively, for the unit square domain. For
the L-shaped domain, the theoretical rate of convergence for u0 in the L2-norm
should be between r = 2 and r = 3 due to the lack of needed H2-regularity for
the dual problem (7.2)-(7.3). However, the theoretical rates of convergence for ug

and λh remain to be of order r = 2.0 and r = 1.0, respectively. It is clear that the
numerical results are in good consistency with the theory for ug and λh, but greatly
outperform the theory for u0 in the discrete L2-norm. Note that the primal-dual
weak Galerkin finite element method has a superconvergence of order r = k+2 for
smooth solutions with smooth data on convex domains.

Table 3 contains some numerical results for problem (8.1) in Ω = (−1, 1)2 with
exact solution u = sin(x1) sin(x2) with varying coefficients. Observe that the coef-

ficient function a12 = 0.5|x1|
1
3 |x2|

1
3 is continuous in the domain, but its derivative

Table 1. Convergence rates for the C0- P2(T )/[P1(∂T )]
2/P1(T )

element applied to problem (8.1) with exact solution u =
sin(x1) sin(x2) on Ω = (0, 1)2. The coefficient matrix is a11 = 3,
a12 = a21 = 1, and a22 = 2.

1/h ‖e0‖0 order ‖eg‖L2 order ‖γh‖0 order
1 0.00624 0.126 0.0335
2 0.00147 2.09 0.0448 1.50 0.0650 -0.96
4 1.39e-004 3.40 0.0116 1.95 0.0284 1.20
8 1.03e-005 3.75 0.00284 2.03 0.0132 1.10
16 6.95e-007 3.89 7.02e-004 2.02 0.00643 1.04
32 4.52e-008 3.94 1.75e-004 2.01 0.00317 1.02
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Table 2. Convergence rates for the C0- P2(T )/[P1(∂T )]
2/P1(T )

element applied to problem (8.1) with exact solution u =
sin(x1) sin(x2) on the L-shaped domain. The coefficient matrix
is a11 = 3, a12 = a21 = 1, and a22 = 2.

1/h ‖e0‖0 order ‖eg‖L2 order ‖γh‖0 order
1 0.0168 0.481 0.448
2 0.00248 2.76 0.125 1.95 0.195 1.20
4 2.30e-004 3.43 0.0310 2.01 0.0875 1.16
8 1.93e-005 3.57 0.00767 2.01 0.0413 1.08
16 1.61e-006 3.59 0.00191 2.01 0.0202 1.03
3.2 1.37e-007 3.56 4.75e-004 2.00 0.00999 1.01

Table 3. Convergence rates for the C0- P2(T )/[P1(∂T )]
2/P1(T )

element applied to problem (8.1) with exact solution u =
sin(x1) sin(x2) on the domain (−1, 1)2. The coefficient matrix is

a11 = 1 + |x1|, a12 = a21 = 0.5|x1|
1
3 |x2|

1
3 , a22 = 1 + |x2|.

2/h ‖e0‖0 order ‖eg‖L2 order ‖γh‖0 order
1 0.1763728 1.2455105 0.0038959
2 0.0356693 2.31 0.4859078 1.36 0.0082045 -1.07
4 0.0036026 3.31 0.1304043 1.90 0.0032424 1.34
8 2.78e-004 3.70 0.0318454 2.03 0.0015142 1.10
16 2.02e-005 3.78 0.0078262 2.02 7.42e-004 1.03
32 2.37e-006 3.09 0.00194 2.01 3.68e-004 1.01

has a singularity at the origin so that the corresponding second order elliptic equa-
tion cannot be written in a divergence form. The performance of the primal-dual
WG finite element method is similar to the case of constant coefficient matrix,
except that the superconvergence seems to be weakened in the convergence order.

In Table 4, we present some numerical results for the test problem (8.1) with ex-
act solution u=sin(x1) sin(x2) in Ω=(−1, 1)2 when the C0-P2(T )/[P1(∂T )]

2/P0(T )
element is employed in the primal-dual WG finite element scheme (4.10)-(4.11).
Note that the Lagrange multiplier λ is now approximated by piecewise constant
functions; i.e., S2(T ) = P0(T ). The results indicate that the numerical solution ug

converges to the exact solution ∇u at the rate of r = 2.0 in the usual L2-norm.
The same rate of convergence is also observed for uh − u in the L2-norm. The La-
grange multiplier has a convergence rate slightly higher than r = 1.0 to the exact
solution of λ = 0. The numerical convergence for the primal variable u is in great
consistency with the theory developed in this paper, while the convergence for the
dual variable λ outperforms the theory of r = 1.0.

8.2. Numerical experiments with discontinuous coefficients. In the second
part of the numerical experiment, we consider problems with discontinuous coef-
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Table 4. Convergence rates for the C0- P2(T )/[P1(∂T )]
2/P0(T )

element applied to problem (8.1) with exact solution u =
sin(x1) sin(x2) on the domain (−1, 1)2. The coefficient matrix is

a11 = 1 + |x1|, a12 = a21 = 0.5|x1|
1
3 |x2|

1
3 , a22 = 1 + |x2|.

2/h ‖e0‖0 order ‖eg‖L2 order ‖γh‖0 order
1 2.80e-006 1.7557720 2.10e-006
2 0.1756863 -15.94 0.6755226 1.38 0.0894908 -15.38
4 0.0395431 2.15 0.1637125 2.04 0.0517686 0.79
8 0.0089637 2.14 0.0386493 2.08 0.0190018 1.45
16 0.0021665 2.05 0.0093809 2.04 0.0068545 1.47
32 5.37e-004 2.01 0.00231 2.02 0.00288 1.25

ficients that satisfy the Cordès condition (2.3). The first such problem is given
as

2∑
i,j=1

(1 + δij)
xi

|xi|
xj

|xj |
∂2
iju = f in Ω,

u = 0 on ∂Ω,

(8.6)

where Ω = (−1, 1)2 is the reference square domain and the function f is chosen so
that the exact solution of (8.6) is

(8.7) u = x1x2

(
1− e1−|x1|

)(
1− e1−|x2|

)
.

It is not hard to see that the Cordès condition (2.3) is satisfied for the problem
(8.6) with ε = 3/5 and the coefficients matrix is discontinuous across the x1- and
x2-axis. This is a test problem suggested in [21].

Table 5 contains some numerical results for the test problem (8.6) when the
C0-P2(T )/[P1(∂T )]

2/P1(T ) element is employed in the WG finite element scheme
(4.10)-(4.11). Note that the Lagrange multiplier λ is approximated by piecewise
linear functions; i.e., S2(T ) = P1(T ). The results indicate that the numerical
solution ug converges to the exact solution ∇u at the rate of r = 2.0 in the usual
L2-norm, which is consistent with the theoretical rate of convergence. The Lagrange
multiplier has a convergence rate that seems to be higher than the theory-predicted
rate of r = 1.0. For the approximation of u, the convergence rate in the usual L2-
norm seems to exceed r = 2. It should be pointed out that there is no theoretical
result on optimal order of error estimates for u−uh in the L2-norm, as it is not clear
if the dual problem (7.2)-(7.3) has the required regularity necessary for carrying
out the convergence analysis. Table 5 shows that the numerical performance of
the primal-dual WG finite element method is typically better than what theory
predicts.

In Table 6, we present some numerical results for the test problem (8.6) when the
C0-P2(T )/[P1(∂T )]

2/P0(T ) element is employed in the WG finite element scheme
(4.10)-(4.11). It is interesting to note that the absolute error for each numerical ap-
proximation is smaller than those arising from the use of C0-P2(T )/[P1(∂T )]

2/P1(T )
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Table 5. Convergence rates for the C0- P2(T )/[P1(∂T )]
2/P1(T )

element applied to problem (8.6) with exact solution given by (8.7).

2/h ‖e0‖0 order ‖eg‖L2 order ‖γh‖0 order
1 0.094005 0.765566 0.337760
2 0.248887 -1.40 1.346963 -0.82 0.642055 -0.93
4 0.106414 1.23 0.538155 1.32 1.284597 -1.0
8 0.030602 1.80 0.137486 1.97 0.537170 1.26
16 0.007488 2.03 0.032750 2.07 0.212136 1.34
32 0.001736 2.11 0.007848 2.06 0.092301 1.20

Table 6. Convergence rates for the C0- P2(T )/[P1(∂T )]
2/P0(T )

element applied to problem (8.6) with exact solution given by (8.7).

2/h ‖e0‖0 order ‖eg‖L2 order ‖γh‖0 order
1 0.0393 0.672 0.137
2 0.0322 0.28 0.322 1.06 0.104 0.40
4 0.00750 2.10 0.0791 2.03 0.0532 0.96
8 0.00161 2.22 0.0180 2.13 0.0204 1.39
16 3.85e-004 2.07 0.00427 2.08 0.00818 1.32
32 9.52e-005 2.02 0.00104 2.04 0.00371 1.14

element in Table 5, while the rate of convergence remains to be comparable. Read-
ers are invited to draw their own conclusions for the results illustrated in this table.

The final test equation is given by

(8.8)
2∑

i,j=1

(
δij +

xixj

|x|2

)
∂2
iju = f in Ω,

where |x| =
√
x2
1 + x2

2 is the length of x. Note that the coefficient aij =
xixj

|x|2
fails to be continuous at the origin for i �= j. For α > 1, it can be seen that
u = |x|α ∈ H2(Ω) satisfies (8.8) with f = (2α2 − α)|x|α−2. The linear operator in
(8.8) satisfies the Cordès condition with ε = 4/5. The solution u = |x|α has the
regularity of H1+α−τ (Ω) for arbitrarily small τ > 0. In the numerical experiments,
we take α = 1.6 with problem (8.8) defined on two square domains: (0, 1)2 and
(−1, 1)2. The case of Ω = (0, 1)2 was tested in [21].

Tables 7 and 8 illustrate the performance of the primal-dual WG scheme for the
domain Ω = (0, 1)2. Note that the coefficient matrix {aij}2×2 is continuous in the
interior of the domain, but it fails to be continuous at the corner point A = (0, 0).
The numerical approximation suggests a convergence rate of r = 1.6 in the H1-
seminorm (i.e., L2 for eg) and r = 0.6 in L2 for the Lagrange multiplier λh. These
are in great consistency with theory developed in earlier sections, as the solution
u = |x|1.6 has the regularity of H2.6−τ (Ω) for any small τ > 0. It seems that the
L2 norm for u− uh has a numerical convergence rate of r = 2, for which no theory
was available to apply or compare with.



A PRIMAL-DUAL WEAK GALERKIN FINITE ELEMENT METHOD 543

Table 7. Convergence rates for the C0- P2(T )/[P1(∂T )]
2/P1(T )

element applied to problem (8.8) on Ω = (0, 1)2 with exact solution
u = |x|1.6.

1/h ‖e0‖0 order ‖eg‖L2 order ‖γh‖0 order
1 0.020 0.315 0.304
2 0.00629 1.68 0.126 1.32 0.248 0.296
4 0.00174 1.86 0.0446 1.50 0.182 0.445
8 4.43e-004 1.97 0.0152 1.56 0.126 0.537
16 1.08e-004 2.03 0.00508 1.58 0.0846 0.570
32 2.60e-005 2.05 0.00169 1.59 0.0564 0.584

Table 8. Convergence rates for the C0- P2(T )/[P1(∂T )]
2/P0(T )

element applied to problem (8.8) on Ω = (0, 1)2 with exact solution
u = |x|1.6.

1/h ‖e0‖0 order ‖eg‖L2 order ‖γh‖0 order
1 0.00405 0.489 0.0623
2 0.00803 -0.988 0.177 1.46 0.0616 0.0156
4 0.00263 1.61 0.0616 1.53 0.0476 0.372
8 7.90e-004 1.74 0.0210 1.55 0.0327 0.544
16 2.20e-004 1.85 0.00705 1.57 0.0218 0.582
32 5.85e-005 1.91 0.00235 1.59 0.0145 0.593

Table 9. Convergence rates for the C0- P2(T )/[P1(∂T )]
2/P1(T )

element applied to problem (8.8) on Ω = (−1, 1)2 with exact solu-
tion u = |x|1.6.

2/h ‖e0‖0 order ‖eg‖L2 order ‖γh‖0 order
1 0.532 0.511 0.280
2 0.266 1.00 0.403 0.344 0.623 -1.15
4 0.117 1.19 0.211 0.933 0.562 0.149
8 0.0563 1.05 0.111 0.927 0.405 0.471
16 0.0271 1.06 0.0576 0.945 0.277 0.547
32 0.0129 1.07 0.0290 0.987 0.187 0.572

Tables 9 and 10 illustrate the performance of the primal-dual WG finite element
scheme (4.10)-(4.11) for the equation (8.8) in the domain Ω = (−1, 1)2. For this
test problem, the coefficient matrix {aij}2×2 is discontinuous at the center of the
domain so that the duality argument in the convergence theory is not applicable.
Consequently, the corresponding numerical results are less accurate than the case
of Ω = (0, 1)2 as shown in Tables 7 and 8. However, the numerical approximation
suggests a convergence rate of r = 0.6 in L2 for the Lagrange multiplier λh which
is consistent with the theory. The convergence in H1- and L2-norms seems to have
a rate of r = 1.0 or slightly higher.
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Table 10. Convergence rates for the C0- P2(T )/[P1(∂T )]
2/P0(T )

element applied to problem (8.8) on Ω = (−1, 1)2 with exact solu-
tion u = |x|1.6.

2/h ‖e0‖0 order ‖eg‖L2 order ‖γh‖0 order
1 0.647 0.487 0.0862
2 0.611 0.08 0.697 -0.517 0.0769 0.165
4 0.254 1.26 0.407 0.774 0.0500 0.619
8 0.113 1.18 0.218 0.903 0.0417 0.264
16 0.0512 1.14 0.110 0.984 0.0297 0.490
32 0.0235 1.12 0.0540 1.03 0.0201 0.561
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