DIMENSION OF MIXED SPLINES ON POLYTOPAL CELLS

MICHAEL DIPASQUALE

Abstract

The dimension of planar splines on polygonal subdivisions of degree at most d is known to be a degree two polynomial for $d \gg 0$. For planar C^{r} splines on triangulations this formula is due to Alfeld and Schumaker; the formulas for planar splines with varying smoothness conditions across edges on convex polygonal subdvisions are due to Geramita, McDonald, and Schenck. In this paper we give a bound on how large d must be for the known polynomial formulas to give the correct dimension of the spline space. Bounds are given for central polytopal complexes in three dimensions, or polytopal cells, with varying smoothness across two-dimensional faces. In the case of tetrahedral cells with uniform smoothness r we show that the known polynomials give the correct dimension for $d \geq 3 r+2$; previously Hong and separately Ibrahim and Schumaker had shown that this bound holds for planar triangulations. All bounds are derived using techniques from computational commutative algebra.

1. Introduction

Let \mathcal{P} be a subdivision of a region in \mathbb{R}^{n} by convex polytopes. $C^{r}(\mathcal{P})$ denotes the set of piecewise polynomial functions (splines) on \mathcal{P} that are continuously differentiable of order r. Splines are a fundamental tool in approximation theory and numerical analysis [8]; more recently they have also appeared in a geometric context, describing the equivariant cohomology ring of toric varieties [24]. Practical applications include surface modeling, computer-aided design, and computer graphics [8].

One of the fundamental questions in spline theory is to determine the dimension of the space $C_{d}^{r}(\mathcal{P})$ of splines of degree at most d. In the bivariate, simplicial case, these questions are studied by Alfeld and Schumaker in [2] and 3] using BernsteinBezier methods. A signature result in [3] is a formula for $\operatorname{dim} C_{d}^{r}(\Delta)$ when $d \geq 3 r+1$ and $\Delta \subset \mathbb{R}^{2}$ is a generic simplicial complex. For $\Delta \subset \mathbb{R}^{2}$ simplicial and nongeneric, Hong [17] and Ibrahim and Schumaker [18] derive a formula for $\operatorname{dim} C_{d}^{r}(\Delta)$ when $d \geq 3 r+2$ as a byproduct of constructing local bases for these spaces.

An algebraic approach to the dimension question was pioneered by Billera in 5] using homological and commutative algebra. In [6, Billera and Rose show that $C_{d}^{r}(\mathcal{P}) \cong C^{r}(\widehat{\mathcal{P}})_{d}$, the d th graded piece of the module $C^{r}(\widehat{\mathcal{P}})$ of splines on the cone $\widehat{\mathcal{P}}$ over \mathcal{P}. The function $\operatorname{dim}_{\mathbb{R}} C^{r}(\widehat{\mathcal{P}})_{d}$ is known as the Hilbert function of $C^{r}(\widehat{\mathcal{P}})$ in commutative algebra, and a standard result is that the values of the Hilbert function

[^0]Table 1. Known bounds on the postulation number for planar splines

Analytic Methods

Bound	Context	Computed by	
$\wp\left(C^{r}(\widehat{\Delta})\right) \leq 3 r$	generic simplicial $\Delta \subset \mathbb{R}^{2}$	Alfeld-Schumaker [3]	
$\wp\left(C^{r}(\widehat{\Delta})\right) \leq 3 r+1$	all simplicial $\Delta \subset \mathbb{R}^{2}$	Hong [17]	
		Ibrahim-Schumaker [18]	
$\wp\left(C^{1}(\widehat{\Delta})\right) \leq 3$	all simplicial $\Delta \subset \mathbb{R}^{2}$	Alfeld-Piper-Schumaker [1]	
	Homological Methods		
Bound Context Computed by $\wp\left(C^{r}(\widehat{\Delta})\right) \leq 4 r$ all simplicial $\Delta \subset \mathbb{R}^{2}$ Mourrain-Villamizar [23] $\wp\left(C^{1}(\widehat{\Delta})\right) \leq 1$ generic simplicial $\Delta \subset \mathbb{R}^{2}$ Billera [5]			

eventually agree with the Hilbert polynomial $\operatorname{HP}\left(C^{r}(\widehat{\mathcal{P}}), d\right)$ of $C^{r}(\widehat{\mathcal{P}})$. An important invariant of $C^{r}(\widehat{\mathcal{P}})$ is the postulation number $\wp\left(C^{r}(\widehat{\mathcal{P}})\right)$, which is the largest integer d so that $H P\left(C^{r}(\widehat{\mathcal{P}}), d\right) \neq \operatorname{dim} C^{r}(\widehat{\mathcal{P}})_{d}$. In this terminology the Alfeld and Schumaker result above could be viewed as a computation of $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$ plus the bound $\wp\left(C^{r}(\widehat{\Delta})\right) \leq 3 r$.

The goal of this paper is to provide upper bounds on the postulation number $\wp\left(C^{\alpha}(\mathcal{P})\right)$ where $C^{\alpha}(\mathcal{P})$ is the module of mixed splines and \mathcal{P} is a polytopal cell. By a polytopal cell we mean a collection of (three-dimensional) polytopes \mathcal{P}, all sharing a common vertex, so that any pair of polytopes in \mathcal{P} meeting nontrivially must meet in a vertex, edge or face of both (the precise definition will be given in the next section). We denote the set of (two-dimensional) faces of polytopes in \mathcal{P} by \mathcal{P}_{2}. The module of mixed splines $C^{\alpha}(\mathcal{P})$ on \mathcal{P} is the module of splines in which different smoothness conditions are imposed across faces, encoded by a map $\alpha: \mathcal{P}_{2} \rightarrow \mathbb{Z}_{\geq-1}$, whose values we will refer to as the smoothness parameters associated to \mathcal{P}. Note that a planar subdivision $\mathcal{P} \subset \mathbb{R}^{2}$ consisting of convex polygons becomes a polytopal cell via the coning operation $\mathcal{P} \rightarrow \widehat{\mathcal{P}} \subset \mathbb{R}^{3}$ (this is explained in detail in Section [2). Hence our results specialize to polygonal subdivisions and triangulations in \mathbb{R}^{2}.

The main reason for bounding $\wp\left(C^{\alpha}(\mathcal{P})\right)$, where \mathcal{P} is a polytopal cell, is that the Hilbert polynomial of $C^{\alpha}(\mathcal{P})$ has been computed in situations where there are no known bounds on $\wp\left(C^{\alpha}(\mathcal{P})\right)$, rendering these formulas impractical. Currently, bounds which do not make heavy restrictions on the complex \mathcal{P} are known only in the simplicial case. These bounds are recorded in Table 1 For particular types of polytopal cells, better and sometimes exact bounds are known on the postulation number. In contrast, the Hilbert polynomial $H P\left(C^{\alpha}(\mathcal{P}), d\right)$ has been computed for all polytopal cells. This is done in the simplicial case with mixed smoothness by Schenck and Geramita [14, in the polytopal case with uniform smoothness by Schenck and McDonald [20], and in the polytopal case with mixed smoothness and boundary conditions in [10]. In this paper we provide the first bound on $\wp\left(C^{\alpha}(\mathcal{P})\right)$ valid for any polytopal cell. Our main result is:

Theorem 6.2, Let $\mathcal{P} \subset \mathbb{R}^{3}$ be a polytopal cell, and let \mathcal{P}_{2}° be the interior faces of P. Set

$$
e(\mathcal{P})=\max _{\tau \in \mathcal{P}_{2}^{\circ}}\left\{\sum_{\gamma \in(\operatorname{st}(\tau))_{2}}(\alpha(\gamma)+1)\right\}
$$

where st (τ) denotes the union of two polytopes sharing the face τ and $(\operatorname{st}(\tau))_{2}$ denotes the two-dimensional faces of $\operatorname{st}(\tau)$. Then $\wp\left(C^{\alpha}(\mathcal{P})\right) \leq e(\mathcal{P})-3$. In particular, $H P\left(C^{\alpha}(\mathcal{P}), d\right)=\operatorname{dim}_{\mathbb{R}} C^{\alpha}(\mathcal{P})_{d}$ for $d \geq e(\mathcal{P})-2$.

From an algebraic perspective, another reason for bounding $\wp\left(C^{\alpha}(\mathcal{P})\right)$ is that almost all existing bounds, including most in Table 1, have been computed using analytic techniques. There are a few instances where algebraic techniques are applied to bound $\wp\left(C^{\alpha}(\mathcal{P})\right)$. In [5], Billera proves $\wp\left(C^{1}(\widehat{\Delta})\right) \leq 1$ for generic planar triangulations (this result relies on a computation of Whiteley [31). The most general bound produced by homological techniques to date is by Mourrain and Villamizar [23; building on work of Schenck and Stillman [27] they prove that $\wp\left(C^{r}(\widehat{\Delta})\right) \leq 4 r$ for Δ a planar simplicial complex, recovering an earlier result of Alfeld and Schumaker [2]. Our second result is the following.
Theorem 7.2, Let $\Delta \subset \mathbb{R}^{3}$ be a simplicial cell. Let $\alpha: \Delta_{2} \rightarrow \mathbb{Z}_{\geq-1}$ satisfy $\alpha(\tau)=r$ for all interior faces and $\alpha(\tau)=-1$ or $\alpha(\tau)=r$ for boundary faces. Then $\wp\left(C^{\alpha}(\Delta)\right) \leq 3 r+1$. In particular, $H P\left(C^{\alpha}(\Delta), d\right)=\operatorname{dim}_{\mathbb{R}} C^{r}(\Delta)_{d}$ for $d \geq 3 r+2$.

This result was originally proved for planar splines as a byproduct of constructing local bases by Hong [17] and Ibrahim and Schumaker [18], and is the best bound valid for all planar triangulations recorded in Table 1. We will show that this bound also holds for simplicial cells, even if uniform vanishing of order r is imposed along some or all faces in the boundary of Δ.

A key tool we use to prove these results is the Castelnuovo-Mumford regularity of $C^{\alpha}(\mathcal{P})$, denoted $\operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right)$. The relationship between $\operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right)$ and $\wp\left(C^{\alpha}(\mathcal{P})\right)$ is discussed in detail in 33 . This invariant is also used in the context of splines by Schenck and Stiller in [28]. Our particular way of using regularity is inspired by an observation used in the Gruson-Lazarsfeld-Peskine theorem, bounding the regularity of curves in projective space. In the context of splines this observation is roughly that, if we are lucky, we can bound $\operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right)$ by the regularity of a 'bad' approximation. This statement is made precise in Proposition A. 7 and Theorem 4.7. We take as our approximation the submodule $L S^{\alpha, 1}(\mathcal{P}) \subset C^{\alpha}(\mathcal{P})$ consisting of splines $F=\sum_{\tau} F_{\tau}$ which may be written as a sum of splines F_{τ} which vanish outside the union two adjacent polytopes meeting along the face τ. In a sense, this is an algebraic analogue of locally-supported bases used in 17, 18.

The paper is organized as follows. In $\$ 2$ we give some background on the spline module $C^{\alpha}(\mathcal{P})$, in particular, the algebraic approach pioneered by Billera [5] and Billera and Rose [6. In 43 we give a brief overview of some constructions from graded commutative algebra, in particular syzygy modules and CastelnuovoMumford regularity. We make precise the relationship between regularity and postulation number. Then we begin the process of proving Theorem 6.2 This is done in three main reductions. First, in $\sqrt[4]{ }$ we introduce the submodule $L S^{\alpha, 1}(\mathcal{P})$ of $C^{\alpha}(\mathcal{P})$, which we use to approximate $C^{\alpha}(\mathcal{P})$. We then show that the regularity of $C^{\alpha}(\mathcal{P}), \mathcal{P}$ a polytopal cell, may be bounded by the regularity of the approximation $L S^{\alpha, 1}(\mathcal{P})$ (Theorem 4.7). Second, in 95, we show that the regularity of $L S^{\alpha, 1}(\mathcal{P})$ (hence of $C^{\alpha}(\mathcal{P})$) can be bounded by the maximum regularity of its summands (Theorem 5.5), these being the submodules $C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$ of splines vanishing outside the union of two polytopes sharing the face τ. Finally, in \S_{6} we bound the regularity of $C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$ and deduce Theorem 6.2. We devote $\$ 7$ to the proof of Theorem [7.2, which involves a tighter regularity bound for $C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)$ in the case of

Figure 1. The polygonal complex in Example 1.1
uniform smoothness on simplicial cells. This proof is more technical than the proof of Theorem 6.2. We close the paper in $\S \$ 8$ and 9 with examples and conjectures.
1.1. Illustrating Theorem 6.2 and Theorem[7.2, Let $\mathcal{P} \subset \mathbb{R}^{2}$ be a subdivision of a simply connected polygonal domain by convex polygons. The most standard assignment of smoothness parameters is to set $\alpha(\tau)=r$ for every interior edge and $\alpha(\tau)=-1$ for every boundary edge. The module of splines on the cone $\widehat{\mathcal{P}} \subset \mathbb{R}^{3}$ over \mathcal{P} with these smoothness parameters is denoted $C^{r}(\widehat{\mathcal{P}})$. By Corollary 3.14 of [20], the Hilbert polynomial of $C^{r}(\widehat{\mathcal{P}})$ is

$$
\begin{equation*}
H P\left(C^{r}(\widehat{\mathcal{P}}), d\right)=\frac{f_{2}}{2} d^{2}+\frac{3 f_{2}-2(r+1) f_{1}^{0}}{2} d+f_{2}+\left(\binom{r}{2}-1\right) f_{1}^{0}+\sum_{j} c_{j}, \tag{1}
\end{equation*}
$$

where

- f_{0}, f_{1}, f_{2} denote, respectively, the number of vertices, edges, and polygons of \mathcal{P},
- $f_{0}^{\circ}, f_{1}^{\circ}$ denote, respectively, the number of interior vertices and edges of \mathcal{P},
- r is the smoothness parameter, and
- the constants c_{j} record the dimension of certain vector spaces coming from ideals of powers of linear forms.
Example 1.1. The polygonal complex \mathcal{Q} in Figure 1 has $f_{2}=4, f_{1}^{0}=6, f_{3}^{0}=3$. It is shown in $\S 4$ of [20] that there are four constants c_{j} in the formula (1), and they are all equal to the constant

$$
\binom{r+2}{2}+\left\lceil\frac{r+1}{2}\right\rceil\left(r-\left\lceil\frac{r+1}{2}\right\rceil\right) .
$$

Hence by equation (11),

$$
\begin{equation*}
H P\left(C^{r}(\widehat{\mathcal{Q}}), d\right)=2 d^{2}-6 r d+6\binom{r}{2}-2+4\left(\binom{r+2}{2}+\left\lceil\frac{r+1}{2}\right\rceil\left(r-\left\lceil\frac{r+1}{2}\right\rceil\right)\right) . \tag{2}
\end{equation*}
$$

By Theorem 6.2. $\wp\left(C^{r}(\widehat{\mathcal{Q}})\right) \leq e(\mathcal{Q})-3$, where

$$
e(\mathcal{Q})=\max _{\tau \in \mathcal{P}_{2}^{\circ}}\left\{\sum_{\gamma \in(\operatorname{st}(\tau))_{2}}(\alpha(\gamma)+1)\right\} .
$$

The union of any two polygons of \mathcal{Q} meeting along an interior edge have five edges which are interior. So $e(\mathcal{Q})=5(r+1)$ and the Hilbert function $\operatorname{dim} C^{r}(\widehat{\mathcal{Q}})_{d}$ agrees with the Hilbert polynomial $\operatorname{HP}\left(C^{r}(\widehat{\mathcal{Q}}), d\right)$ above for $d \geq 5(r+1)-2$, so

Figure 2. Centrally triangulated octahedron in Example 1.2
$\wp\left(C^{r}(\widehat{\mathcal{Q}})\right) \leq 5(r+1)-1$. Computations in Macaulay2 [15] suggest that there is agreement for $d \geq 2(r+1)$, equivalently $\wp\left(C^{r}(\widehat{\mathcal{Q}})\right) \leq 2 r+1$. We see the same behavior in Example 8.3 in 88 indicating that there is room for improvement in Theorem 6.2

Example 1.2. Consider a regular octahedron $\Delta \subset \mathbb{R}^{3}$ triangulated by placing a centrally symmetric vertex, whose interior faces are shown in Figure 2, This is the natural extension of the well-known Morgan-Scott triangulation to the context of simplicial cells. In [25, Example 5.2], Schenck shows that $C^{r}(\Delta)$ is free as a module over the polynomial ring $\mathbb{R}[x, y, z]$ in three variables, with one generator in degree zero, three generators in degree $r+1$, three generators in degree $2(r+1)$, and one generator in degree $3(r+1)$. It follows that

$$
\operatorname{dim} C^{r}(\Delta)_{d}=\binom{d+2}{2}+3\binom{d+1-r}{2}+3\binom{d-2 r}{2}+\binom{d-1-3 r}{2}
$$

where a binomial coefficient appearing in the above expression is interpreted as $\binom{A}{B}=0$ if $A<0$. Expanding these binomial coefficients as polynomials in d yields the Hilbert polynomial $H P\left(C^{r}(\Delta), d\right)=4 d^{2}-12 r d+12 r^{2}+6 r+2$. Inspection yields that $\operatorname{dim} C^{r}(\Delta)_{d}=H P\left(C^{r}(\Delta), d\right)$ as long as $d \geq 3 r+1$, so $\wp\left(C^{r}(\Delta)\right)=3 r$. This is only one less than the predicted bound of Theorem 7.2 (in fact, since $C^{r}(\widehat{\Delta})$ is free, we can adjust the bound predicted by Theorem 7.2 to be exact). Theorem 7.2 guarantees that, even if we perturb the vertices of $\Delta, \operatorname{dim} C^{r}(\Delta)_{d}=H P\left(C^{r}(\Delta), d\right)$ for $d \geq 3 r+2$. Computations indicate that for most perturbations, $\operatorname{dim} C^{r}(\Delta)_{d}=H P\left(C^{r}(\Delta), d\right)$ for $d \geq 2 r+1$, equivalently $\wp\left(C^{r}(\Delta)\right) \leq 2 r$. This generic behavior is akin to that of the two-dimensional Morgan-Scott triangulation. The centrally triangulated regular octahedron has additional symmetry that cannot be achieved by the Morgan-Scott triangulation, hence the jump in postulation number to $3 r$ from the generic $2 r$. This example shows that, even though Theorem 7.2 is tight for certain simplicial cells, there may be better bounds available for generic perturbations.

2. Preliminary material

We begin with some generalities on polytopal complexes and splines. By a polygon in \mathbb{R}^{2} we mean the convex hull of a set of points in \mathbb{R}^{2} not contained in a line. By a polytope in \mathbb{R}^{3} we mean the convex hull of a set of points in \mathbb{R}^{3} which is not contained in any plane. Denote by R the polynomial ring $\mathbb{R}[x, y]$ in two
variables and by S the polynomial ring $\mathbb{R}[x, y, z]$ in three variables. Given a linear form $\alpha \in S$ and a real number a, set

$$
\begin{aligned}
& \mathcal{H}_{\alpha=a}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid \alpha(x, y, z)=a\right\}, \\
& \mathcal{H}_{\alpha \geq a}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid \alpha(x, y, z) \geq a\right\} .
\end{aligned}
$$

Let σ be a polytope and $\mathcal{H}_{\alpha \geq a}$ a half-space containing σ so that $\gamma=\mathcal{H}_{\alpha=a} \cap \sigma$ is nonempty. If γ consists of a single point, it is called a vertex of σ. If the smallest linear space containing γ is a line, γ is called an edge of σ. Otherwise the smallest linear space containing γ is $\mathcal{H}_{\alpha=a}$ and γ is called a face of σ. When we refer to the boundary of σ we will mean its set of (two-dimensional) faces, denoted $\partial \sigma$. If σ is a polygon in \mathbb{R}^{2}, define its vertices and edges the same way, and denote by $\partial \sigma$ the set of edges of σ.

A polytopal complex is a finite set of polytopes $\mathcal{P}=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ in \mathbb{R}^{3} satisfying the property that for any pair $\sigma_{i}, \sigma_{j} \in \mathcal{P}$ meeting nontrivially, the intersection $\sigma_{i} \cap \sigma_{j}$ is a vertex, edge, or face of both σ_{i} and σ_{j}. The book of Ziegler [32] is an excellent reference for polytopes and polytopal complexes; our terminology differs slightly from his and is more restrictive to favor geometric intuition relevant to our situation. If \mathcal{P} consists entirely of tetrahedra, then \mathcal{P} is a simplicial complex and will be denoted Δ. Likewise, a polygonal complex is a finite set \mathcal{P} of polygons in \mathbb{R}^{2} so that any pair of polygons in \mathcal{P} intersecting nontrivially meet in a vertex or edge. If the polygons of \mathcal{P} are all triangles, we call \mathcal{P} a triangulation and denote it Δ. Whether \mathcal{P} is a polygonal or polytopal complex will be evident from context.

We make the following definitions for polytopal complexes; they carry over to polygonal complexes in the obvious way. If all the polytopes of \mathcal{P} share a common vertex then we say \mathcal{P} is central. Without loss of generality, we will assume that this common vertex is the origin in \mathbb{R}^{3}. By $|\mathcal{P}|$ we denote the underlying space of \mathcal{P}. A vertex, edge, or face of \mathcal{P} is, respectively, a vertex, edge, or face of one of the polytopes of \mathcal{P}. We denote the set of vertices, edges, and faces of \mathcal{P} by $\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}$, respectively. We call a face of \mathcal{P} interior if it is contained in two polytopes of \mathcal{P} (clearly it cannot be contained in more than two); otherwise it is a boundary face of \mathcal{P}. Denote the set of boundary faces of \mathcal{P} by $\partial \mathcal{P}$. A vertex or edge of \mathcal{P} is interior if every face containing it is interior. We let $\mathcal{P}_{0}^{\circ}, \mathcal{P}_{1}^{\circ}, \mathcal{P}_{2}^{\circ}$ denote the set of interior vertices, edges, and faces of \mathcal{P}, respectively. Furthermore, we set $f_{i}=\# \mathcal{P}_{i}$ and $f_{i}^{\circ}=\# \mathcal{P}_{i}^{\circ}$ for $i=0,1,2$.

Given a polytopal complex \mathcal{P} and a vertex, edge, or face γ of \mathcal{P}, the star of γ in \mathcal{P}, denoted $\operatorname{st}_{\mathcal{P}}(\gamma)$, is the polytopal complex $\operatorname{st}_{\mathcal{P}}(\gamma):=\{\sigma \in \mathcal{P} \mid \gamma \in \sigma\}$. If the complex \mathcal{P} is understood we will write st (γ).

We define an abstract graph $G(\mathcal{P})$ with a vertex corresponding to each polytope of \mathcal{P}; two vertices are joined by an edge if and only if the corresponding polytopes σ and σ^{\prime} share a common face. We say that \mathcal{P} is hereditary if $G\left(\operatorname{st}_{\mathcal{P}}(\gamma)\right)$ is connected for every vertex and edge γ of \mathcal{P}. An easy example of a polytopal complex which is not hereditary is two polytopes meeting only at a single vertex (or along a single edge). By a polytopal cell we mean a central, hereditary polytopal complex.

We will frequently use the following construction of a polytopal cell. Let $i: \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{3} be the map $i(x, y)=(x, y, 1)$. For a polygon σ, denote by $\widehat{\sigma}$ the convex hull of the origin in \mathbb{R}^{3} and $i(\sigma)$. Now suppose \mathcal{P} is a polygonal complex. Then define the cone $\widehat{\mathcal{P}}$ over \mathcal{P} to be the set of polytopes $\{\widehat{\sigma} \mid \sigma \in \mathcal{P}\}$ (see Figure 3). This is clearly a central polytopal complex. Suppose furthermore that the polygonal complex \mathcal{P}

Figure 3. A polygonal complex \mathcal{P} (left) and its cone $\widehat{\mathcal{P}}$ (right)
is hereditary (in the planar case, hereditary simply means that there is no 'pinch point'). Then clearly $\widehat{\mathcal{P}}$ is a polytopal cell.

We now recall the definition of the module of splines on a polytopal complex; again the obvious alterations are made to define splines over polygonal complexes. For a set $U \subset \mathbb{R}^{3}$, let $C^{r}(U)$ denote the set of functions $F: U \rightarrow \mathbb{R}$ continuously differentiable of order r. For a function $F:|\mathcal{P}| \rightarrow \mathbb{R}$ and a polytope $\sigma \in \mathcal{P}$, let F_{σ} denote the restriction of F to σ. The set $C^{r}(\mathcal{P})$ of piecewise polynomials continuously differentiable of order r on \mathcal{P} is defined by

$$
C^{r}(\mathcal{P}):=\left\{F \in C^{r}(|\mathcal{P}|) \mid F_{\sigma} \in S=\mathbb{R}[x, y, z] \text { for every } \sigma \in \mathcal{P}\right\}
$$

The polynomial ring S includes in $C^{r}(\mathcal{P})$ as globally polynomial functions (these are the trivial splines); this makes $C^{r}(\mathcal{P})$ an S-module via pointwise multiplication. Henceforth we will refer to $C^{r}(\mathcal{P})$ as an S-module (or simply a module, since the S-module structure of $C^{r}(\mathcal{P})$ is the only structure we consider).

If, in addition, $\mathcal{P} \subset \mathbb{R}^{3}$ is a hereditary polytopal complex, the global C^{r} condition can be expressed as a differentiability condition across interior faces as follows (see [6] for a proof). For a face $\tau \in \mathcal{P}_{2}$, let $l_{\tau} \in S$ denote a choice of affine linear form (unique up to scaling) which vanishes on τ. Then a function $F:|\mathcal{P}| \rightarrow \mathbb{R}$ which restricts to a polynomial on each polytope is in $C^{r}(\mathcal{P})$ if and only if $l_{\tau}^{r+1} \mid\left(F_{\sigma_{1}}-F_{\sigma_{2}}\right)$ for every pair of polytopes σ_{1}, σ_{2} which intersect in the face τ.

In [14, Schenck and Geramita study the dimension of mixed spline spaces, in which the order of differentiability across faces varies. Specifically, let $\alpha: \mathcal{P}_{2} \rightarrow$ $\mathbb{Z}_{\geq-1}$ be a map yielding a list of smoothness parameters $\left(\alpha(\tau) \mid \tau \in \mathcal{P}_{2}\right)$. We require that $\alpha(\tau) \geq 0$ for $\tau \in \mathcal{P}_{2}^{\circ}$ and $\alpha(\tau) \geq-1$ for $\tau \in \partial \mathcal{P}$.

The module $C^{\alpha}(\mathcal{P})$ of mixed splines on \mathcal{P} is defined as the set of splines $F \in$ $C^{0}(\mathcal{P})$ satisfying

- $l_{\tau}^{\alpha(\tau)+1} \mid\left(F_{\sigma_{1}}-F_{\sigma_{2}}\right)$ for $\tau \in \mathcal{P}_{2}^{\circ}$ with $\sigma_{1} \cap \sigma_{2}=\tau$,
- $l_{\tau}^{\alpha(\tau)+1} \mid F_{\sigma}$ for $\tau \in \partial \mathcal{P}$ with $\tau \in \partial \sigma$.

For hereditary polytopal complexes, the usual ring of splines $C^{r}(\mathcal{P})$ is recovered by setting $\alpha(\tau)=r$ for every $\tau \in \mathcal{P}_{2}^{\circ}$ and $\alpha(\tau)=-1$ for every $\tau \in \mathcal{P}_{2}$. The following variant of [6, Proposition 4.3] encodes the mixed spline conditions as a matrix.

Lemma 2.1. If \mathcal{P} is hereditary and $\alpha=\left(\alpha(\tau) \mid \tau \in \mathcal{P}_{2}\right)$, then $C^{\alpha}(\mathcal{P})$ fits into the exact sequence

$$
\begin{gathered}
0 \rightarrow C^{\alpha}(\mathcal{P}) \rightarrow S^{f_{3}+f_{2}} \xrightarrow{\phi} S^{f_{2}} \rightarrow C \rightarrow 0, \\
\text { where } \phi=\left(\begin{array}{l|lll}
l_{\tau_{1}}^{\alpha\left(\tau_{1}\right)+1} & & \\
& & \ddots & \\
& & & l_{\tau_{k}}^{\alpha\left(\tau_{k}\right)+1}
\end{array}\right) .
\end{gathered}
$$

Here $k=f_{2}, C=$ coker ϕ and δ_{3} is the $f_{2} \times f_{3}$ matrix of ± 1 's coming from the spline conditions.

We now introduce two vector spaces of splines which will be our main objects of study. Let $S_{\leq d}$ be the vector space of polynomials $f \in S=\mathbb{R}[x, y, z]$ of total degree $\leq d$ and let S_{d} be the vector space of homogeneous polynomials of degree d. For $\mathcal{P} \subset \mathbb{R}^{3}$ we have a filtration of $C^{\alpha}(\mathcal{P})$ by \mathbb{R}-vector spaces:

$$
C_{d}^{\alpha}(\mathcal{P}):=\left\{F \in C^{\alpha}(\mathcal{P}) \mid F_{\sigma} \in S_{\leq d} \text { for all polytopes } \sigma \in \mathcal{P}\right\} .
$$

For central polytopal complexes we always assign $\alpha(\tau)=-1$ for every twodimensional face $\tau \in \mathcal{P}_{2}$ which does not contain the origin. Then the diagonal portion of the matrix in Lemma 2.1 consists of constants and homogeneous polynomials of degree $\alpha(\tau)+1$. Consider the vector spaces

$$
C^{\alpha}(\mathcal{P})_{d}:=\left\{F \in C^{\alpha}(\mathcal{P}) \mid F_{\sigma} \in S_{d} \text { for all polytopes } \sigma \in \mathcal{P}_{2}\right\}
$$

If \mathcal{P} is central, then $C^{\alpha}(\mathcal{P}) \cong \bigoplus_{d \geq 0} C^{\alpha}(\mathcal{P})_{d}$. In other words, every spline $F \in$ $C^{\alpha}(\mathcal{P})$ may be uniquely written as a sum $F=\sum_{d \geq 0} F_{d}$ where $F_{d} \in C^{\alpha}(\mathcal{P})_{d}$. We say $C^{\alpha}(\mathcal{P})$ is a graded S-module. We will return to this notion in 93 ,

Now suppose \mathcal{P} is a polygonal complex in \mathbb{R}^{2}, with smoothness parameters α now attached to edges of \mathcal{P}. We extend these to smoothness parameters $\widehat{\alpha}$ on $\widehat{\mathcal{P}}$ by assigning

- $\widehat{\alpha}\left(\tau^{\prime}\right)=\alpha(\tau)$ for $\tau^{\prime} \in \widehat{\mathcal{P}}_{2}$ which is a cone over $\tau \in \mathcal{P}_{1}$ and
- $\widehat{\alpha}\left(\tau^{\prime}\right)=-1$ for $\tau^{\prime} \in \widehat{\mathcal{P}}_{2}$ so that $(0,0,0) \notin \tau^{\prime}$.

Since this extension is natural we will abuse notation and drop the hat on α, denoting $C^{\widehat{\alpha}}(\widehat{\mathcal{P}})$ by $C^{\alpha}(\widehat{\mathcal{P}})$. In practice one computes the module $C^{\alpha}(\widehat{\mathcal{P}})$ by replacing the polynomial ring $R=\mathbb{R}[x, y]$ by $S=\mathbb{R}[x, y, z]$ in Lemma 2.1 and homogenizing the entries of the matrix ϕ with respect to z. The kernel of the homogenized matrix is $C^{\alpha}(\widehat{\mathcal{P}})$. The following lemma is proved the same way as Theorem 2.6 of [6].

Lemma 2.2. Let $\mathcal{P} \subset \mathbb{R}^{2}$ be a polygonal complex with smoothness parameters α. Then $C_{d}^{\alpha}(\mathcal{P}) \cong C^{\alpha}(\widehat{\mathcal{P}})_{d}$ as \mathbb{R}-vector spaces.

Remark 2.3. By Lemma 2.2 if $\mathcal{P} \subset \mathbb{R}^{2}$ is a hereditary polygonal complex, $\operatorname{dim} C_{d}^{\alpha}(\mathcal{P})$ $=\operatorname{dim} C^{\alpha}(\widehat{\mathcal{P}})_{d}$, hence the study of dimension formulas for planar splines is subsumed in the study of dimension formulas for splines on polytopal cells.

For the remainder of the paper we will assume that all polytopal complexes are polytopal cells. Moreover, whenever we refer to computing splines over a (hereditary) polygonal complex \mathcal{P}, we assume that we are considering splines on the polytopal cell $\widehat{\mathcal{P}}$.

3. SyZygies, RESOLUTIONS, AND REGULARITY

In this section we briefly summarize some commutative algebra with the aim of introducing the notion of Castelnuovo-Mumford regularity. This concept is the fundamental tool we use to study when the function $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ starts agreeing with the known polynomial functions in d. Along the way, we introduce syzygy modules and their natural grading. Syzygy modules are central both to the definition of Castelnuovo-Mumford regularity and to many of our later arguments. The first chapter of [12] is an excellent introduction to the approach we take here.

Let M be a finitely generated positively graded module over the polynomial ring $S=\mathbb{R}[x, y, z]$. The module M is finitely generated if there is a finite set of elements $m_{1}, \ldots, m_{k} \in M$ so that every element $m \in M$ can be written as $m=\sum_{i=1}^{k} f_{i} m_{i}$ for some choice of polynomials f_{1}, \ldots, f_{k}. The module M is positively graded if there is a decomposition $M=\bigoplus_{d \geq 0} M_{d}$, where M_{d} is an \mathbb{R}-vector space for every d. If M is finitely generated, then M_{d} is finite dimensional for every d. If $\mathcal{P} \subset \mathbb{R}^{3}$ is a polytopal cell, the module $C^{r}(\mathcal{P})$ is graded by $C^{r}(\mathcal{P})=\bigoplus_{d \geq 0} C^{r}(\mathcal{P})_{d}$, where $C^{r}(\mathcal{P})_{d}$ is the space of splines of degree exactly d on \mathcal{P}. Moreover, $C^{r}(\mathcal{P})$ is always finitely generated as an S-module. Theoretically, this is because $C^{r}(\mathcal{P})$ is a submodule of the finite rank free module $S^{f_{3}}$, so it is Noetherian. Computationally, this is a simple consequence of Schreyer's observation that Buchberger's algorithm provides a finite generating set for the kernel of any matrix like the matrix in Lemma 2.1 (see [11, §15.5]). Hence, $C^{r}(\mathcal{P})_{d}$ is finite dimensional for any $d \geq 0$.

The Hilbert function of a finitely generated graded S-module M is the function $\operatorname{dim} M_{d}$. A standard result from commutative algebra states that for $d \gg 0, \operatorname{dim} M_{d}$ agrees with a polynomial function $\operatorname{HP}(M, d)$, called the Hilbert polynomial of M. As we noted in the introduction, the largest integer d for which $\operatorname{dim} M_{d} \neq H P(M, d)$ is called the postulation number of M, which we denote by $\wp(M)$. The Krull dimension of a graded module M is defined by $\operatorname{dim}(M)=\operatorname{deg}(H P(M, d))+1$; this is a way of measuring the size of M. For instance, the Krull dimension of the polynomial ring $S=\mathbb{R}[x, y, z]$ is three, the number of variables. The codimension of M, denoted $\operatorname{codim}(M)$, is defined by $\operatorname{codim}(M)=\operatorname{dim}(S)-\operatorname{dim}(M)=3-\operatorname{dim}(M)$.

We now recall the notion of a syzygy module. Let N be a row vector with entries $m_{1}, \ldots, m_{k} \in M$, where M is a graded S-module. Take formal basis elements e_{1}, \ldots, e_{k} corresponding to m_{1}, \ldots, m_{k} and let $\bigoplus_{i=1}^{k} S e_{i}$ be the free S module on this basis. The module of syzygies (or relations) on the entries of N, denoted $\operatorname{syz}(N)$, is defined as

$$
\operatorname{syz}(N)=\operatorname{ker}\left(\bigoplus_{i=1}^{k} S e_{i} \xrightarrow{\phi} M\right)
$$

where $\phi\left(\sum_{i=1}^{k} f_{i} e_{i}\right)=\sum f_{i} m_{i}$. If the entries of N are homogeneous (that is, each $m_{i} \in M_{a_{i}}$ for some integer a_{i}), one can make ϕ a degree-preserving map (and thus $\operatorname{syz}(N)$ a graded S-module) by stipulating that $\operatorname{deg}\left(e_{i}\right)=\operatorname{deg}\left(m_{i}\right)=a_{i}$. We denote $S e_{i}$ using the shorthand $S\left(-a_{i}\right)$ to indicate that this is a copy of S with the unit in degree a_{i}. In other words, $\left(S e_{i}\right)_{d}=S\left(-a_{i}\right)_{d} \cong S_{d-a_{i}}$.

If M is a graded S-module, a set of elements $\left\{m_{1}, \ldots, m_{k_{0}}\right\}$ of M with degrees $a_{0,1}, \ldots, a_{0, k_{0}}$ (the reason for two subscripts will soon be evident) is called a minimal generating set for M if no proper subset of $\left\{m_{1}, \ldots, m_{k_{0}}\right\}$ generates M as an S module. This is equivalent to requiring that no m_{i} can be written as a polynomial combination of $\left\{m_{s} \mid s \neq i\right\}$. If the entries of a row vector N are a set of minimal
generators for the module M, then we denote $\operatorname{syz}(N)$ by $\operatorname{syz}(M)$; this is the module of syzygies on M. The S-module M is free if there are no relations on a minimal generating set; in other words $\operatorname{syz}(M)=0$.

Remark 3.1. As its name suggests, different choices of a minimal generating set give rise to isomorphic syzygy modules, so $\operatorname{syz}(M)$ is well defined up to isomorphism. In particular the degrees of the generators in a minimal generating set for M is invariant, even if the generators themselves are not.

Put $\operatorname{syz}_{1}(M)=\operatorname{syz}(M)$. For $n>1$, the nth syzygy module of M is induc-
 $\operatorname{syz}_{\delta}(M)$ is free is called the projective dimension of M, which we denote by $\operatorname{pd}(M)$. Since we are working over a polynomial ring in three variables, a famous result of Hilbert, known as the Hilbert syzygy theorem, states that $\operatorname{pd}(M) \leq 3$. Suppose that $\operatorname{syz}_{i}(M)$ is minimally generated in degrees $\left\{a_{i, 0}, \ldots, a_{i, k_{i}}\right\}$. It is standard practice to encode all of the syzygy modules of M at once in the minimal free resolution of M, which is an exact complex

$$
F_{\bullet}: 0 \rightarrow F_{\delta} \xrightarrow{\phi_{\delta}} F_{r-1} \xrightarrow{\phi_{r-1}} \cdots \xrightarrow{\phi_{1}} F_{0},
$$

where $\delta=\operatorname{pd}(M), \operatorname{coker}\left(\phi_{0}\right)=M, \operatorname{im}\left(\phi_{i}\right)=\operatorname{syz}_{i}(M)$, and $F_{i} \cong \bigoplus_{j} S\left(-a_{i, j}\right)$ for $i=1, \ldots, \delta$. We now come to the main concept.

Definition 3.2. Let M be a graded S-module and suppose that $\operatorname{syz}_{i}(M)$ is minimally generated in degrees $\left\{a_{i, 0}, \ldots, a_{i, k_{i}}\right\}$. The Castelnuovo-Mumford regularity of M, denoted $\operatorname{reg}(M)$, is defined by

$$
\operatorname{reg}(M)=\max _{i, j}\left\{a_{i, j}-i\right\}
$$

Remark 3.3. The degrees of the minimal generators of M are the numbers $a_{0, j}$ which appear in the summands $S\left(-a_{0, j}\right)$ of F_{0}. According to Definition 3.2 reg(M) bounds the minimal degree of generators of M as an S-module. If M is a free S module, i.e., $M \cong \bigoplus_{j} S\left(-a_{0, j}\right)$, then $\operatorname{reg}(M)=\max _{j}\left\{a_{0, j}\right\}$, the maximum degree of a generator of M.

Theorem 3.4 ([12, Theorem 4.2]). Let M be a finitely generated graded module over $S=\mathbb{R}[x, y, z]$. Then $\operatorname{dim} M_{d}=H P(M, d)$ for $d \geq \operatorname{reg}(M)+\operatorname{pd}(M)-2$. Equivalently, $\wp(M) \leq \operatorname{reg}(M)+\operatorname{pd}(M)-3$.
Remark 3.5. Let $\mathcal{P} \subset \mathbb{R}^{3}$ be a polytopal cell. In the remainder of the paper, we focus our efforts on obtaining upper bounds on the regularity of $C^{\alpha}(\mathcal{P})$. Due to Theorem [3.4, these bounds translate into upper bounds on the postulation number of $C^{\alpha}(\mathcal{P})$. We will use a number of other results concerning regularity; for the convenience of the reader these are collected in Appendix A

4. Regularity of splines on cells: the first reduction

Now we return to the setting of splines. For \mathcal{P} a polytopal cell, our goal in this section is to show that the regularity of $C^{\alpha}(\mathcal{P})$ is bounded by the regularity of certain 'approximations' to $C^{\alpha}(\mathcal{P})$, using Proposition A. 7 .

The approximations we use are essentially submodules of splines with 'local support.' For \mathcal{Q} a polytope σ or the union $\operatorname{st}(\tau)$ of two polytopes meeting along
the face τ, put

$$
\Lambda(\mathcal{Q})=\prod_{\tau \in \partial \mathcal{Q}} l_{\tau}^{\alpha(\tau)+1} \in S \quad \text { and } \quad \lambda(\mathcal{Q})=\operatorname{deg}(\Lambda(\mathcal{Q}))=\sum_{\tau \in \partial \mathcal{Q}}(\alpha(\tau)+1) .
$$

If σ is a polytope of \mathcal{P}, denote by $C_{\sigma}^{\alpha}(\mathcal{P})$ the submodule of $C^{\alpha}(\mathcal{P})$ consisting of splines F which vanish outside of σ. Such splines are characterized by F_{σ} being a polynomial multiple of $\Lambda(\sigma)$. Hence $C_{\sigma}^{\alpha}(\mathcal{P}) \cong\langle\Lambda(\sigma)\rangle \subset S$, the principal ideal in S generated by the polynomial $\Lambda(\sigma)$. Likewise, if τ is an interior face of \mathcal{P} denote by $C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$ the submodule of splines which vanish outside the union of the two polytopes which meet along τ. Define the two 'locally-supported' submodules

$$
L S^{\alpha, 0}(\mathcal{P}):=\sum_{\sigma \in \mathcal{P}} C_{\sigma}^{\alpha}(\mathcal{P}) \cong \bigoplus_{\sigma \in \mathcal{P}}\langle\Lambda(\sigma)\rangle \quad \text { and } \quad L S^{\alpha, 1}(\mathcal{P}):=\sum_{\tau \in \mathcal{P}_{2}^{\circ}} C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P}) .
$$

Remark 4.1. The isomorphism $L S^{\alpha, 0}(\mathcal{P}) \cong \bigoplus\langle\Lambda(\sigma)\rangle$ follows from the isomorphisms $C_{\sigma}^{\alpha}(\mathcal{P}) \cong\langle\Lambda(\sigma)\rangle$ and the fact that the summands $C_{\sigma}^{\alpha}(\mathcal{P})$ have disjoint support inside of $C^{\alpha}(\mathcal{P})$.

Remark 4.2. Since $C^{\alpha}(\mathcal{P})$ is graded module over $S=\mathbb{R}[x, y, z]$, so are the submodules $C_{\mathcal{Q}}^{\alpha}(\mathcal{P})$ for $\mathcal{Q}=\sigma$ or $\mathcal{Q}=\operatorname{st}(\tau)$. Hence the submodules $L S^{\alpha, 0}(\mathcal{P})$ and $L S^{\alpha, 1}(\mathcal{P})$ are graded S-modules as well.
Remark 4.3. The modules $L S^{\alpha, 0}(\mathcal{P})$ and $L S^{\alpha, 1}(\mathcal{P})$ are introduced as part of a larger family of approximations to $C^{\alpha}(\mathcal{P})$ in [9]. The definition given here differs slightly from that given in 9, nevertheless it is equivalent.

Example 4.4. Consider the polygonal complex \mathcal{Q} from Example 1.1 A spline $F \in L S^{\alpha, 1}(\widehat{\mathcal{Q}})$ is a sum of splines $F=\sum_{\tau \in \mathcal{Q}_{1}^{\circ}} f_{\tau}$ so that the support of f_{τ} is contained in the union of two polytopes σ_{1}, σ_{2} which meet along $\widehat{\tau}$. In other words, the support of f_{τ} is contained in (the cone over) one of the six shaded regions in Figure 4. The order of vanishing of f_{τ} along the boundary of $\operatorname{st}(\tau)$ is prescribed by the smoothness parameters α.

Figure 4. Stars of edges for the complex \mathcal{Q} in Example 4.4

The crucial property of the submodules $L S^{\alpha, k}(\mathcal{P})$, explaining in what sense these approximate $C^{\alpha}(\mathcal{P})$, is provided by the following result. Recall that the codimension of an $S=\mathbb{R}[x, y, z]$-module M, denoted $\operatorname{codim}(M)$, is $\operatorname{dim}(S)-\operatorname{dim}(M)=$ $3-\operatorname{dim}(M)$, where the dimension considered is the Krull dimension (see §3). We provide a proof of the following result for $k=0,1$.

Proposition 4.5 (9, Theorem 4.3]). Let \mathcal{P} be a polytopal cell. Then in the tautological short exact sequence of S-modules

$$
0 \rightarrow L S^{\alpha, k}(\mathcal{P}) \xrightarrow{i} C^{\alpha}(\mathcal{P}) \rightarrow C \rightarrow 0
$$

where C is the cokernel of the natural inclusion i, the codimension of C is at least $k+1$.
Proof of Proposition 4.5 for $k=0,1$. The key point of the proof is that $\operatorname{codim}(C) \geq$ $k+1$ if and only if $C_{P}=0$ for all primes P of codimension at most k, where C_{P} is the localization of C at the prime P (see [11, Chapter 2]). To show this we will localize the short exact sequence

$$
0 \rightarrow L S^{\alpha, k}(\mathcal{P}) \xrightarrow{i} C^{\alpha}(\mathcal{P}) \rightarrow C \rightarrow 0
$$

at primes $P \subset S$ with codimension at most k, and prove that the localized map i_{P} is an isomorphism. For $k=0$, the only prime of codimension 0 is the zero ideal. Localizing at the zero ideal is the same as tensoring with the fraction field $\mathbb{Q}(S)$ of S (this is the field of rational functions in three variables). By definition of $L S^{\alpha, 0}(\mathcal{P})$, it is clear that

$$
L S^{\alpha, 0}(\mathcal{P}) \otimes_{S} \mathbb{Q}(S) \cong\left(\bigoplus_{\sigma \in \mathcal{P}}\langle\Lambda(\sigma)\rangle\right) \otimes_{S} \mathbb{Q}(S) \cong \mathbb{Q}(S)^{f_{3}}
$$

From the containment $L S^{\alpha, 0}(\mathcal{P}) \subset C^{\alpha}(\mathcal{P}) \subset S^{f_{3}}$ and the fact that $S^{f_{3}} \otimes_{S} \mathbb{Q}(S) \cong$ $\mathbb{Q}(S)^{f_{3}}$, we have that $C^{\alpha}(\mathcal{P}) \otimes_{S} \mathbb{Q}(S) \cong \mathbb{Q}(S)^{f_{3}} \cong L S^{\alpha, 0}(\mathcal{P}) \otimes_{S} \mathbb{Q}(S)$. Hence the localized map i_{P} is an isomorphism in the case $k=0$.

For $k=1$, we must show that the localized inclusion i_{P} is an isomorphism for prime ideals $P \subset S$ of codimension one and zero. If P has codimension zero (i.e., $P=0$), then the containment $L S^{\alpha, 0}(\mathcal{P}) \subset L S^{\alpha, 1}(\mathcal{P})$ shows $L S^{\alpha, 1}(\mathcal{P}) \otimes_{S}$ $\mathbb{Q}(S) \cong \mathbb{Q}(S)^{f_{3}} \cong C^{\alpha}(\mathcal{P}) \otimes_{S} \mathbb{Q}(S)$ as before. Now suppose P has codimension one. Codimension one ideals of S are necessarily principal, so $P=\langle f\rangle$ for some irreducible polynomial $f \in S$. If $f \neq l_{\tau}$ for some $\tau \in \mathcal{P}_{2}$, then $C^{\alpha}(\mathcal{P})_{P}=S_{P}^{f_{n}}=$ $L S^{\alpha, 1}(\mathcal{P})_{P}$ (all gluing conditions in the matrix from Lemma 2.1 are inverted). Otherwise, $P=\left\langle l_{\tau}\right\rangle$ and only gluing conditions along edges whose affine span contains τ are retained, yielding

$$
C^{\alpha}(\mathcal{P})_{P} \cong S_{P}^{h} \oplus \bigoplus_{\tau \subset \operatorname{aff}(\psi)} C_{\mathrm{st}(\psi)}^{\alpha}(\mathcal{P})_{P}
$$

where in the rightmost direct sum ψ runs across faces of \mathcal{P} having the same affine span as τ and h is the number of polytopes having no face whose affine span contains τ. Localizing $L S^{\alpha, 1}(\mathcal{P})$ at P yields the same result, so we are done.

Before proving the main result of the section, we need the following observation in order to apply Proposition A. 7
Lemma 4.6. [7, Proposition 3.4] If $\mathcal{P} \subset \mathbb{R}^{3}$ is a polytopal cell, then
(1) $\operatorname{pd}\left(C^{\alpha}(\mathcal{P})\right) \leq 1$,
(2) $\wp\left(C^{\alpha}(\mathcal{P})\right) \leq \operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right)-2$.

Proof. It follows from Lemma 2.1 that $C^{\alpha}(\mathcal{P})$ is the kernel of a map ϕ between free S-modules. This means it can be viewed as the second syzygy of coker (ϕ). By the Hilbert syzygy theorem, the $S=\mathbb{R}[x, y, z]$-module $\operatorname{coker}(\phi)$ has projective
dimension at most three. Since $C^{\alpha}(\mathcal{P})$ is a second syzygy module, $\operatorname{pd}\left(C^{\alpha}(\mathcal{P})\right) \leq$ $3-2=1$. Part (2) follows from (1) and Theorem 3.4.

Theorem 4.7. Let $\mathcal{P} \subset \mathbb{R}^{3}$ be a polytopal cell. Then
(1) $\operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right) \leq \operatorname{reg}\left(L S^{\alpha, 1}(\mathcal{P})\right)$,
(2) If $C^{\alpha}(\mathcal{P})$ is free, then $\operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right) \leq \operatorname{reg}\left(L S^{\alpha, 0}(\mathcal{P})\right)$.

Proof. (1) By Lemma 4.6, $\operatorname{pd}\left(C^{\alpha}(\mathcal{P})\right) \leq 1$. By Proposition 4.5, the cokernel of the inclusion $L S^{\alpha, 1}(\mathcal{P}) \hookrightarrow C^{\alpha}(\mathcal{P})$ has codimension at least two. The result follows from Proposition A.7. (2) If $C^{\alpha}(\mathcal{P})$ is free, then $\operatorname{pd}\left(C^{\alpha}(\mathcal{P})\right)=0$. By Proposition 4.5, the cokernel of the inclusion $L S^{\alpha, 1}(\mathcal{P}) \hookrightarrow C^{\alpha}(\mathcal{P})$ has codimension at least one. The result follows again from Proposition A.7.

For the following corollary, recall $\lambda(\sigma)=\sum_{\tau \in \partial \sigma}(\alpha(\tau)+1)$.
Corollary 4.8. Let $\mathcal{P} \subset \mathbb{R}^{3}$ be a polytopal cell and suppose that $C^{\alpha}(\mathcal{P})$ is free. Set $f(\mathcal{P})=\max \{\lambda(\sigma) \mid \sigma \in \mathcal{P}\}$. Then $C^{\alpha}(\mathcal{P})$ is generated in degrees at most $f(\mathcal{P})$.
Proof. The maximum degree of a generator of $C^{\alpha}(\mathcal{P})$ is the regularity of $C^{\alpha}(\mathcal{P})$ (see Remark (3.3), so we need to show $\operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right) \leq f(\mathcal{P})$. The module $C^{\alpha}(\mathcal{P})$ is free if and only if $\operatorname{pd}\left(C^{\alpha}(\mathcal{P})\right)=0$. By Theorem4.7, $\operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right) \leq \operatorname{reg}\left(L S^{\alpha, 0}(\mathcal{P})\right)$. By definition, $L S^{\alpha, 0} \cong \bigoplus_{\sigma \in \mathcal{P}}\langle\Lambda(\sigma)\rangle$. The principal ideal $\langle\Lambda(\sigma)\rangle$ is isomorphic, as a graded S-module, to $S(-\lambda(\sigma))$. Since the regularity of a direct sum of modules is the maximum of the regularity of the summands, $\operatorname{reg}\left(L S^{\alpha, 0}(\mathcal{P})\right)=\max \left\{\operatorname{reg}\left(C_{\sigma}^{\alpha}(\mathcal{P})\right) \mid \sigma \in\right.$ $\mathcal{P}\}=\max \{\lambda(\sigma) \mid \sigma \in \mathcal{P}\}=f(\mathcal{P})$.

Remark 4.9. The centrally triangulated octahedron in Example 1.2 is a rare instance when Corollary 4.8 is exact. In fact, the bound in Corollary 4.8 is typically not tight. For instance, if $\Delta \subset \mathbb{R}^{2}$ is a triangulation so that $C^{r}(\widehat{\Delta})$ is free, it follows from work of Schenck and Stillman [27] that $\operatorname{reg}\left(C^{r}(\widehat{\Delta})\right) \leq 2(r+1)$. Corollary 4.8, on the other hand, only implies that $C^{r}(\widehat{\Delta})$ is generated in degrees at most $3(r+1)$.

5. Regularity of splines on cells: The second reduction

Let $\mathcal{P} \subset \mathbb{R}^{3}$ be a polytopal cell. The goal in this section is to obtain a bound on the regularity of $L S^{\alpha, 1}(\mathcal{P})$. To do that, we find an exact chain complex

$$
0 \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{2} \rightarrow C_{1} \rightarrow L S^{\alpha, 1}(\mathcal{P}) \rightarrow 0
$$

of modules that will allow us to bound the regularity of M using Lemma A.4 The length of the chain complex is controlled by the maximal number of interior faces of the polytopes in \mathcal{P}.

We introduce a simplicial complex $\Delta(\mathcal{P})$. This complex will provide a convenient combinatorial structure that we will use to describe the chain complex of modules. The idea is that each polytope $\sigma \in \mathcal{P}$ will correspond to a $(d(\sigma)-1)$-dimensional simplex in $\Delta(\mathcal{P})$, where $d(\sigma)$ is the number of interior faces of σ.

Formally, the vertices of $\Delta(P)$ are given by the pairs

$$
\Delta_{0}(\mathcal{P})=\{(\tau, \sigma) \mid \sigma \in \mathcal{P}, \tau \text { an interior face of } \sigma\}
$$

Fix an enumeration $\left\{\tau_{1}, \ldots, \tau_{d(\sigma)}\right\}$ of the interior faces of σ. For $k \geq 2$, the set of ($k-1$)-faces of $\Delta(\mathcal{P})$ is the set of k-tuples of vertices

$$
\Delta_{k-1}(\mathcal{P})=\left\{\left(\left(\tau_{i_{1}}, \sigma\right), \ldots,\left(\tau_{i_{k}}, \sigma\right)\right\}\right.
$$

Figure 5. Labeling used in Examples 5.1 and 5.2 and

Figure 6. The simplex $\Delta\left(\sigma_{1}\right)$ in Example 5.1

Let us denote by $\Delta_{k}(\sigma)$ the set of k-faces whose vertices have the second coordinate σ. Finally, let

$$
\Delta(\sigma):=\bigcup_{k=1}^{d(\sigma)} \Delta_{k}(\sigma) \text { and } \Delta(\mathcal{P})=\bigcup_{\sigma \in \mathcal{P}} \Delta(\sigma)
$$

Note that $\Delta(\sigma)$ is a simplex for every $\sigma \in \mathcal{P}$.
Example 5.1. We describe the simplicial complex $\Delta(\mathcal{P})$ for the polytopal cell $\mathcal{P}=\widehat{\mathcal{Q}}$ in Example 1.1 and Example 4.4 using the labeling of polytopes and faces given in Figure 5, The simplicial complex $\Delta(\mathcal{P})$ is two-dimensional; it is a disjoint union of the four two-dimensional simplices $\Delta\left(\sigma_{1}\right), \Delta\left(\sigma_{2}\right), \Delta\left(\sigma_{3}\right), \Delta\left(\sigma_{4}\right)$. The simplex $\Delta\left(\sigma_{1}\right)$ is shown in Figure 6

If I is an indexing set and M is the direct sum of modules $\left\{M_{i} \mid i \in I\right\}$ indexed by I, it is convenient to introduce formal basis elements e_{i} for the summand corresponding to the index i and write $M=\bigoplus_{i \in I} M_{i} e_{i}$. Elements of M are then written as $\sum_{i \in I} f_{i} e_{i}$, where $f_{i} \in M_{i}$. We are now ready to describe the chain complex of modules. For $\sigma \in \mathcal{P}$ define

$$
C_{0}(\sigma):=C_{\sigma}^{\alpha}(\mathcal{P}) e_{\sigma} \quad \text { and } \quad C_{0}:=\bigoplus_{\sigma \in \mathcal{P}} C_{0}(\sigma)=\bigoplus_{\sigma \in \mathcal{P}} C_{\sigma}^{\alpha}(\mathcal{P}) e_{\sigma}
$$

where e_{σ} is a formal basis element corresponding to the polytope σ. For $k \geq 1$, define

$$
C_{k}(\sigma):=\bigoplus_{s \in \Delta_{k-1}(\sigma)} C_{\sigma}^{\alpha}(\mathcal{P}) e_{s} \quad \text { and } \quad C_{k}:=\bigoplus_{\sigma \in \mathcal{P}} C_{k}(\sigma)=\bigoplus_{s \in \Delta_{k-1}} C_{\sigma}^{\alpha}(\mathcal{P}) e_{s}
$$

where the e_{s} are formal basis elements corresponding to $s \in \Delta_{k-1}(\sigma)$ or $s \in \Delta_{k-1}$, respectively. Note that each of the summands $C_{\sigma}^{\alpha}(\mathcal{P})$ in the modules C_{k} are isomorphic (as ungraded modules) to the polynomial ring S. This will come into play in the proof of Proposition 5.4.

The map $\delta_{1}: C_{1} \rightarrow C_{0}$ is an augmentation map. For $F=\sum_{\tau \subset \sigma} f_{(\tau, \sigma)} e_{(\tau, \sigma)}$ $\in C_{1}(\sigma)$,

$$
\delta_{1}(F)=\left(\sum_{\tau \subset \sigma} f_{(\tau, \sigma)}\right) e_{\sigma}
$$

and extend to C_{1} by linearity. The maps $\delta_{k}: C_{k} \rightarrow C_{k-1}$, for $k \geq 2$, are the simplicial boundary maps. For $f \in C_{\sigma}^{\alpha}(\mathcal{P})$ and $\left(\left(\tau_{0}, \sigma\right),\left(\tau_{1}, \sigma\right), \ldots,\left(\tau_{k}, \sigma\right)\right) \in \Delta_{k}(\sigma)$, let

$$
\delta_{k}\left(f \cdot e_{\left(\left(\tau_{0}, \sigma\right),\left(\tau_{1}, \sigma\right), \ldots,\left(\tau_{k}, \sigma\right)\right)}\right):=\sum_{j=0}^{k}(-1)^{j} f \cdot e_{\left(\left(\tau_{0}, \sigma\right),\left(\tau_{1}, \sigma\right), \ldots, \widehat{\left(\tau_{j}, \sigma\right)}, \ldots,\left(\tau_{k}, \sigma\right)\right)},
$$

and extend to C_{k} by linearity. We denote by C • the chain complex

$$
\cdots \xrightarrow{\delta_{3}} C_{2} \xrightarrow{\delta_{2}} C_{1} \xrightarrow{\delta_{1}} C_{0} \rightarrow 0 .
$$

Example 5.2. We explicitly write out the chain complex C • for the polytopal cell $\mathcal{P}=\widehat{\mathcal{Q}}$ from Example 5.1] First we describe the formal basis elements. We write $e_{\sigma_{i}}$ for a formal basis elements in $C_{0}, e_{i \sigma_{j}}$ for the formal basis element corresponding to (τ_{i}, σ_{j}) in $C_{1}, e_{i s \sigma_{j}}$ for the formal basis element corresponding to $\left(\left(\tau_{i}, \sigma_{j}\right),\left(\tau_{s}, \sigma_{j}\right)\right)$ in C_{2}, and $e_{i s t \sigma_{j}}$ for the formal basis element corresponding to $\left(\left(\tau_{i}, \sigma_{j}\right),\left(\tau_{s}, \sigma_{j}\right),\left(\tau_{t}, \sigma_{j}\right)\right)$ in C_{3}. The chain complex C_{\bullet} has the form

$$
0 \rightarrow S^{4} \xrightarrow{\delta_{3}} S^{12} \xrightarrow{\delta_{2}} S^{12} \xrightarrow{\delta_{1}} S^{4} \rightarrow 0
$$

The matrices for the differentials (with rows and columns labeled according to the formal basis elements) are shown in Figure 7. The structure of these matrices reflect the fact that the chain complex C_{\bullet} decomposes as a direct sum of four subcomplexes, one for each simplex $\Delta\left(\sigma_{i}\right)$.

Now let $C_{1}^{\prime}:=\bigoplus_{\tau \in \mathcal{P}_{2}^{\circ}} C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P}) e_{\tau}$ and define $\delta_{1}^{\prime}: C_{1}^{\prime} \rightarrow L S^{\alpha, 1}(\mathcal{P})$ by

$$
\delta_{1}^{\prime}: \sum_{\tau} f_{\tau} e_{\tau} \mapsto \sum_{\tau} f_{\tau}
$$

We next note that since each interior face τ is shared by exactly two polytopes, say σ_{1} and σ_{2}, there is a natural inclusion ι_{1} of C_{1} into C_{1}^{\prime} given by

$$
\iota\left(f_{1} \cdot e_{\left(\tau, \sigma_{1}\right)}+f_{2} \cdot e_{\left(\tau, \sigma_{2}\right)}\right)=\left(f_{1}+f_{2}\right) \cdot e_{\tau},
$$

where e_{τ} is the formal basis element corresponding to the summand $C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$ for an interior face τ. We denote by C_{\bullet}^{\prime} the chain complex

$$
\cdots \xrightarrow{\delta_{3}} C_{2} \xrightarrow{\delta_{2} \circ \iota_{1}} C_{1}^{\prime} \xrightarrow{\delta_{1}^{\prime}} L S^{\alpha, 1}(\mathcal{P}) \rightarrow 0 .
$$

There is also a natural inclusion of C_{0} into $L S^{\alpha, 1}(\mathcal{P})$ which we call ι_{0}. To see this, note that C_{0} and $L S^{\alpha, 1}(\mathcal{P})$ occur as submodules of $C^{\alpha}(\mathcal{P})$, and it is immediate that

$$
1 \sigma_{1} \quad 2 \sigma_{1} \quad 3 \sigma_{1} \quad 1 \sigma_{2} \quad 4 \sigma_{2} \quad 5 \sigma_{2} \quad 2 \sigma_{3} \quad 5 \sigma_{3} \quad 6 \sigma_{3} \quad 3 \sigma_{4} \quad 4 \sigma_{4} \quad 6 \sigma_{4}
$$

$$
\delta_{1}=\begin{aligned}
& \sigma_{1} \\
& \sigma_{2} \\
& \sigma_{3} \\
& \sigma_{4}
\end{aligned}\left(\begin{array}{lllllllllllll}
1 & 1 & 1 & & & & & & & & & \\
& & & 1 & 1 & 1 & & & & & & \\
& & & & & & 1 & 1 & 1 & & & \\
& & & & & & & & & 1 & 1 & 1
\end{array}\right)
$$

Figure 7. Differentials of C • in Example 5.2
$C_{0} \subset L S^{\alpha, 1}(\mathcal{P})$. It is a simple exercise to see that $\iota_{0} \circ \delta_{1}=\delta_{1}^{\prime} \circ \iota_{1}$. We thus have an inclusion of chain complexes $\iota: C_{\bullet} \hookrightarrow C_{\bullet}^{\prime}$ indicated in the following diagram:

It is clear that the map δ_{1}^{\prime} is surjective (this is the reason for considering the module C_{1}^{\prime} instead of C_{1}), but we show below that the kernel of δ_{1}^{\prime} is contained in the image of C_{1} under ι_{1}.

Lemma 5.3. For every $F \in \operatorname{ker} \delta_{1}^{\prime}$, there is $G \in C_{1}$ such that $\iota_{1}(G)=F$.

Proof. Write $F=\sum_{\tau} f_{\tau} e_{\tau}$, where $f_{\tau} \in C_{\operatorname{st}(\tau)}^{\alpha}(\mathcal{P})$. We show that $f_{\tau} e_{\tau}$ is in the image of ι_{1} for all τ. For a polytope $\sigma \in \mathcal{P}$, write $f_{(\tau, \sigma)}$ for the restriction $\left.f_{\tau}\right|_{\sigma}$ (this is zero unless τ is a face of σ). It suffices to show that $f_{(\tau, \sigma)} \in C_{\sigma}^{\alpha}(\mathcal{P})$ for every pair (τ, σ). By assumption, $\sum_{\tau} f_{\tau}=0$; restricting to a polytope σ yields $\sum_{\tau} f_{(\tau, \sigma)}=0$, where the sum runs across faces of σ (no repeats). Now since $f_{(\tau, \sigma)} \in C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$, it must vanish on every face of σ other than τ. Since every summand $f_{\left(\tau^{\prime}, \sigma\right)}$ for $\tau^{\prime} \neq \tau$ must vanish on τ, and the sum $\sum_{\tau} f_{(\tau, \sigma)}$ vanishes, $f_{(\tau, \sigma)}$ must also vanish along τ, hence $f_{(\tau, \sigma)} \in C_{\sigma}^{\alpha}(\mathcal{P})$, as desired.

Proposition 5.4. The chain complex

$$
C_{\bullet}^{\prime}=\cdots \xrightarrow{\delta_{3}} C_{2} \xrightarrow{\delta_{2} \circ \iota_{1}} C_{1}^{\prime} \xrightarrow{\delta_{1}^{\prime}} L S^{\alpha, 1}(\mathcal{P}) \rightarrow 0
$$

is exact.
Proof. The map δ_{1}^{\prime} is clearly surjective, so the chain complex is exact at $L S^{\alpha, 1}(\mathcal{P})$. The inclusion $\iota: C_{\bullet} \hookrightarrow C_{\bullet}^{\prime}$ induces a map on homologies $\iota_{i}^{\#}: H_{i}\left(C_{\bullet}\right) \rightarrow H_{i}\left(C_{\bullet}^{\prime}\right)$. We claim that $\iota_{i}^{\#}$ is an isomorphism for every $i \geq 1$. This is immediate for $i \geq 2$. For $i=1$, we need to show that

$$
H_{1}\left(C_{\bullet}\right)=\frac{\operatorname{ker}\left(\delta_{1}\right)}{\operatorname{im}\left(\delta_{2}\right)} \cong \frac{\operatorname{ker}\left(\delta_{1}^{\prime}\right)}{\operatorname{im}\left(\iota_{1} \circ \delta_{2}\right)}=H_{1}\left(C_{\bullet}^{\prime}\right)
$$

Since $\iota_{0} \circ \delta_{1}=\iota_{1} \circ \delta_{1}^{\prime}$ and ι_{0}, ι_{1} are both injective, $\iota_{1}\left(\operatorname{ker}\left(\delta_{1}\right)\right)=\iota_{1}\left(C_{1}\right) \cap \operatorname{ker}\left(\delta_{1}^{\prime}\right)$. By Lemma 5.3, $\operatorname{ker}\left(\delta_{1}^{\prime}\right)$ is a subset of $\iota_{1}\left(C_{1}\right)$. So we have $\iota_{1}\left(\operatorname{ker}\left(\delta_{1}\right)\right)=\operatorname{ker}\left(\delta_{1}^{\prime}\right)$ and thus the quotient map $\bar{\iota}_{1}: \operatorname{ker}\left(\delta_{1}\right) \rightarrow H_{1}\left(C_{\bullet}^{\prime}\right)$ is surjective. The kernel of $\bar{\iota}_{1}$ is clearly $\operatorname{im}\left(\delta_{2}\right)$, so the isomorphism $H_{1}\left(C_{\bullet}\right) \cong H_{1}\left(C_{\bullet}^{\prime}\right)$ follows from the first isomorphism theorem.

Now it suffices to show that the complex C_{\bullet} is exact. From the definition of the differentials δ_{k} it is clear that the chain complex C_{\bullet} is a direct sum of chain complexes $C_{\bullet}=\bigoplus_{\sigma \in \mathcal{P}} C_{\bullet}(\sigma)$ (see also Example 5.2), where $C_{\bullet}(\sigma)$ is the chain complex

$$
\cdots \xrightarrow{\delta_{3}} C_{2}(\sigma) \xrightarrow{\delta_{2}} C_{1}(\sigma) \xrightarrow{\delta_{1}} C_{0}(\sigma) \rightarrow 0 .
$$

So it suffices to show that $H_{i}\left(C_{\bullet}(\sigma)\right)=0$ for $i \geq 1$. The maps $\delta_{i}, i \geq 1$, are the maps used in simplicial homology (see [16, Chapter 2]). In particular, the presence of the augmentation map $\delta_{1}: C_{1}(\sigma) \rightarrow C_{0}(\sigma)$ ensures that the homology $H_{\bullet}\left(C_{\bullet}\right)$ is the reduced simplicial homology $\widetilde{H}_{\bullet-1}(\Delta(\sigma) ; S)$ of the simplex $\Delta(\sigma)$ with coefficients in S (there is a shift of -1 in dimension because simplicial homology is indexed by dimension, whereas the index i in C_{i} corresponds to faces of $\Delta(\mathcal{P})$ which have dimension $i-1$). It is well known that the reduced simplicial homology of a simplex vanishes in all dimensions, thus $H_{i}\left(C_{\bullet}\right)=0$ for all $i \geq 0$.

Theorem 5.5. Suppose $\mathcal{P} \subset \mathbb{R}^{3}$ is polytopal cell. Let $f(\mathcal{P})=\max \{\lambda(\sigma) \mid \sigma \in \mathcal{P}\}$ and $T=\max _{\tau \in \mathcal{P}_{2}^{\circ}}\left\{\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right)\right\}$. Then $\operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right) \leq \max \{f(\mathcal{P})-1, T\}$.

Proof. By Corollary 4.7, $\operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right) \leq \operatorname{reg}\left(L S^{\alpha, 1}(\mathcal{P})\right)$. By Proposition5.4 $L S^{\alpha, 1}(\mathcal{P})$ fits into the exact sequence

$$
\cdots \rightarrow C_{2} \rightarrow C_{1}^{\prime} \xrightarrow{\delta_{1}^{\prime}} L S^{\alpha, 1}(\mathcal{P}) \rightarrow 0 .
$$

The summands of $C_{i}, i \geq 2$, have the form $C_{\sigma}^{\alpha}(\mathcal{P})$. As we saw in Section 4, $C_{\sigma}^{\alpha}(\mathcal{P}) \cong S(-\lambda(\sigma))$. Since the regularity of a direct sum is the maximum of the
regularity of its summands,

$$
\operatorname{reg}\left(C_{i}\right) \leq \max \{\lambda(\sigma) \mid \sigma \in \mathcal{P}\}=f(\mathcal{P})
$$

for every $i \geq 2$. Now $C_{1}^{\prime}=\bigoplus_{\tau \in \mathcal{P}_{2}^{\circ}} C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$, so

$$
\operatorname{reg}\left(C_{1}^{\prime}\right)=\max _{\tau \in \mathcal{P}_{2}^{\alpha}}\left\{\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right)\right\}=T
$$

Now the conclusion follows from Lemma A. 4

6. Regularity of splines on cells: The third reduction

Suppose $\mathcal{P} \subset \mathbb{R}^{3}$ is a polytopal cell. In this section we complete the proof of Theorem 6.2 by providing an explicit bound on $\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right)$, where τ is an interior face of \mathcal{P}, and using Theorem [5.5. As in Section 4, we accomplish this by 'approximating' $C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$ and using Proposition A. 7 .

Let $\tau \in \mathcal{P}_{2}^{\circ}$ be an interior face of \mathcal{P}, and σ_{1}, σ_{2} the two polytopes which meet along τ to form $\operatorname{st}(\tau)$. Recall that if \mathcal{Q} is a polytope σ or the union $\operatorname{st}(\tau)$ of two polytopes sharing the face τ, then $\Lambda(\mathcal{Q})=\prod_{\tau \in \partial \mathcal{Q}} l_{\tau}^{\alpha(\tau)+1}$ and $\lambda(\mathcal{Q})=\operatorname{deg}(\Lambda(\mathcal{Q}))$.

Take formal basis symbols e_{1}, e_{2} corresponding to σ_{1}, σ_{2} and let $S e_{1}+S e_{2}$ be the free S-module of rank two containing $C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$. Let

$$
F_{1}=\Lambda\left(\sigma_{1}\right) e_{1}, \quad F_{2}=\Lambda\left(\sigma_{2}\right) e_{2}, \quad F_{\tau}=\Lambda(\operatorname{st}(\tau))\left(e_{1}+e_{2}\right)
$$

and define $M(\tau)$ to be the submodule of $C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$ generated by F_{1}, F_{2}, and F_{τ}. Set $L_{\tau}=l_{\tau}^{\alpha(\tau)+1}, L_{1}=\Lambda\left(\sigma_{1}\right) / L_{\tau}$, and $L_{2}=\Lambda\left(\sigma_{2}\right) / L_{\tau}$. If $\Lambda(\operatorname{st}(\tau)) \neq 1$ (in other words, if $\alpha\left(\tau^{\prime}\right) \neq-1$ for all $\left.\tau^{\prime} \in \partial \operatorname{st}(\tau)\right)$, then there is a single nontrivial syzygy among F_{1}, F_{2}, F_{τ} given by $L_{\tau} F_{\tau}=L_{2} F_{1}+L_{1} F_{2}$. So $M(\tau)$ has minimal free resolution

$$
0 \longrightarrow S(-\lambda(\operatorname{st}(\tau))-\alpha(\tau)-1) \longrightarrow
$$

It follows immediately from Definition 3.2 that, if $\Lambda(\operatorname{st}(\tau)) \neq 1$, then $\operatorname{reg}(M(\tau))=$ $\lambda(\operatorname{st}(\tau))+\alpha(\tau)$. If $\Lambda(\operatorname{st}(\tau))=1$, then $M(\tau)$ is free, generated by F_{τ} and either F_{1} or F_{2}, so it follows from Remark 3.3 that $\operatorname{reg}(M(\tau))=\operatorname{deg}\left(F_{1}\right)=\operatorname{deg}\left(F_{2}\right)=\alpha(\tau)+1$. In fact, it is clear in this case that $M(\tau)=C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$.
Proposition 6.1. Let $\mathcal{P} \subset \mathbb{R}^{3}$ be a polytopal cell and $\tau \in \mathcal{P}_{2}^{\circ}$ a face of \mathcal{P}. Define $\lambda(\tau)=\lambda(\operatorname{st}(\tau))+\alpha(\tau)+1=\sum_{\gamma \in(\operatorname{st}(\tau))_{2}}(\alpha(\gamma)+1)$. Then $\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right) \leq \lambda(\tau)-1$ unless $\alpha(\gamma)=-1$ for all $\gamma \neq \tau \in \partial \operatorname{st}(\tau)$, when $\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right)=\alpha(\tau)+1$.
Proof. The remarks directly preceding Proposition 6.1 establish that $\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right)$ $=\alpha(\tau)+1$ if $\alpha(\gamma)=-1$ for all $\gamma \neq \tau \in \partial \operatorname{st}(\tau)$, so assume $\alpha(\gamma) \geq 0$ for at least one $\gamma \neq \tau \in \partial \operatorname{st}(\tau)$. We use the approximation $M(\tau)$ introduced above and Proposition A. 7 We have already seen that $\operatorname{reg}(M(\tau))=\lambda(\tau)-1$. By Proposition A.7, it suffices to show that $\operatorname{codim}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P}) / M(\tau)\right) \geq 2$. As in the proof of Proposition 4.5, we accomplish this by showing equality of localizations $\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right)_{P}=M(\tau)_{P}$ for every prime P of codimension at most one.

If $\operatorname{codim}(P)=0$, then P is the zero ideal. Just as in the proof of Proposition4.5, $C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})_{P} \cong C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P}) \otimes_{S} \mathbb{Q}(S) \cong \mathbb{Q}(S)^{2} \cong M(\tau) \otimes_{S} \mathbb{Q}(S)=M(\tau)_{P}$.

Now suppose $\operatorname{codim}(P)=1$. Primes of S with codimension one are principle, generated by a single irreducible polynomial. If $P \neq\left\langle l_{\gamma}\right\rangle$ for any $\gamma \in(\operatorname{st}(\tau))_{2}$, then

$$
\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right)_{P}=M(\tau)_{P}=S_{P}^{2}
$$

If $P=\left\langle l_{\gamma}\right\rangle$ for some $\gamma \neq \tau \in(\operatorname{st}(\tau))_{2}$, then

$$
\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right)_{P}=M(\tau)_{P} \cong \begin{cases}l_{\gamma}^{\alpha(\gamma)+1} S_{P} \oplus S_{P} & \begin{array}{l}
\text { aff }(\gamma) \text { meets a face of } \\
\\
l_{\gamma}^{\alpha(\gamma)+1} S_{P} \oplus l_{\gamma}^{\alpha(\gamma)+1} S_{P} \\
l_{\gamma} \\
\\
\\
\text { aff one of }(\gamma) \text { meets a face of } \sigma_{2} \\
\text { both } \sigma_{1} \text { and } \sigma_{2}
\end{array}\end{cases}
$$

If $P=\left\langle l_{\tau}\right\rangle$, then $\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right)_{P}=M(\tau)_{P}=\left(C^{\alpha(\tau)}(\operatorname{st}(\tau))\right)_{P}$, where $C^{\alpha(\tau)}(\operatorname{st}(\tau))$ is the module of splines on st (τ) with $\alpha\left(\tau^{\prime}\right)=-1$ for every $\tau^{\prime} \in \partial \operatorname{st}(\tau)$.

It follows that $\operatorname{codim}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P}) / M(\tau)\right) \geq 2$. By Lemma 4.6, $\operatorname{pd}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right) \leq 1$, so $\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})\right) \leq \operatorname{reg}(M(\tau))=\lambda(\tau)-1$ by Proposition A. 7

Theorem 6.2. Let $\mathcal{P} \subset \mathbb{R}^{3}$ be a polytopal cell and set $e(\mathcal{P})=\max \left\{\lambda(\tau) \mid \tau \in \mathcal{P}_{2}^{\circ}\right\}$, where $\lambda(\tau)$ is as in Proposition 6.1. Then:
(1) $\operatorname{reg}\left(C^{\alpha}(\mathcal{P})\right) \leq e(\mathcal{P})-1$,
(2) $\wp\left(C^{\alpha}(\mathcal{P})\right) \leq e(\mathcal{P})-3$.

In particular, $H P\left(C^{\alpha}(\mathcal{P}), d\right)=\operatorname{dim}_{\mathbb{R}} C_{d}^{r}(\mathcal{P})$ for $d \geq e(\mathcal{P})-2$.
Proof. (1) follows by applying Theorem 5.5 to Proposition 6.1 (notice $\lambda(\tau) \geq \lambda(\sigma)$ whenever $\tau \subset \sigma$). (2) follows from (1) by Lemma 4.6.

Remark 6.3. General formulas for the polynomial $\operatorname{HP}\left(C^{\alpha}(\mathcal{P}), d\right)$ appearing in Theorem 6.2 may be found in [20] (uniform smoothness) and [10] (mixed smoothness). For Example 1.1 and Example 8.3 we give the polynomial $H P\left(C^{\alpha}(\mathcal{P}), d\right)$ explicitly.

Example 1.1 indicates that the bound given in Theorem 6.2 can be far from optimal. In the next section we bound $\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)\right)$ more precisely for $\Delta \subset \mathbb{R}^{3}$ a simplicial cell with uniform smoothness.

7. Regularity of splines on simplicial cells with uniform smoothness

In this section we derive our main result on the regularity of the spline module $C^{\alpha}(\Delta)$, where Δ is a simplicial cell with uniform smoothness r. That is, $\alpha(\tau)=r$ for every interior face $\tau \in \Delta_{2}^{\circ}$, and $\alpha(\tau)=-1$ or $\alpha(\tau)=r$ for every boundary face $\tau \in \partial \Delta$. This is slightly more general than the module $C^{r}(\Delta)$ since we allow vanishing of order r to be imposed along boundary faces. By Theorem 5.5, we may achieve a regularity bound on $C^{\alpha}(\Delta)$ by bounding the regularity of splines $C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)$ vanishing outside the union of two tetrahedra meeting along the face τ. Our main result in this section is the following.

Theorem 7.1. Let $\tau \in \Delta_{2}^{\circ}$ be a face of the simplicial cell Δ, and let α be a set of smoothness parameters on Δ_{2} so that $\alpha(\tau)=r$ for every $\tau \in \Delta_{2}^{\circ}$ and $\alpha(\tau)=-1$ or $\alpha(\tau)=r$ for every $\tau \in \partial \Delta$. Then $\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)\right) \leq 3 r+3$.

Before proving Theorem 7.1 we derive the main result.
Theorem 7.2. Let $\Delta \subset \mathbb{R}^{3}$ be a simplicial cell and let α be a set of smoothness parameters on Δ_{2} so that $\alpha(\tau)=r$ for every $\tau \in \Delta_{2}^{\circ}$ and $\alpha(\tau)=-1$ or $\alpha(\tau)=r$ for every $\tau \in \partial \Delta$. Then:
(1) $\operatorname{reg}\left(C^{\alpha}(\Delta)\right) \leq 3 r+3$,
(2) $\wp\left(C^{\alpha}(\Delta)\right) \leq 3 r+1$.

In particular, $H P\left(C^{\alpha}(\Delta), d\right)=\operatorname{dim}_{\mathbb{R}} C^{r}(\Delta)_{d}$ for $d \geq 3 r+2$.
Proof. (1) follows by applying Theorem 5.5 to Theorem 7.1 (notice that $\lambda(\sigma) \leq$ $3 r+3$). (2) follows by applying Theorem 3.4 to (1).

Corollary 7.3. Let $\Delta \in \mathbb{R}^{2}$ be a triangulation and let α be smoothness parameters so that $\alpha(\tau)=r$ for every interior edge τ and $\alpha(\tau)=r$ or $\alpha(\tau)=-1$ for every boundary edge τ (in particular, this includes the case where vanishing of order r is imposed along the entire boundary). Then $\operatorname{dim} C_{d}^{\alpha}(\Delta)=H P\left(C^{\alpha}(\widehat{\Delta}), d\right)$ for $d \geq 3 r+2$.

In particular, if no vanishing is imposed along the boundary, then the AlfeldSchumaker formula for $\operatorname{dim} C_{d}^{r}(\Delta)$ holds for $d \geq 3 r+2$. That is, for $d \geq 3 r+2$,

$$
\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{\circ}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{\circ}+\sigma
$$

where

$$
\sigma=\sum_{v \in \Delta_{\circ}^{\circ}} \sigma_{v} \quad \sigma_{v}=\sum_{j=1}^{r}(r+j+1-j n(v))_{+},
$$

$n(v)$ is the number of distinct slopes at the interior vertex v, and

$$
(r+j+1-j n(v))_{+}=\max \{r+j+1-j n(v), 0\} .
$$

Proof. Applying Theorem 7.2 to the simplicial cell $\widehat{\Delta}$ yields $\wp\left(C^{\alpha}(\widehat{\Delta})\right) \leq 3 r+1$, so $\operatorname{dim} C_{d}^{\alpha}(\Delta)=\operatorname{dim} C^{\alpha}(\widehat{\Delta})_{d}=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq 3 r+2$, where the first equality follows from Lemma 2.2. This finishes the proof of the first statement. In the second statement, the expression for $\operatorname{dim} C_{d}^{r}(\Delta)$ is the well-known Schumaker lower bound [29], which was shown to be equal to $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$ by Schenck [26].

Remark 7.4. The second statement in Corollary 7.3, that $\operatorname{dim} C_{d}^{r}(\Delta)$ agrees with Schumaker's lower bound for $d \geq 3 r+2$, was obtained by Hong [17] and Ibrahim and Schumaker [18] (see Table 1 in the introduction). If the triangulation Δ is in addition nondegenerate, then Alfeld and Schumaker proved in [3] that dim $C_{d}^{r}(\Delta)$ agrees with Schumaker's lower bound for $d \geq 3 r+1$. An expression for $H P\left(C^{\alpha}(\widehat{\Delta}), d\right)$ where vanishing of order r is imposed along the entire boundary of a planar triangulation Δ (relevant to the first statement of Corollary 7.3) may be found in [19.

The proof we give of Theorem 7.1 is more delicate than the proof of Proposition 6.1, so we break it up over a sequence of several lemmas proving special cases or equivalent formulations. We attempt to introduce all tools from commutative algebra in a self-contained manner.

First we set up the notation for the proof of Theorem 7.1 Figure 8 depicts our situation. We will abuse notation and write v_{i} both for the corresponding edge of $\operatorname{st}(\tau)$ and for the vector we obtain by taking positive real multiples of this edge.

Figure 8. A typical configuration for $\operatorname{st}(\tau)$

Let $u_{1}, u_{2} \in S$ be the forms vanishing on the affine spans of e_{13}, e_{23}, let w_{1}, w_{2} be the forms vanishing on the affine spans of e_{14}, e_{24}, and l_{τ} be the form vanishing on the affine span of τ (for now do this without coordinates). Denote by σ_{1} the tetrahedron with faces defined by u_{1}, u_{2}, l_{τ} and by σ_{2} the tetrahedron with faces defined by w_{1}, w_{2}, l_{τ}. Let $\alpha_{1}=\alpha\left(e_{13}\right)+1, \alpha_{2}=\alpha\left(e_{23}\right)+1, \beta_{1}=\alpha\left(e_{14}\right)+1, \beta_{2}=\alpha\left(e_{24}\right)+1$ be the exponents to appear on $u_{1}, u_{2}, w_{1}, w_{2}$ corresponding to the smoothness parameters specified by α. By our assumption of uniform smoothness, $\alpha_{1}, \alpha_{2}, \beta_{1}$, and β_{2} can only take on the values 0 and $r+1$. Since the face τ is interior, $\alpha(\tau)=r$. We first take care of a special case of Theorem 7.1] which follows immediately from Proposition 6.1.

Lemma 7.5. Suppose that at most two of $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ do not vanish. Then $\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)\right) \leq 3 r+3$.

Now assume that three or more of $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ do not vanish. Without loss of generality, we will assume that $\alpha_{2}=\beta_{1}=\beta_{2}=r+1$, and α_{1} is either 0 or $r+1$. Our next step is to identify $C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)$ as the module of syzygies of a row vector with entries in S. Let $N(\tau)$ be the row vector

$$
N(\tau)=\left[\begin{array}{lll}
l_{\tau}^{r+1} & u_{1}^{\alpha_{1}} u_{2}^{r+1} & w_{1}^{r+1} w_{2}^{r+1}
\end{array}\right] .
$$

Using the convention introduced in Section 3 we take formal basis elements s_{τ} of degree $r+1, s_{1}$ of degree $\alpha_{1}+r+1$, and s_{2} of degree $2(r+1)$ corresponding to the entries of $N(\tau)$ reading from left to right. By definition, a syzygy of $N(\tau)$ is a formal sum $G_{\tau} s_{\tau}+G_{1} s_{1}+G_{2} s_{2} \in S^{3}$ satisfying

$$
G_{\tau} l_{\tau}^{r+1}+G_{1} u_{1}^{\alpha_{1}} u_{2}^{r+1}+G_{2} w_{1}^{r+1} w_{2}^{r+1}=0
$$

Take formal basis elements e_{1}, e_{2} (both of degree zero) corresponding to the tetrahedra σ_{1}, σ_{2} and let $S e_{1}+S e_{2}$ be the free S-module of rank two containing $C_{\mathrm{st}(\tau)}^{\alpha}(\mathcal{P})$. Consider the S-module map $\pi: S s_{\tau}+S s_{1}+S s_{2} \rightarrow S e_{1}+S e_{2}$ defined by $\pi\left(G_{\tau} s_{\tau}+G_{1} s_{1}+G_{2} s_{2}\right)=G_{1} u_{1}^{r+1} u_{2}^{r+1} e_{1}-G_{2} w_{1}^{r+1} w_{2}^{\beta_{2}} e_{2}$. Notice that the image of $\operatorname{syz}(N(\tau))$ under π is contained in $C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)$. To see this let $F_{1}=G_{1} u_{1}^{\alpha_{1}} u_{2}^{r+1}$ and $F_{2}=-G_{2} w_{1}^{r+1} w_{2}^{r+1}$ and observe that the three spline conditions

$$
u_{1}^{\alpha_{1}} u_{2}^{r+1}\left|F_{1}, w_{1}^{r+1} w_{2}^{r+1}\right| F_{2}, \text { and } l_{\tau}^{r+1} \mid F_{1}-F_{2}
$$

are satisfied. It is straightforward to check that the map π above restricted to $\operatorname{syz}(N(\tau))$ yields an isomorphism of $\operatorname{syz}(N(\tau))$ and $C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)$ as S-modules. Moreover, the grading assigned to the formal symbols $s_{\tau}, s_{1}, s_{2}, e_{1}, e_{2}$ guarantee that this map is a graded map. We have proved the following lemma.
Lemma 7.6. The modules $C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)$ and $\operatorname{syz}(N(\tau))$ are isomorphic as graded S modules.

Denote by $K(\tau)$ the ideal in S generated by the entries of $N(\tau)$. Recall from Section 3 that $K(\tau)$ is minimally generated by the entries of $N(\tau)$ if none of the entries of $N(\tau)$ can be written as an S-linear combination of the remaining entries.
Lemma 7.7. Suppose $K(\tau)$ is not minimally generated by the entries of $N(\tau)$. Then $\operatorname{reg}(\operatorname{syz}(N(\tau))) \leq 3(r+1)$. In particular, $\operatorname{reg}\left(C_{\operatorname{st}(\tau)}^{\alpha}(\Delta)\right) \leq 3(r+1)$.

Proof. By degree considerations we may assume that $w_{1}^{r+1} w_{2}^{r+1}$ can be written as a polynomial combination of l_{τ}^{r+1} and $u_{1}^{\alpha_{1}} u_{2}^{r+1}$. In other words, there is the equation

$$
f_{\tau} l_{\tau}^{r+1}+f_{1} u_{1}^{\alpha_{1}} u_{2}^{r+1}=w_{1}^{r+1} w_{2}^{r+1}
$$

Clearly this yields the syzygy $F=l_{\tau}^{r+1} s_{\tau}+f_{1} s_{1}-s_{2} \in \operatorname{syz}(N(\tau))$ of degree $2(r+1)$. In this case the only other syzygy of interest is

$$
G=u_{1}^{\alpha_{1}} u_{2}^{r+1} s_{\tau}-l_{\tau}^{r+1} s_{1}
$$

of degree $2(r+1)+\alpha_{1} \leq 3(r+1)$. It is not difficult to check that the two syzygies F and G generate $\operatorname{syz}(N(\tau))$ as an S-module. There are clearly no relations among F, G, so $\operatorname{syz}(N(\tau))$ is free as an S-module, generated in degrees $2(r+1)$ and $2(r+1)+\alpha_{1}$. Now the result follows at once from Remark 3.3 and Lemma 7.6

From Lemma 7.7 we may now assume that $K(\tau)$ is minimally generated by the entries of $N(\tau)$ and so can identify $\operatorname{syz}(N(\tau))$ with $\operatorname{syz}(K(\tau))$. In the remainder of the cases we will fit the ideal $K(\tau)$ into exact sequences and make use of Proposition A.3. The first exact sequence we use is

$$
\begin{equation*}
0 \rightarrow \operatorname{syz}(K(\tau)) \rightarrow S s_{\tau}+S s_{1}+S s_{2} \xrightarrow{\phi} S \rightarrow S / K(\tau) \rightarrow 0 \tag{3}
\end{equation*}
$$

where $\phi\left(G_{\tau} s_{\tau}+G_{1} s_{1}+G_{2} s_{2}\right)=G_{\tau} \tau_{\tau}^{r+1}+G_{1} u_{1}^{\alpha_{1}} u_{2}^{r+1}+G_{2} w_{1}^{r+1} w_{2}^{r+1}$. Clearly $\operatorname{im}(\phi)=K(\tau)$, so the above sequence is exact. Recalling the convention from Section 3 we will write $S s_{\tau}+S s_{1}+S s_{2}$ as $S(-(r+1)) \oplus S\left(-\alpha_{1}-r-1\right) \oplus S(-2(r+1))$ to encode the degrees of s_{τ}, s_{1}, s_{2}. The exact sequence (3), coupled with Lemma A.4 and Lemma 7.6, yields the following lemma.
Lemma 7.8. If $K(\tau)$ is minimally generated by the entries of $N(\tau)$, then

$$
\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)\right)=\operatorname{reg}(\operatorname{syz}(K(\tau))) \leq \max \{2 r+2, \operatorname{reg}(S / K(\tau))+2\}
$$

Hence to prove Theorem 7.1 it suffices to show that $\operatorname{reg}(S / K(\tau)) \leq 3 r+1$.
To handle the remainder of the cases, we introduce the multiplication sequence from graded commutative algebra. Recall that if $Q \subset S$ is an ideal and $f \in S$ is a polynomial, then the colon ideal of Q with f is the ideal $Q: f=\{g \in S \mid g f \in I\}$. For any Q, f we always have the graded short exact multiplication sequence

$$
0 \rightarrow \frac{S(-\operatorname{deg}(f))}{Q: f} \xrightarrow{\cdot f} \frac{S}{Q} \rightarrow \frac{S}{Q+\langle f\rangle} \rightarrow 0 .
$$

We use this as follows. Let $Q=\left\langle l_{\tau}^{r+1}, u_{1}^{\alpha_{1}} u_{2}^{r+1}\right\rangle$ and $f=w_{1}^{r+1} w_{2}^{r+1}$. We then have the multiplication sequence

$$
\begin{equation*}
0 \rightarrow \frac{S(-2(r+1))}{Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)} \xrightarrow{w_{1}^{r+1} w_{2}^{r+1}} \frac{S}{Q} \rightarrow \frac{S}{K(\tau)} \rightarrow 0 \tag{4}
\end{equation*}
$$

Lemma 7.9. With Q and $K(\tau)$ as above, the regularity of $S / K(\tau)$ satisfies

$$
\operatorname{reg}\left(\frac{S}{K(\tau)}\right) \leq \max \left\{\operatorname{reg}\left(\frac{S}{Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)}\right)+2 r+1,3 r\right\}
$$

Hence, to prove Theorem 7.1 it suffices to prove that

$$
\operatorname{reg}\left(\frac{S}{Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)}\right) \leq r
$$

Proof. From the multiplication sequence (4) and Proposition A. 3 we conclude that

$$
\operatorname{reg}\left(\frac{S}{K(\tau)}\right) \leq \max \left\{\operatorname{reg}\left(\frac{S(-2(r+1))}{Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)}\right)-1, \operatorname{reg}\left(\frac{S}{Q}\right)\right\}
$$

Since the two generators of Q are relatively prime, they form a regular sequence (see Appendix (A) with degrees $r+1$ and $r+1+\alpha_{1}$. Hence by Proposition A.5, $\operatorname{reg}(S / Q)=2 r+2+\alpha_{2}-3 \leq 3 r$. Now the first result follows since $S(-2(r+1))$ represents a free S-module of rank one generated in degree $2(r+1)$, so

$$
\operatorname{reg}\left(\frac{S(-2(r+1))}{Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)}\right)=\operatorname{reg}\left(\frac{S}{Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)}\right)+2(r+1) .
$$

The final statement now follows from Lemma 7.8 .
Next we analyze the ideal $Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)$. The ideal Q can be written as $Q=\left\langle l_{\tau}^{r+1}, u_{1}^{\alpha_{1}}\right\rangle \cap\left\langle l_{\tau}^{r+1}, u_{2}^{r+1}\right\rangle$. Write $J_{1}=\left\langle l_{\tau}^{r+1}, u_{1}^{\alpha_{1}}\right\rangle$ and $J_{2}=\left\langle l_{\tau}^{r+1}, u_{2}^{r+1}\right\rangle$. Since colons split over intersections (symbolically, $\left(J_{1} \cap J_{2}\right): f=J_{1}: f \cap J_{2}: f$), we have $Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)=I_{1} \cap I_{2}$, where $I_{1}=J_{1}:\left(w_{1}^{r+1} w_{2}^{r+1}\right)$ and $I_{2}=J_{2}:\left(w_{1}^{r+1} w_{2}^{r+1}\right)$.

Now the polynomials $l_{\tau}^{r+1}, u_{1}^{\alpha_{1}}, w_{2}^{r+1}$ form a regular sequence. In particular, any polynomial f which multiplies w_{2}^{r+1} into the ideal J_{1} must already be in J_{1}. So $I_{1}=J_{1}:\left(w_{1}^{r+1} w_{2}^{r+1}\right)=J_{1}: w_{1}^{r+1}$. Likewise, $I_{2}=J_{2}:\left(w_{1}^{r+1} w_{2}^{r+1}\right)=J_{2}: w_{2}^{r+1}$. We prove one last special case of Theorem 7.1]before moving on to the general case. We make use of the following result of Schenck and Stillman [26] (they state the result for an arbitrary number of powers of linear forms).

Proposition 7.10 ([26, Corollary 3.4]). Suppose l_{1}, l_{2}, and l_{3} are distinct linear forms in $S=\mathbb{R}[x, y, z]$ all of which vanish along a common line (equivalently, up to a change of variables, $l_{1}, l_{2}, l_{3} \in \mathbb{R}[x, y]$). For a positive integer r put $J=$ $\left\langle l_{1}^{r+1}, l_{2}^{r+1}, l_{3}^{r+1}\right\rangle$. Then $\operatorname{reg}(S / J)=r+\left\lceil\frac{r+1}{2}\right\rceil-1$.

Lemma 7.11. Suppose that $K(\tau)$ is minimally generated by the entries of $N(\tau)$ and
(1) $\alpha_{1}=0$ or
(2) $\alpha_{1} \neq 0$ and $u_{1}=w_{1}$ or $u_{2}=w_{2}$.

Then $\operatorname{reg}\left(C_{\mathrm{st}(\tau)}^{\alpha}(\Delta)\right) \leq 3(r+1)$.

Proof. By Lemma [7.9, it suffices to prove that $\operatorname{reg}\left(\frac{S}{Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)}\right) \leq r$. From the above discussion we know that $Q=I_{1} \cap I_{2}$, where

$$
I_{1}=J_{1}: w_{1}^{r+1}=\left\langle l_{\tau}^{r+1}, u_{1}^{\alpha_{1}}\right\rangle: w_{1}^{r+1}
$$

and

$$
I_{2}=J_{2}: w_{2}^{r+1}=\left\langle l_{\tau}^{r+1}, u_{2}^{r+1}\right\rangle: w_{2}^{r+1} .
$$

If $\alpha_{1}=0$, then $J_{1}=I_{1}=S$, hence $Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)=I_{2}$. If $\alpha_{1} \neq 0$ and $u_{1}=w_{1}$, then $I_{1}=S$ and $Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)=I_{2}$. Likewise if $\alpha_{1} \neq 0$ and $u_{2}=w_{2}$, then $Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)=I_{1}$. Since it makes no difference to the analysis, we assume that $Q:\left(w_{1}^{r+1} w_{2}^{r+1}\right)=I_{2}$. Hence it suffices to prove that $\operatorname{reg}\left(S / I_{2}\right) \leq r$. We use the multiplication sequence

$$
0 \rightarrow \frac{S(-r-1)}{\left\langle l_{\tau}^{r+1}, u_{2}^{r+1}\right\rangle: w_{2}^{r+1}} \xrightarrow{\cdot w_{2}^{r+1}} \frac{S}{\left\langle l_{\tau}^{r+1}, u_{2}^{r+1}\right\rangle} \rightarrow \frac{S}{\left\langle l_{\tau}^{r+1}, u_{2}^{r+1}, w_{2}^{r+1}\right\rangle} \rightarrow 0 .
$$

The ideal $\left\langle l_{\tau}^{r+1}, u_{2}^{r+1}\right\rangle$ is generated by a regular sequence with both generators in degree $r+1$, hence by Proposition A. $5 \operatorname{reg}\left(S /\left\langle l_{\tau}^{r+1}, u_{2}^{r+1}\right\rangle\right)=2 r$.

Notice that l_{τ}, u_{2}, and w_{2} all vanish along a common line, the span of the vector v_{2} in Figure 8, Hence by Proposition 7.10,

$$
\operatorname{reg}\left(\frac{S}{\left\langle l_{\tau}^{r+1}, u_{2}^{r+1}, w_{2}^{r+1}\right\rangle}\right)=r+\left\lceil\frac{r+1}{2}\right\rceil-1 \leq 2 r-1 .
$$

By Proposition A.3, reg $\left(S(-r-1) / I_{2}\right) \leq 2 r$, hence $\operatorname{reg}\left(S / I_{2}\right) \leq r-1$, completing the proof.
7.1. The general case. Due to Lemma 7.11 we may assume that $\alpha_{1}=r+1$, so $\alpha_{1}=\alpha_{2}=\beta_{1}=\beta_{2}=\alpha(\tau)=r$. Furthermore, referring to Figure 8, we may by Lemma 7.11 assume that each of the two sets of vectors $\left\{v_{1}, v_{3}, v_{4}\right\}$ and $\left\{v_{2}, v_{3}, v_{4}\right\}$ are linearly independent.

It follows that we may make a change of coordinates so that v_{1} points along the y-axis, v_{2} points along the x-axis, and v_{3} points along the z-axis. Applying appropriate scaling in the x, y, and positive z directions, we can assume that the vector defined by v_{4} points in the direction of $\langle 1,1,-1\rangle$. Under this change of coordinates, $\operatorname{st}(\tau)$ has four possible configurations, shown in Figure 9. The ideal $K(\tau)$ is the same for all of these. We have

$$
\begin{aligned}
l_{\tau} & =z \\
u_{1} & =x, \\
u_{2} & =y, \\
w_{1} & =x+z, \\
w_{2} & =y+z,
\end{aligned}
$$

Since linear changes of coordinate yield a graded isomorphism on S, the ideals I_{1} and I_{2} for any general configuration will be isomorphic to the above ideals.

We also make one further simplification using Proposition A. 3 and the short exact sequence

$$
\begin{equation*}
0 \rightarrow \frac{S}{I_{1} \cap I_{2}} \xrightarrow{q} \frac{S}{I_{1}} \oplus \frac{S}{I_{2}} \xrightarrow{\phi} \frac{S}{I_{1}+I_{2}} \rightarrow 0 \tag{5}
\end{equation*}
$$

where $q: S /\left(I_{1} \cap I_{2}\right) \rightarrow S / I_{1} \oplus S / I_{2}$ is the difference $q_{1}-q_{2}$ of the two quotient maps $q_{1}: S /\left(I_{1} \cap I_{2}\right) \rightarrow S / I_{1}$ and $q_{2}: S /\left(I_{1} \cap I_{2}\right) \rightarrow S / I_{2}$, and ϕ is the sum of the two quotient maps $\phi_{1}: S / I_{1} \rightarrow S /\left(I_{1}+I_{2}\right)$ and $\phi_{2}: S / I_{2} \rightarrow S /\left(I_{1}+I_{2}\right)$.

Figure 9. Possible configurations for $\operatorname{st}(\tau)$ in the proof of Theorem 7.2
Lemma 7.12. Let

$$
\begin{aligned}
& I_{1}=\left\langle x^{r+1}, z^{r+1}\right\rangle:(x+z)^{r+1} \\
& I_{2}=\left\langle y^{r+1}, z^{r+1}\right\rangle:(y+z)^{r+1}
\end{aligned}
$$

To complete the proof of Theorem 7.1 it suffices to prove that $\operatorname{reg}\left(S /\left(I_{1} \cap I_{2}\right)\right) \leq r$. Equivalently, it suffices to show that $\operatorname{reg}\left(S /\left(I_{1}+I_{2}\right)\right) \leq r-1$, or $S_{r}=\left(I_{1}+I_{2}\right)_{r}$.
Proof. The only thing left to prove are the two reformulations given in terms of $\left(I_{1}+I_{2}\right)$. It follows from the proof of Lemma 7.11 that $\operatorname{reg}\left(S / I_{1}\right) \leq r-1$ and $\operatorname{reg}\left(S / I_{2}\right) \leq r-1$. Hence $\operatorname{reg}\left(S / I_{1} \oplus S / I_{2}\right)=\max \left\{\operatorname{reg}\left(S / I_{1}\right), \operatorname{reg}\left(S / I_{2}\right)\right\} \leq r-$ 1. Now the exact sequence (5) and Proposition A. 3 together yield the equivalent formulation $\operatorname{reg}\left(S /\left(I_{1}+I_{2}\right)\right) \leq r-1$. The module $S /\left(I_{1}+I_{2}\right)$ is a module of finite length. This means that in large degree $d,\left(S /\left(I_{1}+I_{2}\right)\right)_{d}=0$. By Corollary A.2 $\operatorname{reg}\left(S /\left(I_{1}+I_{2}\right)\right)$ is the largest degree d for which $\left(S /\left(I_{1}+I_{2}\right)\right)_{d} \neq 0$. Hence if $S_{r}=\left(I_{1}+I_{2}\right)_{r}$, then $\operatorname{reg}\left(S /\left(I_{1}+I_{2}\right)\right) \leq r-1$.

Given Lemma 7.12, our goal will be to prove that every monomial $x^{a} y^{b} z^{c}$ in S of degree $a+b+c=r$ is contained in the ideal $I_{1}+I_{2}$. A main tool we use in this endeavor is the initial ideal with respect to the standard graded lexicographic order $<_{\text {glex }}$ on monomials (see [11, Chapter 15]). Recall that $x^{a_{1}} y^{b_{1}} z^{c_{1}}<_{\text {glex }} x^{a_{2}} y^{b_{2}} z^{c_{2}}$ if $\left(a_{1}+b_{1}+c_{1}\right)<\left(a_{2}+b_{2}+c_{2}\right)$ or $a_{1}+b_{1}+c_{1}=a_{2}+b_{2}+c_{2}$ and the leftmost nonzero entry of ($a_{2}-a_{1}, b_{2}-b_{1}, c_{2}-c_{1}$) is positive. We can pick out the initial term $\operatorname{in}_{<_{\text {glex }}}(f)$ (henceforth $\operatorname{in}(f)$) of a polynomial $f \in S$ by taking the term whose underlying monomial is largest under $<_{\text {glex }}$. For instance, if $f=3 x^{2} y+y^{3}$, then $\operatorname{in}(f)=3 x^{2} y$. Likewise, if I is an ideal, then $\operatorname{in}(I)$ is the monomial ideal generated by $\{\operatorname{in}(f) \mid f \in I\}$. The choice of lexicographic ordering gives a preferred basis of forms of degree d, and the point is that linear independence of this basis can be determined just from the leading terms, which are the monomials of degree d
in in (I). In particular, initial ideals preserve the Hilbert function of I, namely $\operatorname{dim} I_{d}=\operatorname{dimin}(I)_{d}$ [11, Theorem 15.26].

Lemma 7.13. To prove that $S_{r}=\left(I_{1}+I_{2}\right)_{r}$, it suffices to prove that $\operatorname{in}\left(I_{1}+I_{2}\right)_{r}=$ S_{r} or $\left(\operatorname{in}\left(I_{1}\right)+\operatorname{in}\left(I_{2}\right)\right)_{r}=S_{r}$.

Proof. If in $\left(I_{1}+I_{2}\right)_{r}=S_{r}$, then $\operatorname{dim}\left(I_{1}+I_{2}\right)_{r}=\operatorname{dimin}\left(I_{1}+I_{2}\right)_{r}=\operatorname{dim} S_{r}$. But this can only happen if $\left(I_{1}+I_{2}\right)_{r}=S_{r}$. Furthermore in $\left(I_{1}\right)+\operatorname{in}\left(I_{2}\right) \subset \operatorname{in}\left(I_{1}+I_{2}\right)$, so the final statement is clear.

With Lemma 7.13 as motivation, we study the initial ideals $\operatorname{in}\left(I_{1}\right)$ and $\operatorname{in}\left(I_{2}\right)$. Since I_{1} and I_{2} are the same ideal when x and y are interchanged, we simplify by working in the polynomial ring $R=\mathbb{R}[s, t]$ and studying the initial ideal of $I=I(r)=\left\langle s^{r+1}, t^{r+1}\right\rangle:(s+t)^{r+1}$. At the heart of our analysis is a matrix condition on the coefficients of a form f of degree d which distinguishes when $f \in I(r)_{d}$. This approach is due to Tohaneanu and Minac, who study an ideal very similar to ours in [22]. A small example illustrates how the matrix is constructed.

Example 7.14. Consider the case $r=4$. We determine what conditions must be placed on the coefficients of a general form $f=a_{20} s^{2}+a_{11} s t+a_{02} t^{2}$ of degree two to satisfy $f \in I(4)=\left\langle s^{5}, t^{5}\right\rangle:(s+t)^{5}$. Since the ideal $\left\langle s^{5}, t^{5}\right\rangle$ is a monomial ideal, $f(s+t)^{5} \in\left\langle s^{5}, t^{5}\right\rangle \Longleftrightarrow$ every monomial of $f(s+t)^{5}$ is divisible by either s^{5} or t^{5}. Expanding,

$$
\begin{aligned}
f(s+t)^{5}= & s^{7} a_{20}+s^{6} t\left(a_{11}+5 a_{20}\right)+s^{5} t^{2}\left(a_{02}+5 a_{11}+10 a_{20}\right) \\
& +s^{4} t^{3}\left(5 a_{02}+10 a_{11}+10 a_{20}\right)+s^{3} t^{4}\left(10 a_{02}+10 a_{11}+5 a_{20}\right) \\
& +s^{2} t^{5}\left(10 a_{02}+5 a_{11}+a_{20}\right)+s t^{6}\left(5 a_{02}+a_{11}\right)+t^{7} a_{02}
\end{aligned}
$$

is in $\left\langle s^{5}, t^{5}\right\rangle$ if and only if the coefficients in the middle row vanish, i.e.,

$$
\left(\begin{array}{ccc}
5 & 10 & 10 \\
10 & 10 & 5
\end{array}\right)\left(\begin{array}{l}
a_{02} \\
a_{11} \\
a_{20}
\end{array}\right)=0
$$

Now suppose $f=\sum_{i+j=d} a_{i, j} s^{i} t^{j} \in R_{d}$. Then, generalizing Example 7.14, we find that $f \in I(r)_{d}$ if and only if
where we use the convention that $\binom{A}{B}=0$ when $B<0$ or $B>A$. Denote the $(r-d) \times(d+1)$ matrix on the left by $M(r, d)$. This matrix has entries

$$
M(r, d)_{i, j}=\binom{r+1}{d+1+i-j}
$$

where $i=0, \ldots, r-d-1$ and $j=0, \ldots, d$. With this choice of indexing, column c_{j} of $M(r, d)$ corresponds to the coefficient $a_{j, d-j}$.

Remark 7.15. Notice that if $f \in R_{d}$ and $d \geq r$, then $f \cdot(s+t)^{r+1}$ has degree $2 r+1$. It is clear that any polynomial of degree $2 r+1$ is in the ideal $\left\langle s^{r+1}, t^{r+1}\right\rangle$, so it makes sense that the matrix condition given by $M(r, d)$ is vacuous for $d \geq r$.

Tohaneanu and Minac [22, § 3.1] make the fundamental observation that matrices such as $M(r, d)$ appear in the representation theory of the special linear group. In particular, maximal minors of $M(r, d)$ tend to be invertible. We record this observation in the next lemma.

Lemma 7.16. Let $M=M(r, d)$ be the $(r-d) \times(d+1)$ matrix defined above and let \mathfrak{r} denote the rank of M. If $d<r$, then M has full rank and the first \mathfrak{r} columns of M are linearly independent.
Proof. Let $k=\min \{r-d-1, d\}$. Starting in the upper left-hand corner of $M(r, d)$, consider the square $(k+1) \times(k+1)$ submatrix N with entries

$$
N_{i, j}=M(r, d)_{i, j}=\binom{r+1}{d+1+i-j},
$$

$0 \leq i, j \leq k$. We are done if we show this matrix is invertible. Following Tohaneanu and Minac, we appeal to representation theory. Explicitly, let μ be the list with $k+1$ entries $(d+1, \ldots, d+1)$. This is a partition. The conjugate partition to μ is the list $\lambda=(k+1, \ldots, k+1)$ with $d+1$ entries. Then $\operatorname{det}(N)$ is the dimension of the Weyl module $\mathbb{S}_{\lambda} V$, which is a nontrivial irreducible representation of $S L(V)$, where V is an r-dimensional vector space. More explicitly, $\operatorname{det}(N)=s_{\lambda}(1, \ldots, 1)$, where $s_{\lambda}\left(x_{1}, \ldots, x_{r}\right)$ is the Schur polynomial in r variables of the conjugate partition λ of μ. Such evaluations are always positive integers. See [13, § 6.1] and Exercise A. 30 in [13, Appendix A.1] for more details.
Corollary 7.17. Let $I=I(r)$ as above and set $a=\lfloor(r+1) / 2\rfloor$. We have

$$
\operatorname{dim} I_{d}= \begin{cases}0 & 0 \leq d<a \\ 2 d+1-r & a \leq d<r \\ d+1 & d \geq r\end{cases}
$$

Proof. If $d \geq r$, it follows from Remark 7.15 that $\operatorname{dim} I_{d}=\operatorname{dim} R_{d}=d+1$. For a fixed degree $d<r$, let \mathfrak{r} be the rank of $M(r, d)$. By definition, $\operatorname{dim} I_{d}=$ $\operatorname{dim} \operatorname{ker} M(r, d)$, hence $\operatorname{dim} I_{d}=d+1-\mathfrak{r}$. Now the result follows from the fact that $M(r, d)$ has full rank $\mathfrak{r}=\min \{r+d, d+1\}$ by Lemma 7.16,
Lemma 7.18. The vector space $\operatorname{in}(I)_{d}$ consists of the $\operatorname{dim} I_{d}$ monomials of R with lexicographically largest degree.
Proof. Set $a=\lfloor(r+1) / 2\rfloor$. For fixed degree d with $a \leq d<r$, let \mathfrak{r} be the rank of $M(r, d)$. We saw in the proof of Corollary 7.17 that $\operatorname{dim} I_{d}=d+1-\mathfrak{r}$. By Lemma [7.16, the first \mathfrak{r} columns of M are linearly independent. It follows that for any column c_{l} of $M(r, d)$ with $\mathfrak{r} \leq l \leq d$, there is a unique (up to scaling) relation

$$
\left(\sum_{i=0}^{\mathfrak{r}-1} a_{i, d-i} c_{i}\right)+a_{l, d-l} c_{l}=0
$$

where $a_{l, d-l} \neq 0$. This gives rise to the polynomial $f=\sum_{i=0}^{\mathfrak{r}-1} a_{i, d-i} s^{i} t^{d-i}+$ $a_{l, d-l} s^{l} t^{d-l} \in I$ with leading monomial $s^{l} t^{d-l}$. These monomials are the largest $d+1-\mathfrak{r}$ monomials of degree d with respect to lex ordering, so the result follows.

Remark 7.19. Lemma 7.18 shows that $\operatorname{in}(I)$ is a so-called lex-segment ideal. Such ideals are of central importance to classifying Hilbert functions and providing extremal bounds on betti numbers. See [21, § 2.4] for more on these ideals.

By Lemma 7.13 and Lemma 7.12, the next proposition completes our proof of Theorem 7.1

Proposition 7.20. Let I_{1} and I_{2} be as in Lemma 7.12, Then $\left(I_{1}+I_{2}\right)_{r}=S_{r}$.
Proof. By Lemma 7.13, it suffices to show that $\left(\operatorname{in}\left(I_{1}\right)+\operatorname{in}\left(I_{2}\right)\right)_{r}=S_{r}$. To this end, take a monomial $m=x^{i} y^{j} z^{k}$ of S with degree r. We claim $m \in \operatorname{in}\left(I_{1}\right)+\operatorname{in}\left(I_{2}\right)$.

Assume $i \geq j$. We then have $i+k \geq\lfloor(r-k+1) / 2\rfloor+k \geq\lfloor(r+1) / 2\rfloor$. By Corollary 7.17,

$$
\begin{aligned}
\operatorname{dim} I(r)_{i+k} & =2(i+k)+1-r \\
& \geq 2(\lfloor(r-k+1) / 2\rfloor+k)+1-r \\
& \geq r-k+2 k+1-r \\
& =k+1
\end{aligned}
$$

By Lemma 7.18, in $\left(I_{1}\right)_{i+k}$ consists of the $\operatorname{dim} I(r)_{i+k} \geq k+1$ largest monomials of degree $i+k$ in the variables x, z. Now notice that $x^{i} z^{k}$ is the $(k+1)$ st largest monomial of degree $i+k$ in the variables x, z with respect to lex order. By Lemma 7.18, $x^{i} z^{k} \in \operatorname{in}\left(I_{1}\right)$, hence $m \in \operatorname{in}\left(I_{1}\right)$.

By the same argument, if $j \geq i$, then $m \in \operatorname{in}\left(I_{2}\right)$. In either case, we have shown that $m \in \operatorname{in}\left(I_{1}\right)+\operatorname{in}\left(I_{2}\right)$, completing the proof.

8. Examples

In this section we give several examples to illustrate both how the bounds in Theorems 6.2 and 7.2 may be used and how well they approximate the actual regularity of the spline module.
Example 8.1. Our first example illustrates that the number of faces in a polytope of \mathcal{P}, where \mathcal{P} is a polytopal cell, can indeed impact the regularity of $C^{\alpha}(\mathcal{P})$. In particular we show that, contrary to most of our examples, the bound of Theorem 6.2 may not be so far off in worst case scenarios. This example generalizes the construction in 9, Theorem 5.7].

For simplicity we restrict to the case of uniform smoothness. Suppose $P \subset \mathbb{R}^{2}$ is a polygon so that $(0,0) \in P$ and no pair of edges of P is parallel. Let $A=\widehat{P} \subset \mathbb{R}^{3}$. We construct a polytopal cell $\mathcal{P}(A)$ so that the regularity of $C^{r}(\mathcal{P}(A))$ grows in direct correlation with the number of edges of P.

We construct $\mathcal{P}(A)$ as follows. Let \bar{A} be the reflection of A across the $x y$ plane. For a face τ of A containing $(0,0,0)$ let $\bar{\tau}$ denote the face of \bar{A} obtained by reflecting τ across the $x y$-plane. Let $\sigma(\tau)$ denote the polytope formed by taking the convex hull of τ and $\bar{\tau}$. Now let $\mathcal{P}(A)$ be the polytopal cell with polytopes $\{A, \bar{A}\} \cup\{\sigma(\tau) \mid \tau \in \partial A,(0,0,0) \in \gamma\}$ (see Figure 10 for a depiction of the interior faces of $\mathcal{P}(A))$. We take uniform smoothness parameter r on $\mathcal{P}(A)$, so $\alpha(\tau)=r$ for $\tau \in \mathcal{P}(A)_{2}^{\circ}$ and $\alpha(\tau)=-1$ for $\tau \in \partial \mathcal{P}(A)$.

Consider the graded $S=\mathbb{R}[x, y, z]$-module $C^{r}(\mathcal{P}(A))$. We will show that a certain spline $G(A) \in C^{r}(\mathcal{P}(A))$, which is supported only on the polytope A, is a minimal generator of $C^{r}(\mathcal{P}(A))$. Since $\operatorname{reg}\left(C^{r}(\mathcal{P}(A))\right)$ bounds the degrees of generators, this will force $\operatorname{reg}\left(C^{r}(\mathcal{P}(A))\right)$ to be large.

Figure 10. The polytopal cell $\mathcal{P}(A)$
Let $\bar{\phi}: C^{r}(\mathcal{P}(A)) \rightarrow S$ be the map of S-modules obtained by restricting splines $F \in C^{r}(\mathcal{P}(A))$ to the polytope \bar{A}. This is a splitting of the inclusion $S \rightarrow C^{r}(\mathcal{P}(A))$ as global polynomials on $\mathcal{P}(A)$. Let $N T^{r}(\mathcal{P}(A))$ be the kernel of $\bar{\phi}$. Then

$$
C^{r}(\mathcal{P}(A)) \cong S \oplus N T^{r}(\mathcal{P}(A))
$$

Let $S^{\prime}=\mathbb{R}[x, y]$ and, for $f \in S$, set $\bar{f}=f(x, y, 0)$. Define an S-module map ϕ : $C^{r}(\mathcal{P}(A)) \cong S \oplus N T^{r}(\mathcal{P}(A)) \rightarrow S^{\prime}$ by $\phi(f, F)=\overline{F_{A}}$, where $f \in S, F \in N T^{r}(\mathcal{P}(A))$, and F_{A} is the restriction of F to the polytope A.

For a polytope σ, set $\partial^{\circ}(\sigma)=\partial \sigma \cap \mathcal{P}(A)_{2}^{\circ}$. We have

$$
\Lambda(A)=\prod_{\tau \in \partial A} l_{\tau}^{\alpha(\tau)+1}=\prod_{\tau \in \partial^{\circ}(A)} l_{\tau}^{r+1} .
$$

We claim that the image of ϕ is the principal ideal $I=\langle\overline{\Lambda(A)}\rangle$. Define the spline $G(A) \in N T^{r}(\mathcal{P}(A))$ by $G(A)_{A}=\Lambda(A)$ and $G(A)_{\sigma^{\prime}}=0$ for every other polytope $\sigma^{\prime} \in \mathcal{P}(A)$. Clearly $\phi(G(A))=\overline{\Lambda(A)}$, so $I \subset \operatorname{im}(\phi)$. To see that $\operatorname{im}(\phi) \subset I$, let $F \in N T^{r}(\mathcal{P}(A))$. Then, since $F_{\bar{A}}=0, l_{\bar{\tau}}^{r+1} \mid F_{\sigma(\tau)}$ for every $\tau \in \partial^{\circ}(A)$. We also have $l_{\tau}^{r+1} \mid\left(F_{A}-F_{\sigma(\tau)}\right)$ for every $\tau \in \partial^{\circ}(A)$. Hence $F_{A} \in \bigcap_{\tau \in \partial^{\circ} A}\left\langle l_{\tau}^{r+1}, l_{\bar{\tau}}^{r+1}\right\rangle$. But l_{τ} and $l_{\bar{\tau}}$ differ at most by a scalar multiple and a sign on the variable z, so $\overline{l_{\tau}}=\overline{l_{\bar{\tau}}}$ and

$$
\phi(F) \in \bigcap_{\tau \in \partial^{\circ}(A)}\left\langle\overline{l_{\tau}^{r+1}}\right\rangle=\left\langle\prod_{\tau \in \partial^{\circ}(A)} \overline{l_{\tau}^{r+1}}\right\rangle=\langle\overline{\Lambda(A)}\rangle
$$

as claimed. In the first equality we use the fact that no pair of edges of the polygon P are parallel; this guarantees all the forms $\overline{l_{\tau}}$ are distinct. It follows that the spline $G(A)$, which is supported only on the polytope A and generates splines supported on A, is a minimal generator of $C^{r}(\mathcal{P}(A))$. Since $G(A)$ has degree $\left|\partial^{\circ}(A)\right|(r+1)$, it follows from Remark 3.3 that $\operatorname{reg}\left(C^{r}(\mathcal{P}(A))\right) \geq\left|\partial^{\circ}(A)\right|(r+1)$.

Now we compute the bound from Theorem 6.2, Each face $\tau \in \mathcal{P}(A)_{2}$ either has $\lambda(\tau)=\left(\left|\partial^{\circ}(A)\right|+3\right)(r+1)$ or $\lambda(\tau)=7(r+1)$. As long as the polygon P has at least four edges, Theorem 6.2 yields $\operatorname{reg}\left(C^{r}(\mathcal{P}(A))\right) \leq\left(\left|\partial^{\circ}(A)\right|+3\right)(r+1)$.
Remark 8.2. The construction in Example 8.1 is inherently nonsimplicial. Some other construction needs to be used to obtain high degree generators in the simplicial case. In the planar simplicial case, there is an example in 30 of a planar simplicial complex Δ with minimal generator in degree $2 r+2$.

Example 8.3. In this example we apply Theorem 6.2 to bound the regularity of $C^{\alpha}(\mathcal{P})$ where boundary vanishing is imposed. Consider the polygonal complex \mathcal{Q}

Figure 11. Polygonal complex \mathcal{Q} in Example 8.3
in Figure 11 with five faces, eight interior edges, and four interior vertices. Impose vanishing of order r along interior edges and vanishing of order s along boundary edges. The following Hilbert polynomials are computed in 10, Example 8.5]. If $s=-1$, so $C^{\alpha}(\widehat{\mathcal{Q}})=C^{r}(\widehat{\mathcal{Q}})$, then

$$
\begin{aligned}
H P\left(C^{r}(\widehat{\mathcal{Q}}), d\right)= & \frac{5}{2} d^{2}+\left(-8 r-\frac{1}{2}\right) d \\
& -4\left\lfloor\frac{3 r}{2}\right\rfloor^{2}+12 r\left\lfloor\frac{3 r}{2}\right\rfloor-r^{2}+4 r+2 .
\end{aligned}
$$

By Theorem 6.2, $\operatorname{reg}\left(C^{r}(\widehat{\mathcal{Q}})\right) \leq 6(r+1)-1$ and $\operatorname{HP}\left(C^{r}(\widehat{\mathcal{Q}}), d\right)=\operatorname{dim} C_{d}^{r}(\widehat{\mathcal{Q}})$ for $d \geq 6(r+1)-2$. We compare the regularity bound $6(r+1)-1$ with $\operatorname{reg}\left(C^{r}(\widehat{\mathcal{Q}})\right)$ as computed in Macaulay2 in Table 2 where $\operatorname{reg}\left(C^{r}(\widehat{\mathcal{Q}})\right)$ appears to have alternating differences of 1 and 3 and grows roughly as $2(r+1)+1$. In fact, $\operatorname{reg}\left(C^{r}(\widehat{\mathcal{Q}})\right)$ appears to agree with the regularity of r-splines on the complex from Example 1.1.

Table 2

r	0	1	2	3	4	5	6	7	8	9
$6(r+1)-1$	5	11	17	23	29	35	41	47	53	59
$\operatorname{reg}\left(C^{r}(\widehat{\mathcal{Q}})\right)$	3	4	7	8	11	12	15	16	19	20

Now suppose that vanishing of degree $s \geq 0$ is imposed along $\partial \mathcal{Q}$. Then

$$
\begin{aligned}
H P\left(C^{\alpha}(\widehat{\mathcal{P}}), d\right)= & \frac{5}{2} d^{2}+\left(-8 r-4 s-\frac{9}{2}\right) d \\
& -3\left\lfloor\frac{2(r+s)}{3}\right\rfloor^{2}+4 r\left\lfloor\frac{2(r+s)}{3}\right\rfloor+4 s\left\lfloor\frac{2(r+s)}{3}\right\rfloor-\left\lfloor\frac{2(r+s)}{3}\right\rfloor \\
& -4\left\lfloor\frac{r}{2}\right\rfloor^{2}-4\left\lfloor\frac{3 r}{2}\right\rfloor \\
& -5 r^{2}+4 r\left\lfloor\frac{r}{2}\right\rfloor+12 r\left\lfloor\frac{3 r}{2}\right\rfloor \\
& -8 r s+4 s+4 .
\end{aligned}
$$

This formula is correct when r, s are not too small; for instance if $r=3$ and $s=0$, the above formula has constant term 81 while the actual constant, according to Macaulay2, is 87 . By Theorem 6.2,

$$
\operatorname{reg}\left(C^{\alpha}(\widehat{\mathcal{Q}})\right) \leq \max \{6(r+1)+(s+1), 5(r+1)+2(s+1)\}-1
$$

and $H P\left(C^{\alpha}(\widehat{\mathcal{P}}), d\right)=\operatorname{dim} C_{d}^{\alpha}(\mathcal{P})$ for

$$
d \geq \max \{6(r+1)+(s+1), 5(r+1)+2(s+1)\}-2 .
$$

A comparison of the bound on $\operatorname{reg}\left(C^{\alpha}(\widehat{\mathcal{Q}})\right)$ and its actual value computed in Macaulay2 appears in Table 3 for $r, s \leq 5$.

TABLE 3. Comparing regularity bound to regularity for Example 8.3

$\max \{6(r+1)+(s+1), 5(r+1)+2(s+1)\}-1$					
	$s=0$	$s=1$	$s=2$	$s=3$	$s=4$
$r=0$	7	8	10	12	14
$r=1$	13	14	15	17	19
$r=2$	19	20	21	22	24
$r=3$	25	26	27	28	29
$r=4$	31	32	33	34	35
$\operatorname{reg}\left(C^{\alpha}(\widehat{\mathcal{Q}})\right)$					
r	$s=0$	$s=1$	$s=2$	$s=3$	$s=4$
$r=0$	4	4	5	6	7
$r=1$	4	5	6	8	9
$r=2$	7	8	8	9	10
$r=3$	8	8	9	10	12
$r=4$	11	11	12	12	13

Example 8.4. We now give an example which has very different behavior from Example 8.1 Consider the polygonal complex \mathcal{Q} formed by placing a regular (or almost regular) n-gon inside of a scaled copy of itself and connecting corresponding vertices by edges. The complex \mathcal{Q} has one polygon with n edges and n quadrilateral polygons. An example for $n=10$ is shown in Figure 12. We may or may not perturb the vertices so that the affine spans of the edges between the inner and outer n gons do not all meet at the origin. This does not appear to have much effect on regularity, although it does change the constant term of $H P\left(C^{r}(\widehat{\mathcal{Q}}), d\right)$.

Figure 12. The complex \mathcal{Q} in Example 8.4
According to Theorem 6.2, $\operatorname{reg}\left(C^{r}(\widehat{\mathcal{Q}})\right) \leq \max \{(r+1)(n+2), 5(r+1)\} \leq$ $(r+1)(n+2)$ as long as $n \geq 3$. However, according to computations for $r \leq 3$ and $n \leq 10$ in Macaulay2, $\operatorname{reg}\left(C^{r}(\widehat{\mathcal{Q}})\right) \leq 3(r+1)$ regardless of what value n takes.

9. REGULARITY CONJECTURE

We conclude with a conjecture in the case of uniform smoothness (see also 9 , Conjecture 5.6]). As in Example 8.1 given a polytope σ of the polytopal cell \mathcal{P}, denote by $\partial^{\circ}(\sigma)$ the number of faces of σ which are interior to \mathcal{P}. We call the polytopal cell \mathcal{P} complete if the origin is an interior vertex.

Conjecture 9.1. Let $\mathcal{P} \subset \mathbb{R}^{3}$ be a polyhedral cell. Let $F=\max \left\{\left|\partial^{\circ}(\sigma)\right|: \sigma \in \mathcal{P}\right\}$.
(1) \mathcal{P} is central and complete $\Longrightarrow \operatorname{reg}\left(C^{r}(\mathcal{P})\right) \leq \operatorname{reg}\left(L S^{r, 1}(\mathcal{P})\right) \leq F(r+1)$.
(2) \mathcal{P} is central but not complete $\Longrightarrow \operatorname{reg}\left(C^{r}(\mathcal{P})\right) \leq(F-1)(r+1)$.

Remark 9.2. [9, Theorem 5.7] shows that generators can be obtained in degree $(F-1)(r+1)$ in the noncomplete central case. Example 8.1 shows generators can be obtained in degree $F(r+1)$ for the complete central case. Hence these are the lowest regularity bounds that we can conjecture which take into account the statistic $\left|\partial^{\circ}(\sigma)\right|$ for each polytope σ.

Remark 9.3. The generic perturbation of the octahedron in Example 1.2 suggests that Conjecture 9.1 part (1) could perhaps be made closer to the bound in part (2) for generic complete polytopal cells.

Remark 9.4. Conjecture 9.1 part (2) is a natural generalization of a conjecture of Schenck [28], that $\operatorname{reg}\left(C^{r}(\widehat{\Delta})\right) \leq 2(r+1)$ for $\Delta \subset \mathbb{R}^{2}$. This is a highly nontrivial conjecture in the simplicial case; it implies, for instance, that $\wp\left(C^{1}(\widehat{\Delta})\right) \leq 2$. To date, it is unknown whether $H P\left(C^{1}(\widehat{\Delta}), 3\right)=\operatorname{dim} C_{3}^{1}(\widehat{\Delta})$. The difficulty of this problem is in large part due to the fact that nonlocal geometry plays an increasingly important role in low degree [1,4. Since our methods hinge on using the submodules $L S^{\alpha, 1}(\mathcal{P})$, which are locally supported approximations to $C^{\alpha}(\mathcal{P})$, our approach will not be effective in proving Conjecture 9.1 part (2).

Remark 9.5. Example 8.4 indicates that a polytope with a large number of interior faces does not always impose large regularity. Hence there is a need to study when a large polytope actually imposes large regularity, as is the case in Example 8.1 (in practice one would want to avoid these polytopal cells).

Appendix A. Additional Results concerning regularity

In this appendix we summarize some results about regularity which are used in the paper. We provide a proof for one of these results (Proposition A.7) since we are not aware of a proof of this exact statement in the literature. For this we will need an alternate characterization of regularity via local cohomology. We briefly summarize this characterization; see [12, Appendix 1] for more details. Let $S=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$. The local cohomology modules $H_{m}^{i}(M)$ of M with respect to the homogeneous maximal ideal $\mathfrak{m}=\left\langle x_{0}, \ldots, x_{n}\right\rangle$ are the right derived functors of the functor $H_{\mathfrak{m}}^{0}\left(_\right)$, where

$$
H_{\mathfrak{m}}^{0}(M)=\left\{m \in M \mid \mathfrak{m}^{j} m=0 \text { for some } j \geq 0\right\}
$$

If M is a graded module, then the local cohomology modules $H_{\mathfrak{m}}^{i}(M)$ are also graded. A standard fact about the modules $H_{\mathfrak{m}}^{i}(M)$ is that they have finite length, in other words, $H_{\mathfrak{m}}^{i}(M)_{d}=0$ for $d \gg 0$. The module M is called d-regular if
(1) $H_{\mathfrak{m}}^{0}(M)_{j}=0$ for every $j>d$,
(2) $H_{\mathfrak{m}}^{i}(M)_{d-i+1}=0$ for every $i>0$.

Theorem A. 1 (Theorem 4.3 of [12]). Let $\mathfrak{m} \subset S$ be the maximal ideal of S and M a graded S-module. Then $\operatorname{reg}(M)=\min \{d \mid M$ is d-regular $\}$.

The next two results follow from Theorem A.1 using standard homological tools.
Corollary A. 2 ([12], Corollary 4.4). If M has finite length, then $\operatorname{reg}(M)=\max \{d \mid$ $\left.M_{d} \neq 0\right\}$.
Proposition A. 3 ([11, Corollary 20.19). Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a graded exact sequence of finitely generated S modules. Then:
(1) $\operatorname{reg}(A) \leq \max \{\operatorname{reg}(B), \operatorname{reg}(C)+1\}$,
(2) $\operatorname{reg}(B) \leq \max \{\operatorname{reg}(A), \operatorname{reg}(C)\}$,
(3) $\operatorname{reg}(C) \leq \max \{\operatorname{reg}(A)-1, \operatorname{reg}(B)\}$.

Proposition A. 3 can be applied to long exact sequences by breaking them into short exact sequences. The next lemma can be proved in this way. The first statement may be found in [12, Lemma 5.9].
Lemma A.4. Let $m \geq 0$. If

$$
0 \rightarrow C_{m} \rightarrow C_{m-1} \rightarrow \cdots \rightarrow C_{0} \rightarrow M \rightarrow 0
$$

is an exact sequence of S-modules, then $\operatorname{reg}(M) \leq \max _{i}\left\{\operatorname{reg}\left(C_{i}\right)-i\right\}$. Similarly, if

$$
0 \rightarrow M \rightarrow C_{0} \rightarrow \cdots \rightarrow C_{m-1} \rightarrow C_{m} \rightarrow 0
$$

is an exact sequence of S-modules, then $\operatorname{reg}(M) \leq \max _{i}\left\{\operatorname{reg}\left(C_{i}\right)+i\right\}$.
An additional concept we need is the depth of a module. The depth of a graded S module M with respect to the homogeneous maximal ideal \mathfrak{m}, denoted depth (M), is the length of a maximal sequence of homogeneous forms $\left\{f_{1}, \ldots, f_{k}\right\} \subset \mathfrak{m}$ satisfying that f_{1} is a nonzerodivisor on M (there is no $m \in M$ so that $f_{1} m=0$) and f_{l} is a nonzerodivisor on $M /\left(\sum_{i=1}^{l-1} f_{i} M\right)$ for $l=2, \ldots, k$. Such a sequence is called an M-sequence. If the module M is simply S, then an S-sequence is called a regular sequence. An ideal generated by a regular sequence is called a complete intersection. We pause to give a result concerning the regularity of complete intersections.

Proposition A.5. If I is a complete intersection generated by a regular sequence of homogeneous forms f_{1}, \ldots, f_{k} of degrees d_{1}, \ldots, d_{k}, then $\operatorname{reg}(S / I)=\sum_{i=1}^{k}\left(d_{i}-1\right)=$ $\left(\sum_{i=1}^{k} d_{i}\right)-k$.

We will use the following result of Auslander and Buchsbaum to move back and forth between the notions of depth and projective dimension.

Theorem A. 6 (Auslander-Buchsbaum). Let M be an $S=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$-module. Then $\operatorname{depth}(M)+\operatorname{pd}(M)=\operatorname{depth}(S)=n+1$.

In particular, Theorem A.6 implies that $\operatorname{pd}(M) \leq n+1$. This inequality is known as the Hilbert syzygy theorem.

The following proposition is one of the ingredients used in the proof of the Gruson-Lazarsfeld-Peskine theorem bounding the regularity of curves in projective space [12, Proposition 5.5].

Proposition A.7. Let M be an S-module and $N \subset M$ a submodule of M with $\operatorname{codim}(M / N)>\operatorname{pd}(M)$. Then $\operatorname{reg}(M) \leq \operatorname{reg}(N)$.

Proof. Note that the inequality $\operatorname{codim}(M / N)>\operatorname{pd}(M)$ in Proposition A. 7 is equivalent, via the Auslander-Buchsbaum theorem, to $\operatorname{dim}(M / N)<\operatorname{depth}(M)$. We prove $\operatorname{reg}(M) \leq \operatorname{reg}(N)$ if $\operatorname{dim}(M / N)<\operatorname{depth}(M)$. Set $d=\operatorname{depth}(M)$. By [12, Proposition A1.16], $H_{\mathfrak{m}}^{i}(M)=0$ for $i<d$ and $H_{\mathfrak{m}}^{i}(M / N)=0$ for $i>$ $\operatorname{dim}(M / N)$. The long exact sequence in local cohomology resulting from the short exact sequence

$$
0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0
$$

yields a surjection $H_{\mathfrak{m}}^{d}(N) \rightarrow H_{\mathfrak{m}}^{d}(M)$ and isomorphisms $H_{\mathfrak{m}}^{i}(N) \cong H_{\mathfrak{m}}^{i}(M)$ for $i>d$. Since $H_{\mathfrak{m}}^{i}(M)=0$ for $i<d$, if N is j-regular for some j, then so is M. Now Theorem A. 1 yields $\operatorname{reg}(N) \geq \operatorname{reg}(M)$.

Acknowledgments

The author is first and foremost grateful to Hal Schenck for his guidance and continual support during and after my dissertation. The author also thanks Stefan Tohaneanu and Jimmy Shan for helpful conversations. Several anonymous referees helped immensely in streamlining and simplifying the exposition of the paper. Macaulay2 [15] was indispensable for performing computations, and several of the images were generated using Mathematica.

References

[1] P. Alfeld, B. Piper, and L. L. Schumaker, An explicit basis for C^{1} quartic bivariate splines, SIAM J. Numer. Anal. 24 (1987), no. 4, 891-911, DOI 10.1137/0724058. MR899711
[2] P. Alfeld and L. L. Schumaker, The dimension of bivariate spline spaces of smoothness r for degree $d \geq 4 r+1$, Constr. Approx. 3 (1987), no. 2, 189-197, DOI 10.1007/BF01890563. MR889554
[3] P. Alfeld and L. L. Schumaker, On the dimension of bivariate spline spaces of smoothness r and degree $d=3 r+1$, Numer. Math. 57 (1990), no. 6-7, 651-661, DOI 10.1007/BF01386434. MR 1062372
[4] P. Alfeld and L. L. Schumaker, Nonexistence of star-supported spline bases, SIAM J. Math. Anal. 31 (1999/00), no. 2, 455-465 (electronic), DOI 10.1137/S0036141098342349. MR 1740946
[5] L. J. Billera, Homology of smooth splines: generic triangulations and a conjecture of Strang, Trans. Amer. Math. Soc. 310 (1988), no. 1, 325-340, DOI 10.2307/2001125. MR965757
[6] L. J. Billera and L. L. Rose, A dimension series for multivariate splines, Discrete Comput. Geom. 6 (1991), no. 2, 107-128, DOI 10.1007/BF02574678. MR1083627
[7] L. J. Billera and L. L. Rose, Modules of piecewise polynomials and their freeness, Math. Z. 209 (1992), no. 4, 485-497, DOI 10.1007/BF02570848. MR 1156431
[8] C. de Boor, A Practical Guide to Splines, Revised edition, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York, 2001. MR 1900298
[9] M. DiPasquale, Lattice-supported splines on polytopal complexes, Adv. in Appl. Math. 55 (2014), 1-21, DOI 10.1016/j.aam.2013.12.002. MR3176714
[10] M. DiPasquale, Associated primes of spline complexes, J. Symbolic Comput. 76 (2016), 158199, DOI 10.1016/j.jsc.2016.01.004. MR3461264
[11] D. Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR1322960
[12] D. Eisenbud, The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. MR2103875
[13] W. Fulton and J. Harris, Representation Theory: A First Course, Readings in Mathematics, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. MR 1153249
[14] A. V. Geramita and H. K. Schenck, Fat points, inverse systems, and piecewise polynomial functions, J. Algebra 204 (1998), no. 1, 116-128, DOI 10.1006/jabr.1997.7361. MR1623949
[15] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/
[16] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. MR 1867354
[17] D. Hong, Spaces of bivariate spline functions over triangulation, Approx. Theory Appl. 7 (1991), no. 1, 56-75. MR. 1117308
[18] A. Kh. Ibrahim and L. L. Schumaker, Super spline spaces of smoothness r and degree $d \geq$ $3 r+2$, Constr. Approx. 7 (1991), no. 3, 401-423, DOI 10.1007/BF01888166. MR 1120412
[19] T. McDonald, Splines with boundary conditions, Comput. Math. Appl. 54 (2007), no. 9-10, 1234-1239, DOI 10.1016/j.camwa.2006.10.034. MR2397674
[20] T. McDonald and H. Schenck, Piecewise polynomials on polyhedral complexes, Adv. in Appl. Math. 42 (2009), no. 1, 82-93, DOI 10.1016/j.aam.2008.06.001. MR2475315
[21] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR2110098
[22] J. Mináč and S. O. Tohǎneanu, From spline approximation to Roth's equation and Schur functors, Manuscripta Math. 142 (2013), no. 1-2, 101-126, DOI 10.1007/s00229-012-0594-6. MR3081001
[23] B. Mourrain and N. Villamizar, Homological techniques for the analysis of the dimension of triangular spline spaces, J. Symbolic Comput. 50 (2013), 564-577, DOI 10.1016/j.jsc.2012.10.002. MR2996896
[24] S. Payne, Equivariant Chow cohomology of toric varieties, Math. Res. Lett. 13 (2006), no. 1, 29-41, DOI 10.4310/MRL.2006.v13.n1.a3. MR2199564
[25] H. Schenck, A spectral sequence for splines, Adv. in Appl. Math. 19 (1997), no. 2, 183-199, DOI 10.1006/aama.1997.0534. MR1459497
[26] H. Schenck and M. Stillman, A family of ideals of minimal regularity and the Hilbert series of $C^{r}(\hat{\Delta})$, Adv. in Appl. Math. 19 (1997), no. 2, 169-182, DOI 10.1006/aama.1997.0533. MR 1459496
[27] H. Schenck and M. Stillman, Local cohomology of bivariate splines, J. Pure Appl. Algebra 117/118 (1997), 535-548, DOI 10.1016/S0022-4049(97)00026-1. Algorithms for algebra (Eindhoven, 1996). MR 1457854
[28] H. K. Schenck and P. F. Stiller, Cohomology vanishing and a problem in approximation theory, Manuscripta Math. 107 (2002), no. 1, 43-58, DOI 10.1007/s002290100222. MR1892771
[29] L. L. Schumaker, On the dimension of spaces of piecewise polynomials in two variables, Multivariate Approximation Theory (Proc. Conf., Math. Res. Inst., Oberwolfach, 1979), Internat. Ser. Numer. Math., vol. 51, Birkhäuser, Basel-Boston, Mass., 1979, pp. 396-412. MR560683
[30] Ş. O. Tohǎneanu, Smooth planar r-splines of degree 2r, J. Approx. Theory 132 (2005), no. 1, 72-76, DOI 10.1016/j.jat.2004.10.011. MR2110576
[31] W. Whiteley, A matrix for splines, Progress in Approximation Theory, Academic Press, Boston, MA, 1991, pp. 821-828. MR. 1114817
[32] G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, SpringerVerlag, New York, 1995. MR 1311028

Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078

E-mail address: mdipasq@okstate.edu

[^0]: Received by the editor November 8, 2014, and, in revised form, January 30, 2016, July 15, 2016, and September 2, 2016.

 2010 Mathematics Subject Classification. Primary 13P25; Secondary 13P20, 13D02.
 Key words and phrases. Polyhedral spline, polytopal complex, Castelnuovo-Mumford regularity, homological algebra.

 The author was supported by National Science Foundation grant DMS 0838434 "EMSW21MCTP: Research Experience for Graduate Students".

