Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Dimension of mixed splines on polytopal cells


Author: Michael DiPasquale
Journal: Math. Comp. 87 (2018), 905-939
MSC (2010): Primary 13P25; Secondary 13P20, 13D02
DOI: https://doi.org/10.1090/mcom/3224
Published electronically: September 8, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The dimension of planar splines on polygonal subdivisions of degree at most $ d$ is known to be a degree two polynomial for $ d\gg 0$. For planar $ C^r$ splines on triangulations this formula is due to Alfeld and Schumaker; the formulas for planar splines with varying smoothness conditions across edges on convex polygonal subdvisions are due to Geramita, McDonald, and Schenck. In this paper we give a bound on how large $ d$ must be for the known polynomial formulas to give the correct dimension of the spline space. Bounds are given for central polytopal complexes in three dimensions, or polytopal cells, with varying smoothness across two-dimensional faces. In the case of tetrahedral cells with uniform smoothness $ r$ we show that the known polynomials give the correct dimension for $ d\ge 3r+2$; previously Hong and separately Ibrahim and Schumaker had shown that this bound holds for planar triangulations. All bounds are derived using techniques from computational commutative algebra.


References [Enhancements On Off] (What's this?)

  • [1] Peter Alfeld, Bruce Piper, and L. L. Schumaker, An explicit basis for $ C^1$ quartic bivariate splines, SIAM J. Numer. Anal. 24 (1987), no. 4, 891-911. MR 899711, https://doi.org/10.1137/0724058
  • [2] Peter Alfeld and L. L. Schumaker, The dimension of bivariate spline spaces of smoothness $ r$ for degree $ d\geq4r+1$, Constr. Approx. 3 (1987), no. 2, 189-197. MR 889554, https://doi.org/10.1007/BF01890563
  • [3] Peter Alfeld and Larry L. Schumaker, On the dimension of bivariate spline spaces of smoothness $ r$ and degree $ d=3r+1$, Numer. Math. 57 (1990), no. 6-7, 651-661. MR 1062372, https://doi.org/10.1007/BF01386434
  • [4] Peter Alfeld and Larry L. Schumaker, Nonexistence of star-supported spline bases, SIAM J. Math. Anal. 31 (1999/00), no. 2, 455-465 (electronic). MR 1740946, https://doi.org/10.1137/S0036141098342349
  • [5] Louis J. Billera, Homology of smooth splines: generic triangulations and a conjecture of Strang, Trans. Amer. Math. Soc. 310 (1988), no. 1, 325-340. MR 965757, https://doi.org/10.2307/2001125
  • [6] Louis J. Billera and Lauren L. Rose, A dimension series for multivariate splines, Discrete Comput. Geom. 6 (1991), no. 2, 107-128. MR 1083627, https://doi.org/10.1007/BF02574678
  • [7] Louis J. Billera and Lauren L. Rose, Modules of piecewise polynomials and their freeness, Math. Z. 209 (1992), no. 4, 485-497. MR 1156431, https://doi.org/10.1007/BF02570848
  • [8] Carl de Boor, A Practical Guide to Splines, Revised edition, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York, 2001. MR 1900298
  • [9] Michael DiPasquale, Lattice-supported splines on polytopal complexes, Adv. in Appl. Math. 55 (2014), 1-21. MR 3176714, https://doi.org/10.1016/j.aam.2013.12.002
  • [10] Michael DiPasquale, Associated primes of spline complexes, J. Symbolic Comput. 76 (2016), 158-199. MR 3461264, https://doi.org/10.1016/j.jsc.2016.01.004
  • [11] David Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960
  • [12] David Eisenbud, The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. MR 2103875
  • [13] William Fulton and Joe Harris, Representation Theory: A First Course, Readings in Mathematics, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. MR 1153249
  • [14] Anthony V. Geramita and Henry K. Schenck, Fat points, inverse systems, and piecewise polynomial functions, J. Algebra 204 (1998), no. 1, 116-128. MR 1623949, https://doi.org/10.1006/jabr.1997.7361
  • [15] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
  • [16] Allen Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. MR 1867354
  • [17] Dong Hong, Spaces of bivariate spline functions over triangulation, Approx. Theory Appl. 7 (1991), no. 1, 56-75. MR 1117308
  • [18] Adel Kh. Ibrahim and Larry L. Schumaker, Super spline spaces of smoothness $ r$ and degree $ d\geq3r+2$, Constr. Approx. 7 (1991), no. 3, 401-423. MR 1120412, https://doi.org/10.1007/BF01888166
  • [19] Terry McDonald, Splines with boundary conditions, Comput. Math. Appl. 54 (2007), no. 9-10, 1234-1239. MR 2397674, https://doi.org/10.1016/j.camwa.2006.10.034
  • [20] Terry McDonald and Hal Schenck, Piecewise polynomials on polyhedral complexes, Adv. in Appl. Math. 42 (2009), no. 1, 82-93. MR 2475315, https://doi.org/10.1016/j.aam.2008.06.001
  • [21] Ezra Miller and Bernd Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098
  • [22] Ján Mináč and Stefan O. Tohaneanu, From spline approximation to Roth's equation and Schur functors, Manuscripta Math. 142 (2013), no. 1-2, 101-126. MR 3081001, https://doi.org/10.1007/s00229-012-0594-6
  • [23] Bernard Mourrain and Nelly Villamizar, Homological techniques for the analysis of the dimension of triangular spline spaces, J. Symbolic Comput. 50 (2013), 564-577. MR 2996896, https://doi.org/10.1016/j.jsc.2012.10.002
  • [24] Sam Payne, Equivariant Chow cohomology of toric varieties, Math. Res. Lett. 13 (2006), no. 1, 29-41. MR 2199564, https://doi.org/10.4310/MRL.2006.v13.n1.a3
  • [25] Hal Schenck, A spectral sequence for splines, Adv. in Appl. Math. 19 (1997), no. 2, 183-199. MR 1459497, https://doi.org/10.1006/aama.1997.0534
  • [26] Hal Schenck and Mike Stillman, A family of ideals of minimal regularity and the Hilbert series of $ C^r(\hat\Delta)$, Adv. in Appl. Math. 19 (1997), no. 2, 169-182. MR 1459496, https://doi.org/10.1006/aama.1997.0533
  • [27] Hal Schenck and Mike Stillman, Local cohomology of bivariate splines, J. Pure Appl. Algebra 117/118 (1997), 535-548. Algorithms for algebra (Eindhoven, 1996). MR 1457854, https://doi.org/10.1016/S0022-4049(97)00026-1
  • [28] Henry K. Schenck and Peter F. Stiller, Cohomology vanishing and a problem in approximation theory, Manuscripta Math. 107 (2002), no. 1, 43-58. MR 1892771, https://doi.org/10.1007/s002290100222
  • [29] Larry L. Schumaker, On the dimension of spaces of piecewise polynomials in two variables, Multivariate Approximation Theory (Proc. Conf., Math. Res. Inst., Oberwolfach, 1979) Internat. Ser. Numer. Math., vol. 51, Birkhäuser, Basel-Boston, Mass., 1979, pp. 396-412. MR 560683
  • [30] Ştefan O. Tohaneanu, Smooth planar $ r$-splines of degree $ 2r$, J. Approx. Theory 132 (2005), no. 1, 72-76. MR 2110576, https://doi.org/10.1016/j.jat.2004.10.011
  • [31] Walter Whiteley, A matrix for splines, Progress in Approximation Theory, Academic Press, Boston, MA, 1991, pp. 821-828. MR 1114817
  • [32] Günter M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 1311028

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 13P25, 13P20, 13D02

Retrieve articles in all journals with MSC (2010): 13P25, 13P20, 13D02


Additional Information

Michael DiPasquale
Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
Email: mdipasq@okstate.edu

DOI: https://doi.org/10.1090/mcom/3224
Keywords: Polyhedral spline, polytopal complex, Castelnuovo-Mumford regularity, homological algebra
Received by editor(s): November 8, 2014
Received by editor(s) in revised form: January 30, 2016, July 15, 2016, and September 2, 2016
Published electronically: September 8, 2017
Additional Notes: The author was supported by National Science Foundation grant DMS 0838434 “EMSW21MCTP: Research Experience for Graduate Students”.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society