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NON-MINIMALITY OF THE WIDTH-w

NON-ADJACENT FORM IN CONJUNCTION

WITH TRACE ONE τ -ADIC DIGIT EXPANSIONS

AND KOBLITZ CURVES IN CHARACTERISTIC TWO

DANIEL KRENN AND VOLKER ZIEGLER

Abstract. This article deals with redundant digit expansions with an imag-
inary quadratic algebraic integer with trace ±1 as base and a minimal norm
representatives digit set. For w ≥ 2 it is shown that the width-w non-adjacent
form is not an optimal expansion, meaning that it does not minimize the (Ham-
ming) weight among all possible expansions with the same digit set. One main
part of the proof uses tools from Diophantine analysis, namely the theory of
linear forms in logarithms and the Baker–Davenport reduction method.

Part I. The beginning

1. Introduction

Let τ be an (imaginary quadratic) algebraic integer and D a finite subset of �[τ ]
including zero. Choosing the digit set D properly, we can represent z ∈ �[τ ] by a
finite sum

L−1∑
�=0

σ�τ
�,

where the digits σ� lie in D. We call this representation a digit expansion of z.
Using a redundant digit set D, i.e., taking more digits than needed to represent
all elements of �[τ ], each element can be written in different ways. Of particular
interest are expansions which have the lowest number of non-zero digits. We call
those expansions optimal or minimal expansions.

The motivation looking at such expansions comes from elliptic curve cryptogra-
phy. There the scalar multiplication of a point on the curve is a crucial operation
and has to be performed as efficiently as possible. The standard double-and-add
algorithm can be extended by windowing methods; see for example [6,8,18,25,26].
Translating this into the language of digit expansions means the usage of redundant
digit expansions with base 2. However, using special elliptic curves, for example
Koblitz curves (see [14, 15, 25, 26]), the “expensive” doublings can be replaced by
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the “cheap” application of the Frobenius endomorphism over finite fields. In the
world of digit expansions this means taking an imaginary quadratic algebraic inte-
ger as base. This leaves us with the additions of points of the elliptic curve as an
“expensive” operation. The number of such additions is basically the number of
non-zero digits in an expansion. Therefore minimizing this number is an important
goal.

We are now going back to expansions with a low number of non-zero digits. Let
the parameter w ≥ 2 be an integer. Then one special expansion is the width-w
non-adjacent form, where in each block of width w at most one digit is not equal
to zero; see Reitwiesner [22] who introduced this notion for w = 2 and others
including Muir and Stinson [19] and Solinas [25, 26]. It will be abbreviated by
w-NAF. This expansion contains, by construction, only few non-zero digits. When
we use a digit set consisting of zero and of representatives with minimal norm of
the residue classes modulo τw excluding those which are divisible by τ , then the
w-NAF-expansion is optimal (minimal) in a lot of cases. For example, using an
integer (absolute value at least 2) as base τ , the w-NAF is a minimal/optimal
expansion; see Reitwiesner [22], Jedwab and Mitchell [13], Gordon [8], Avanzi [1],
Muir and Stinson [19], and Phillips and Burgess [21]. As a digit set it contains in
these cases zero and all integers with absolute value smaller than 1

2 |τ |
w

and not
divisible by τ .

A general criterion for optimality of the w-NAF-expanions can be found in
Heuberger and Krenn [12]: The w-NAF of each element is optimal, if expansions of
weight 2 are optimal. This is especially useful if the digit set has some underlying
geometric properties as it is the case for a minimal norm representatives digit set.
In Heuberger and Krenn [11] an optimality result for a general algebraic integer
base is given. A refinement of this general criterion in the imaginary quadratic case
is stated in [12]. For τ being imaginary quadratic and a zero of τ2−pτ+q, the main
result is that optimality follows if |p| ≥ 3 and w ≥ 4. Further, there are conditions
given for w = 2 and w = 3. In the cases p = ±2 and q = 2 the w-NAF-expansion is
optimal for odd w and non-optimal for even w. Moreover, non-optimality was also
shown when p = 0 and w is odd.

In this article we are interested in the case when p ∈ {−1, 1}. Note that the case
q = 2 is related to Koblitz curves in characteristic 2; see Koblitz [14], Meier and
Staffelbach [17], and Solinas [25, 26]. A few results are already known: If w = 2
or w = 3 optimality was shown in Avanzi, Heuberger and Prodinger [2, 3] (see
also Gordon [8] for w = 2). In contrast, for w ∈ {4, 5, 6}, the w-NAF-expansion
is not optimal anymore. This was shown in Heuberger [9]. These results rely on
transducer automata rewriting arbitrary expansions (with given base and digit set)
to a w-NAF-expansion and on a search of cycles of negative “weight”.

Experimental results checking the above criterion by symbolic calculations indi-
cate that the w-NAF is non-optimal for w ≥ 4 and, moreover, non-optimal for all
w ≥ 2 when q ≥ 3; see Heuberger and Krenn [12]. The main result presented in
this work—see the next section for a precise statement—proves this conjecture for
q ≤ 500.

2. Expansions, the results and an overview

We use this section to present our main theorem and to give an overview of the
different methods used during its proof. We start by explaining what we mean by
optimal (or minimal) expansions.
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Definition 2.1. Let τ be an algebraic integer, and suppose we have a set D (called
digit set) with D ⊆ �[τ ] such that 0 ∈ D. Let w be an integer with w ≥ 2 (called
window size).

(1) The finite sum

z =

L−1∑
�=0

σ�τ
�

with a positive integer L and σ� ∈ D for all � is called a digit expansion of z
with base τ .

(2) We call the expansion defined above a width-w non-adjacent form (abbre-
viated by w-NAF ) if for � ∈ {0, 1, . . . , L− w} each of the words

σ�σ�+1 . . . σ�+w−1

contains at most one non-zero digit.
(3) The number of non-zero digits is called the (Hamming) weight of the ex-

pansion.
(4) Suppose we have an expansion of z with weight W . We call this expansion

optimal or minimal if each expansion of z (with digits out of D) has a
weight which is at least W .

(5) The w-NAF expansion is said to be optimal or minimal (with respect to τ
and to D) if the w-NAF of each element of �[τ ] is minimal.

We will skip “with respect to τ and to D” in the previous definitions if this is
clear from the context (and in our cases it will always be the base τ and the minimal
norm digit set D).

Before we are able to state our main theorems, we have to specify the digit set D.
For a parameter w (the window size) we assume that 0 is a digit and that we take
a representative of minimal norm out of each residue class modulo τw which is not
divisible by the base τ . We call such a digit set a minimal norm representative digit
set modulo τw; see section 12, in particular Definition 12.1, for details.

Remark 2.2. If τ is an imaginary quadratic algebraic integer (as we use it here in
this article) and D a minimal norm representative digit set modulo τw, then each
element of �[τ ] admits a unique w-NAF expansion; see Heuberger and Krenn [10].

Now it is time to state our main results.

Theorem 2.3. Let q be an integer with q ≥ 2 and let p ∈ {−1, 1}. Let τ be a
root of X2 − pX + q and D a minimal norm representative digit set modulo τw.
Then there exists an effectively computable bound wq such that for all w ≥ wq the
width-w non-adjacent form expansion is not optimal with respect to τ and to D. In
particular, we may choose1

wq = 8.68 · 1015 log q log log q if q ≥ 13

and
wq = 1.973 · 1016 if q ∈ {2, 3, . . . , 12}.

It turns out that the bounds are rather huge (section 7). However, for small q
we can reduce this bound dramatically (for example from w2 = 8.596 · 1015 to
w̃2 = 140) and get the following much stronger result.

1The explicit bounds wq (Theorem 2.3, “in particular”-part) are rough estimates. For a par-

ticular q, better bounds can be computed, which is done throughout this article.
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Theorem 2.4. Let q and w be integers with

• either2 2 ≤ q ≤ 500 and w ≥ 2
• or q ≥ 2 and w ∈ {2, 3},

and let p ∈ {−1, 1}. Let τ be a root of X2 − pX + q and D a minimal norm
representative digit set modulo τw. Then the width-w non-adjacent form expansion
with respect to τ and to D is optimal if and only if q = 2 and w ∈ {2, 3}.

Formulated differently, this means that the w-NAF is not minimal/optimal for
all the given parameter configurations except for the four cases with w ∈ {2, 3},
p ∈ {−1, 1} and q = 2.

The main part of the proof of Theorem 2.4 deals with an algorithm which takes
q (and p) as input and outputs a list of values for w for which no counterexample to
the minimality of the w-NAF was found. Let us also formulate this as a proposition.

Proposition 2.5. Let q be an integer with q ≥ 2 and p ∈ {−1, 1}. Let τ be a root
of X2 − pX + q and D a minimal norm representative digit set modulo τw. Then
there is an algorithm which tests non-optimality of the width-w non-adjacent form
expansion for all w ≥ 2.

This algorithm grows out of an intuition on how a counterexample to minimality
of the w-NAFs is constructed. To do so, we have to find certain lattice point
configurations located near the boundary of the digit set. This is described in
general in the overview (section 11) of Part III and with more details and very
specific for our situation in section 16. This leaves us to find a lattice point located
in some rectangle which additionally avoids some smaller lattice.

All of Part II deals with this problem of finding a suitable lattice point inside
the given rectangle, which is precisely formulated as Proposition 5.1. Using the
theory of the geometry of numbers allows us to construct such a lattice point,
but unfortunately not “for free”; we have to ensure that there is no lattice point in
some smaller rectangle. This problem can be reformulated as an inequality (namely
inequality (5.1)) and we have to show that it does not have any integer solutions.

Dealing with the solutions of inequality (5.1) is a task of Diophantine analysis.
In particular and because of the structure of (5.1a) we use the theory of linear
forms in logarithms. This provides, for given q, a rather huge bound on w (due
to Matveev [16]); see section 7 for details. From this Theorem 2.3 can be proven.
However, using the convergents of continued fractions we are able to reduce this
bound significantly. Therefore, we are able to check all the remaining w directly. In
particular, we use a variant of the Baker–Davenport method [5], which is described
in section 8.

Let us close this overview of the second part with the following: In section 6 we
give some remarks on how to test inequality (5.1) directly. The actual algorithm is
stated in section 10.

In Part III digits come into play and the counterexamples to minimality of the
w-NAF are constructed. Section 13 explains this directly for some values of w (but
arbitrary q), whereas the remaining sections deal with the construction using the
result of Part II. In particular, this gives us a minimal non-w-NAF expansion, whose
most significant digit is perturbated a little bit (section 14). This is compensated by

2The upper bound q ≤ 500 in Theorem 2.4 is determined by an extensive computation.
Details can be found at http://www.danielkrenn.at/koblitz2-non-optimal, in particular file
result overview.

http://www.danielkrenn.at/koblitz2-non-optimal
http://www.danielkrenn.at/downloads/koblitz2-non-optimal/result_overview
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Figure 3.1. Voronoi cell V of 0 corresponding to the set �[τ ] with

τ = 1
2 + i

2

√
7 (i.e., p = 1, q = 2).

a large change in the least significant digit; see section 15. In sections 16 and 17 all
results are glued together and the actual counterexamples are constructed (thereby
proving Theorem 2.4). The actual algorithm is implemented3 in SageMath [24].

We are now finished with the introductory overview and will start with two
preparatory sections.

3. The set-up

This section is to state a couple of definitions used throughout this work and to
fix some notation.

• Let q be an integer with q ≥ 2. We call q the norm of our base (for what
we mean by “base”, have a look below).

• Let p ∈ {−1, 1}. We call p the trace of our base.
• Let τ be a zero of X2 − pX + q, more precisely, we take

τ =
p

2
+ i

√
q − 1

4
.

We call τ the base of our expansions.

Note that the case τ = 1
2p − i

√
q − 1

4 (i.e., taking the negative square

root) is, by conjugation, “equivalent” to our set-up. This shall mean by
constructing a counterexample to minimality of the w-NAF in one case
(sign of the square root) and by conjugating everything, we obtain a coun-
terexample for the other sign of the square root.

• Our expansions live in the lattice

�[τ ] = {a+ bτ : a ∈ �, b ∈ �}.
See also section 4 for the other lattices used.

• We set

V = {z ∈ � : ∀y ∈ �[τ ] : |z| ≤ |z − y|}
and call it the Voronoi cell of 0 corresponding to the set �[τ ]. An example
of this Voronoi cell in a lattice �[τ ] is shown in Figure 3.1.

3See http://www.danielkrenn.at/koblitz2-non-optimal for the code.

http://www.danielkrenn.at/koblitz2-non-optimal
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Figure 3.2. Rectangle R5 for q = 5 and p = 1.

• The vertices of V are

v0 =
p

2
+

i

2 Im(τ )

(
Im(τ )

2 − 1

4

)
=

p

2
+

i√
4q − 1

(
q − 1

2

)
,

v1 =
i

2 Im(τ )

(
Im(τ )

2
+

1

4

)
=

i√
4q − 1

q,

v2 = −p

2
+

i

2 Im(τ )

(
Im(τ )2 − 1

4

)
= −p

2
+

i√
4q − 1

(
q − 1

2

)
,

and v3 = −v0, v4 = −v1 and v5 = −v2; see Heuberger and Krenn [10].
• Let w be an integer with w ≥ 2. We call w the window size of our expan-
sions; see also Definition 2.1.

• Let

d =
v1 − v0
|v1 − v0|

be the direction from v0 to v1, and note that we have

d = pi
τ
√
q
.

Set dw = d(τ/
√
q)w. See also Figure 3.2.

• Let

s =

√
q − 1/4

q + 2

be the height of the rectangle defined below. See also Figure 3.2.
• Define the open rectangle Rw with vertices

◦ τwv0 + dw
√
q,

◦ τwv1 − dw
√
q,

◦ τwv1 − dw
√
q − pidws, and

◦ τwv0 + dw
√
q − pidws.

An example of this rectangle is shown in Figure 3.2.
Note that one side length of the rectangle Rw is

(3.1) |τwv1 − τwv0| − 2
√
q =

√
qw

1

2

√
1 +

1

4q − 1
− 2

√
q =

√
qw+1

4q − 1
− 2

√
q

and the other is s.

We finish this section with a couple of remarks.

Remark 3.1. The location of the rectangle Rw (in relation to the scaled Voronoi
cell τwV ) is in such a way that τ−1Rw has empty intersection with τwV . When
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constructing the actual counterexample in Part III, this will guarantee us that an
element of Rw does not become a digit (during division by τ ).

Remark 3.2. Note that the rectangle Rw is well defined (has positive area) if and
only if w > log(16q − 4)/ log q, which follows from positivity of (3.1). Therefore,
for q = 2 we have w ≥ 5, for q = 3 we have w ≥ 4, for 4 ≤ q ≤ 15 we have w ≥ 3,
and for q ≥ 16 we have w ≥ 2.

4. Lattices

As mentioned above, our digit expansions live in the lattice

�[τ ] = {a+ bτ : a ∈ �, b ∈ �} = 〈1, τ 〉.
It will become handy to define a few other (related) lattices. Our first one is

Λτ = 〈τ, q − pτ 〉 = 〈τ, τ2〉,
where we interpret the complex plane embedded into �2 in the usual way. This
lattice is used during the construction of our counterexamples, since we need points
divisible by τ there. Further, we also work with the smaller lattice

Λτ2 = 〈τ2, τ3〉 = 〈qτ, τ2〉 ⊆ Λτ ,

since in view of Proposition 5.1 we want to avoid this lattice.
Moreover, let us note that the middle point of the lower long side of the rectan-

gle Rw is
v0 + v1

2
τw =

τw+1

2
.

In general this is not a point of the lattice Λτ but of the lattice

Λτ/2 =
1

2
Λτ = 〈τ

2
,
τ2

2
〉 ⊇ Λτ .

This is the reason why we will work mainly in the larger lattice Λτ/2.
We need some basic properties of the lattices above. Let us start with Λτ and

some divisibility conditions for its elements.

Lemma 4.1. The elements of �[τ ] divisible by τ once (i.e., divisible by τ but not
by τ2) are exactly the elements

aτ + b(q − pτ )

with a ∈ � but q � a and with b ∈ �.
Moreover, if z ∈ �[τ ] is a lattice point divisible by τ , then z− 1, z+1, z+ τ − p

and z − τ + p are not divisible by τ .

The structures described above can be found in Figure 4.1.

Proof of Lemma 4.1. An element c+ dτ ∈ �[τ ] is divisible by τ if and only if q | c.
Therefore, if z ∈ �[τ ] is divisible by τ , then z − 1, z + 1, z + τ − p and z − τ + p
are not divisible by τ , which proves the second part of the lemma. As τ � a− bτ if
and only if q � a, multiplying by τ yields the first part of the lemma. �

For analyzing the lattice Λτ/2 and the scaled Voronoi cell τwV , it is important
to know some arithmetic properties of τ . We show the following lemma to get some
insights.
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Figure 4.1. Lattice �[τ ]. Points marked with a circle are not
divisible by τ , points marked with a rectangle are divisible exactly
once by τ , points marked with a cross are divisible by τ2. There
are lines from each rectangle (divisible exactly once by τ ) to its
neighboring circles (not divisible by τ ).

Lemma 4.2. The algebraic integer τ satisfies the following properties.

(1) Every prime � ∈ � with � | q splits in �[τ ].
(2) If a and b are integers with a+ bτ = τw or a+ bτ = τ̄w, then gcd(a, b) = 1.

Note that �[τ ] is the maximal order of �(τ ).

Proof of Lemma 4.2. The first statement is a direct consequence from algebraic
number theory, in particular the splitting of a prime � in �[τ ] is described by the
factorization of the minimal polynomial of τ mod � (for example, see Theorem 2 in
Chapter 11 of Ribenboim [23]). Indeed we have

X2 − pX + q ≡ X2 ±X ≡ X(X ± 1) mod �,

hence all primes � | q split completely in �[τ ].
The second statement is trivial for w ∈ {0, 1} (note that we use w ≥ 2 throughout

this paper anyway). Suppose a and b have a common prime factor �, then � also
has to divide N (τ̄ )w = N (τ )w = qw (where N (τ ) denotes the norm of τ ). Thus
� | q. By using part (1) of this lemma we have (�) = pp̄ as ideals over �[τ ].

Let us assume for a moment that both p and p̄ divide (τ ), then also both p and
p̄ divide (τ̄), i.e., τ, τ̄ ∈ pp̄ = (�). But this yields � | τ + τ̄ = p, a contradiction.
Therefore let us assume now that p | (τ ) and p̄ � (τ ). Since by assumption a and b
have the common factor �, they also have the common factor p̄ from the ideal point
of view, hence p̄ | (τ )w if a + bτ = τw, a contradiction to the previous discussion.
Similarly, we get the contradiction p | (τ̄)w for the case a+ bτ = τ̄w. �
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It is also important to know that no lattice points are on the “lower” edge of Rw.
This result is also used to show the uniqueness of the digit set; see Proposition 12.2.

Lemma 4.3. The following two statements hold.

(1) The only lattice point in Λτ/2 lying on the line segment joining the points

v0τ
w and v1τ

w is 1
2τ

w+1.
(2) The boundary of τwV has empty intersection with the lattice �[τ ].

Proof. We start by showing that there are no lattice points of Λ1/2 = 〈 12 ,
τ
2 〉 except

1
2τ

w on the line going through v5τ
w and v0τ

w. Every point on this line can be

written as 1
2τ

w + tiτw with some real parameter t. Let us assume we have a point

λ = 1
2τ

w + a 1
2 + b τ2 with a, b ∈ � on this line. Furthermore, we may assume that

gcd(a, b) = 1 (as a minimality condition). We deduce 2tiτw = a+ bτ .
If i ∈ �(τ ), then 4q − 1 is a perfect square which is absurd since 4q − 1 ≡ −1

mod 4. Let us write τw = aw + bwτ , then Lemma 4.2 yields gcd(aw, bw) = 1.
Thus, and since i ∈ �(τ ), the only possible values for t are ± 1

2 . Indeed 2tiτw is an
algebraic integer and therefore we have 2t ∈ �[τ ] ∩� = � with t = 0 and |t| < 1.
Now, we obtain a contradiction, since λ = 1

2 (1± i)τw is not in Λ1/2.
The results are now obtained as follows. Multiplying everything by τ yields the

first statement of the lemma. Starting with 1
2τ

w+1+tiτw+1 yields that there are no

points from Λ1/2 except 1
2τ

w+1 on the line joining v0τ
w and v1τ

w. Note that this
differs from the first statement of the lemma by the different lattice. The result for
the third line (from v1τ

w to v2τ
w) follows by taking conjugation and Lemma 4.2

with τ̄w = aw + bwτ . The remaining three sides of τwV follow by mirroring. �
We are also interested in the shortest vector in the lattice Λτ/2.

Lemma 4.4. The shortest non-zero vectors in the lattice Λτ/2 are ±τ/2.

Proof. First, let us note that
∣∣ τ
2

∣∣ =
√
q

2 . To find the shortest non-zero vector

a τ
2 + b τ

2

2 ∈ Λτ/2 we have to find all integers a and b such that
∣∣a τ

2 + b τ
2

2

∣∣ ≤ √
q

2 . In
particular we have to solve the inequality

|a+ bτ |2 =
(
a+ b

p

2

)2

+ b2
(
q − 1

4

)
≤ 1.

Obviously, if b = 0, then this inequality cannot be satisfied. Thus we may assume
that b = 0. We obtain a2 ≤ 1, and the result follows. �

Part II. The Diophantine part

5. Overview

In this part of the article we show that the following proposition holds.

Proposition 5.1. We use the set-up described in section 3 with the following
restrictions. Suppose we are in one of the following cases:

• q ∈ {2, 4} and w ≥ 7,
• q ∈ {3} and w ≥ 5 or
• 5 ≤ q ≤ 500 and w ≥ 4.

Then there exists a lattice point

aτ + b(q − pτ )

with a ∈ �, q � a and with b ∈ � in the (open) rectangle Rw.
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Since the proof of this proposition is long and technical, we start with an
overview. In a nutshell, for fixed q, we can reduce the problem to checking only
finitely many configurations w. Therefore the testing is possible algorithmically.

Let us look at an outline of the ideas used during the proof a bit. The resulting
algorithm takes as input parameters q and p and returns a list of values for w which
have to be investigated by other methods (i.e., yet no lattice point was found for
these w). The details can be found in the last section of this part, section 10. In
order to make this algorithm work, we have to check Proposition 5.1 for all but
finitely many cases.

One major step to tackle this lemma is to reduce the lattice point problem into
a Diophantine approximation problem. We show this in section 9. The existence
result of the lattice points there is based on the theory of the geometry of num-
bers. More precisely, this gives us two lattice points (see Lemma 9.3) out of which
we can construct a lattice point avoiding a smaller lattice (as it is required by
Proposition 5.1); see Lemma 9.5. But, to make this work, we have to use linear
independence of the two points, which is the challenging part during the proof.

We can reformulate this linear independence problem geometrically, which leaves
us to show that there are no lattice points inside a certain smaller rectangle. To
solve it, we bring this Diophantine approximation problem into a favorable form,
which leaves us to show that the inequalities

(5.1a)

∣∣∣∣log( a+ bτ

|a+ bτ |

)
− w log

(
τ

|τ |

)
+ k

iπ

2

∣∣∣∣ < χq2−w/2

with χ = 9 and

(5.1b) |a+ bτ | < ψq2

with ψ = 4 have no integer solutions.
With the previous inequality linear forms in logarithms come into play. The

theory to solve this problem, unfortunately, provides only solutions for huge w
(and fixed q); see section 7. The words “unfortunately” and “huge” here mean that
it is not possible to test the remaining finitely many configurations in reasonable
time. In order to reduce the bounds on possible integer solutions of (5.1) (and thus
reducing the calculation time), we use a method due to Baker and Davenport [5]
in section 8.

We are left with a bunch of small cases. Some remarks on how to check the
lemma for these values directly can be found in section 6.

Note that the steps above were presented in reverse ordering (from the perspec-
tive, that we only use results, which were proven earlier in the article), since this
is more the way one has to think when solving such a problem.

6. Testing directly

In this section, we collect some remarks on how to directly test whether Propo-
sition 5.1 holds for fixed parameters. So let us fix q, p and w. We use the following
criterion to find a lattice point λ ∈ Λτ \ Λτ2 inside the rectangle Rw.

We first establish necessary and sufficient conditions for a complex number z =
x+ iy to be contained in Rw.
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Proposition 6.1. Set

B1 =
qw+1

4
,

B2 =
qw+1

4
+

q(w+1)/2

2

√
q − 1/4

q + 2
,

and

B3 =
qw+1

2(4q − 1)
− qw/2+1

√
4q − 1

,

and let us write 1
2τ

w+1 = uw + vwτ . Then λ = aτ + bτ2 ∈ Rw if and only if

(6.1a) B1 < a
(uwp

2
+ vwq

)
+ b

(uw

2
− uwq +

vwpq

2

)
< B2

and

(6.1b) |auw + b(uwp+ vwq)| < B3.

We can solve this system of inequalities and obtain finitely many pairs of inte-
gers (a, b). If we find a pair with q �a, then Proposition 5.1 is true for this instance.
Thus, Proposition 6.1 leads to a “searching algorithm” to solve Proposition 5.1 for
a particular parameter set.

Proof. Let 1
2τ

w+1 = xw+iyw. By elementary geometry we know that a point (x, y)
that lies between the upper and lower length sides of Rw satisfies(

|τ |w+1

2

)2

< xxw + yyw <
|τ |w+1

2

(
|τ |w+1

2
+ s

)
.

Since

xw + iyw = uw +
vwp

2
+ ivw

√
q − 1/4

and since we want to have constraints for integers a and b in (x, y) with

x+ iy = λ = aτ + bτ2 =
ap

2
+

b

2
− bq + i(a+ bp)

√
q − 1/4,

we obtain

xxw + yyw = a
(uwp

2
+

vw
4

)
+ b

(
1

2
− q

)(
uw +

vwp

2

)
+ (a+ bp)vw

(
q − 1

4

)
,

from which (6.1a) follows.
The inequality for (x, y) being in between the sides of Rw parallel to τw is given

by

|xyw − yxw| <
|τ |w+1

2

(
|v0 − v1| |τ |w

2
−√

q

)
= B3

√
q − 1/4

and, likewise as above, we have

xyw − yxw =

(
a
vwp

2
+ bvw

(
1

2
− q

)
− (a+ bp)

(
uw +

vwp

2

))√
q − 1/4.

The inequality (6.1b) follows.
Therefore the lattice point λ ∈ Λτ ∩ Rw satisfies both inequalities stated in the

lemma and, the other way around, all such points are inside Rw. �
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7. Huge bounds for w

This section deals with showing that the inequalities (5.1) have no integer solu-
tions. We do this by providing a method to find for a fixed q all w such that (5.1)
is satisfied. More precisely, we will give a (rather huge) bound on w such that
solutions (if any) are only possible for smaller values.

However, for a single fixed q we still have (too) many possiblities to test all w;
see Lemma 7.2 below and the text afterwards. Therefore we will reduce the upper
bound of w by using a variant of the Baker–Davenport method [5] in section 8.

We can restrict ourselves to the following setting. We may assume b > 0 since
otherwise −a, −b, and w would satisfy (5.1). Moreover, we may assume that
gcd(a, b) = 1. If a and b would have a common divisor d, then with a, b, and w
also a/d, b/d, and w would satisfy (5.1).

As a first step we want to find a bound for w for a fixed integer q ≥ 2.

Proposition 7.1. For every q there exists an explicitly computable bound wq such
that the inequalities (5.1) do not have any integer solutions with w ≥ wq.

The following lemma states the precise conditions when solutions of (5.1) are
possible. Proposition 7.1 is a direct consequence of this result.

Lemma 7.2. Solutions to (5.1) exist only if

(7.1) 7.72 · 1013 log q log(
√
ψq) log

(
4.87w

max{3π, 2 log q}
log(

√
ψq)

)
> − logχ+

w − 4

2
log q

with χ = 9 and ψ = 4 holds.
In particular, for

w ≥ 8.68 · 1015 log q log log q if q ≥ 13

and

w ≥ 1.973 · 1016 if q ∈ {2, 3, . . . , 12}
the inequalities (5.1) do not have any integer solutions.

It is easy to see that for fixed q the inequality (7.1) cannot hold if w is large.
For instance q = 2 yields w ≤ w2 = 8.596 · 1015 or for q = 42 we obtain w ≤ w42 =
2.747 · 1016. This is one of the key results used in the proof of our main result,
Theorem 2.3.

In the following, we denote by h(α) the absolute logarithmic height, which is
defined as follows. Let α be an algebraic number of degree d and with minimal
polynomial

a0

d∏
i=1

(X − αi) ,

then

h(α) =
1

d

(
log |a0|+

d∑
i=1

max{0, log |αi|}
)
.

For the proof of Lemma 7.2 and in view of (5.1) we apply the following result
due to Matveev [16].
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Theorem 7.3 (Theorem 2.2 with r = 1 in [16]). Denote by α1, . . . , αn algebraic
numbers, not 0 or 1, by logα1, . . . , logαn determinations of their logarithms, by D
the degree over � of the number field K = �(α1, . . . , αn), and by b1, . . . , bn rational
integers. Furthermore let κ = 1 if K is real and κ = 2 otherwise. For all integers j
with 1 ≤ j ≤ n choose

Aj ≥ max {Dh(αj) , |logαj | , 0.16} ,
and set

B = max {1} ∪ {|bj |Aj/An : 1 ≤ j ≤ n}.
Assume that

b1 logα1 + · · ·+ bn logαn = 0.

Then

log |b1 logα1 + · · ·+ bn logαn| ≥ −C(n, κ)max {1, n/6}C0W0D
2Ω

with

Ω = A1 · · ·An,

C(n, κ) =
16

n!κ
en(2n+ 1 + 2κ)(n+ 2)(4(n+ 1))n+1

(
1

2
en

)κ

,

C0 = log
(
e4.4n+7n5.5D2 log(eD)

)
, W0 = log(1.5eBD log(eD)).

Proof of Lemma 7.2. We observe that in Matveev’s theorem we have n = 3, D = 4,
and κ = 2 since we use

α3 =
a+ bτ

|a+ bτ | , α2 =
τ

|τ | , and α3 = i.

Moreover, we set b3 = 1, b2 = −w and b1 = k.
Next, let us compute the heights of a+bτ

|a+bτ | and τ
|τ | . Let us note that for an

imaginary quadratic integer α the algebraic number α/|α| is a zero of

|α|4 (X − α/ |α|)(X − ᾱ/ |α|)(X + α/ |α|)(X + ᾱ/ |α|)
and therefore

(7.2) h

(
α

|α|

)
=

1

4
(log |a0|+ 4 log |α/ |α||) ≤ log |α|

since |a0| ≤ |α|4. We choose

A3 = 8 log(
√
ψq) = 4 log(ψq2) ≥ 4 log |a+ bτ | ,

A2 = 2 log q = 4 log |τ | ,
A1 = 2π = 4 |log i| .

Next we find an upper bound for k. Let us note that
∣∣∣log a+bτ

|a+bτ |

∣∣∣ < 2π and from

the consideration above we have∣∣∣∣log τ

|τ |

∣∣∣∣ ≤ π − arctan(
√
4q − 1) ≤ 2π

3
.

Therefore, a very crude estimate of inequality (5.1a) yields∣∣∣∣2π + w
2π

3
− k

π

2

∣∣∣∣ < π

2
,
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and, thus, k ≤ 3w
2 . We choose

B = w
max{3π, 2 log q}

A3
.

Before we may apply Theorem 7.3 we have to check that our linear form in loga-
rithms (i.e., the left hand side of (5.1a)) is non-zero. Let us assume for the moment
the contrary. But assuming that the linear form in logarithms is zero expressed in
geometric terms is that 1

2τ
w+1 + 1

2 (aτ + bτ2) lies on the line segment joining the

points v0τ
w and v1τ

w, thus equals 1
2τ

w+1, which contradicts Lemma 4.3. In view
of inequality (5.1a) and Theorem 7.3 we obtain (7.1).

We are left to compute the explicit bounds for w. Let us assume for the moment
that max{3π, 2 log q} = 2 log q, i.e., that q ≥ 112 > e3π/2. Let us note that under
this assumption we have log(

√
ψq) < 1.15 log q. By a crude estimate we deduce

that inequality (7.1) is not satisfied if

(7.3) 1.954 · 1014 log q logw < w

holds, unless w < 1010. Due to a result of Pethő and de Weger [20], namely their
Lemma 2.2, an inequality of the form A log x ≥ x with A > e2 implies the inequality
x < 2A logA. Therefore we find an explicit bound for w, namely

w ≥ 8.68 · 1015 log q log log q > 3.908 · 1014 log q log
(
1.954 · 1014 log q

)
,

which implies (7.3) and consequently the non-existence of solutions.
By solving inequality (7.1) for each integer 2 ≤ q < 112 one can easily show that

the explicit bounds stated in the lemma also hold for q < 112. �

Proof of Proposition 7.1. The result follows out of Lemma 7.2 since for fixed q
Inequality (7.1) does not hold if w is sufficiently large. �

8. Reducing the bounds for w

The bounds from the previous section (Proposition 7.1) are too huge in order
to test all remaining configurations in reasonable time. Now our aim is to reduce
these bounds which is done below and works very well: For instance, the bound
w2 = 8.596 · 1015 is reduced to w̃2 = 140. We modify a method due to Baker and
Davenport [5] to succeed; see Lemma 8.1 for details.

The remaining section deals with special cases and the occurrence of some linear
dependence in the linear form in logarithms. Lemma 8.2 allows us to test for this
linear dependence and in Lemma 8.3 we describe how to deal with this situation.
At the end, we deal with two special cases (Lemma 8.4).

Let us denote the distance to the nearest integer by ‖ · ‖.

Lemma 8.1. Suppose we have a bound wq for w (i.e., inequalities (5.1) do not
have any integer solutions for w ≥ wq). Fix a and b. Let P/Q be a convergent to

ε =
2

iπ
log

τ

|τ |
with the properties that ‖Qε‖ = κ/wq for some κ < 1/4, but ‖Qδ‖ > 2κ, where

δ =
2

iπ
log

a+ bτ

|a+ bτ | .
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Then the inequalities (5.1) do not have any integer solutions with our fixed a and
b, and with

w ≥ w̃a,b =
2

log q
log

(
2χQ

κπ

)
+ 4,

where χ = 9.

Note that κ < 1/4 is formally not needed as an assumption in the lemma, but
‖Qδ‖ > 2κ implies this condition.

Proof of Lemma 8.1. Assume that wq > w ≥ w̃a,b is satisfied and that we have a
solution of (5.1). We multiply inequality (5.1a) by 2Q/π and use the notations of
the lemma to obtain

|Qδ − wQε+ k| < 2χQ

π
q2−w/2 ≤ κ.

But on the other hand, we have

|Qδ − wQε+ k| ≥ ‖Qδ‖ − w ‖Qε‖ > 2κ− w
κ

wq
> κ.

Combining these two inequalities yields a contradiction. �

We want to emphasize that Lemma 8.1 yields bounds only in the case when ε and
δ are linearly independent over �. If this is not the case, then the considerations
in the remaining section can be used. In particular, this is the case if b = 0 or
2a+ bp = 0 holds.

The following lemma allows us to test the linear dependence of log
(

τ
|τ |

)
and

log
(

a+bτ
|a+bτ |

)
over �.

Lemma 8.2. Suppose we have integers a and b such that m = |a+bτ |2 < ψ2q4 with
ψ = 4. Let us write q = d1d

2
2 and m = m1m

2
2, such that d2 and m2 are maximal

with respect to gcd(d1, d2) = gcd(m1,m2) = 1. Set m′ = m1/ gcd(m1, d1). With ν�
being the �-adic valuation, set α� = ν�(q) for all primes � | q. For odd primes � | q
let α′

� = α� if � | d1m′ and put α′
� = α�/2 otherwise. If 2 | q, we put

α′
2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2/2 if d1 ≡ m′ ≡ 1 mod 4,

α2 if 2 | d1m′ and if d1 ≡ 1 mod 4 or m′ ≡ 1 mod 4,

α2 if 2 � d1m
′ and if d1 ≡ 3 mod 4 or m′ ≡ 3 mod 4,

2α2 if 2 | d1m′ and if d1 ≡ 3 mod 4 or m′ ≡ 3 mod 4.

Let N be the greatest common divisor of all α′
� with primes � | q. Then log

(
τ
|τ |

)
and

log
(

a+bτ
|a+bτ |

)
are linearly dependent over � if and only if

(8.1)

(
τ

|τ |

)η

=

(
a+ bτ

|a+ bτ |

)ϑ

for some positive integer ϑ | 24N and some integer η with |η| < ϑ
(
4 + 2 logψ

log q

)
.

Proof. It is immediate that log
(

τ
|τ |

)
and log

(
a+bτ
|a+bτ |

)
are linearly dependent over �

if and only if (8.1) holds. First, let us consider (8.1) as an equation in the ideal

group of the field K = �(τ,
√
d1,

√
m′).
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We aim to compute the prime ideal factorization of (�) for every prime � | q.
We already know by Lemma 4.2 that every such ideal (�) splits in �(τ ) and is
therefore unramified. Furthermore, by definition d1 and m′ are coprime; therefore,
(�) with an odd prime � | q is at most in one of the fields �(

√
d1) and �(

√
m′)

ramified. Hence, (�) is ramified in K if and only if � | d1m′. Moreover, if the
ideal (�) is ramified, then the ramification index is exactly two. Altogether we get
the following by using the fact that K is an Abelian extension of �.

• If � � d1m
′, then (�) = J�J̄�, where J� | (τ ) is the product of distinct prime

ideals.
• If � | d1m′, then (�) = J 2

� J̄ 2
� , where J� | (τ ) is the product of distinct prime

ideals.

Let us turn to the case � = 2. Recall that the ideal (2) ramifies in the quadratic

field �(
√
d) if and only if d ≡ 2 mod 4 or d ≡ 3 mod 4. We have to distinguish

between several cases.

• First, let us assume that the ideal (2) neither ramifies in �(
√
d1) nor in

�(
√
m′) (and consequently not in �(

√
d1m′) either), i.e., d1 ≡ m′ ≡ 1

mod 4. Then (2) is also unramified in K and we have (2) = J2J̄2, where
J2 is the product of distinct prime ideals.

• There is no situation, when the ideal (2) ramifies in exactly one of the fields

�(
√
d1), �(

√
m′) and �(

√
d1m′).

• Next, suppose the ideal (2) is ramified in exactly two of the fields �(
√
d1),

�(
√
m′) and �(

√
d1m′), i.e., one of the two cases

◦ 2 | d1m′ together with d1 ≡ 1 mod 4 or m′ ≡ 1 mod 4, or
◦ 2 � d1m

′ together with d1 ≡ 3 mod 4 or m′ ≡ 3 mod 4
occurs. Then (2) = J 2

2 J̄ 2
2 , where J2 is the product of distinct prime ideals.

• If the ideal (2) is ramified in all of the fields �(
√
d1), �(

√
m′), and

�(
√
d1m′), i.e., 2 | d1m′ together with d1 ≡ 3 mod 4 or m′ ≡ 3 mod 4,

then (2) = J 4
2 J̄ 4

2 , where J2 is some prime ideal.

Therefore, by considering the definition of α′
�, we obtain

(τ ) =
∏
�|q

� prime

J 2α′
�

� .

Note that α′
� = α�/2 only happens if α� is even. Furthermore we obtain(

τ

|τ |

)
=

∏
�|q

� prime

(
J�

J̄�

)α′
�

.

Therefore
(

τ
|τ |

)
is an Nth power if and only if N divides the greatest common

divisor of all α′
� with primes � | q.

Let us turn now from the ideal group point of view to the element point of view
of equation (8.1). So far we have proved that log

(
τ
|τ |

)
and log

(
a+bτ
|a+bτ |

)
are linearly

independent over � if and only if there exist integers ϑ and η such that(
τ

|τ |

)η (
a+ bτ

|a+ bτ |

)−ϑ

= 1
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and ϑ |N . Set n = gcd(η, ϑ). By taking nth roots we obtain

(8.2)

(
τ

|τ |

)η/n (
a+ bτ

|a+ bτ |

)−ϑ/n

= ζn,

where ζn is an nth root of unity. The group Gal(�(ζn)/�) is a subgroup of
Gal(K/�), and Gal(K/�) is isomorphic to a subgroup of (�/2�)3. Since 24 is
maximal with ϕ(24) = 8 (where ϕ is Euler’s phi function), we deduce that n | 24.
If we take equation (8.2) to the 24th power, we obtain the first statement of the
lemma.

Because of (7.2) we have heights

h

(
τ

|τ |

)
=

1

2
log q

and

h

(
a+ bτ

|a+ bτ |

)
≤ log |a+ bτ | = log

√
m < logψ + 2 log q.

Comparing these heights on the left and right side of (8.1) we obtain

η

2
log q = η h

(
τ

|τ |

)
= ϑh

(
a+ bτ

|a+ bτ |

)
< ϑ(logψ + 2 log q). �

Lemma 8.3. Suppose we have a bound wq for w (i.e., inequalities (5.1) do not
have any integer solutions for w ≥ wq), and suppose that we have for fixed a and b
a linear dependence of the form

η log

(
τ

|τ |

)
= ϑ log

(
a+ bτ

|a+ bτ |

)
,

such that ϑ > 0.

(1) Let P/Q be an expanded fraction of a convergent (i.e., P/Q = P ′/Q′ for a
convergent P ′/Q′) to ε = 2

π log
(

τ
|τ |

)
with the following properties. Suppose

WQ = (Q+ η)/ϑ is largest possible with WQ < wq (i.e., Q < wqϑ− η) and
WQ ∈ � such that

(8.3) Q |ε− P/Q| < 2χϑ

π
q2−WQ/2

with χ = 9 holds. If no such fraction P/Q exists, then set WQ = −∞.
(2) Let W be the smallest positive integer such that the inequality

(8.4)
2χϑ

π
q2−W/2 ≤ 1

2(Wϑ− η)

with χ = 9 holds.

Then the inequalities (5.1) do not have any integer solutions with our fixed a and
b, and with

w ≥ w̃a,b = max{WQ + 1,W}.
Proof. The assumption on the linear dependence yields an inequality of the form

(8.5)

∣∣∣∣(wϑ− η) log

(
τ

|τ |

)
− ϑk

iπ

2

∣∣∣∣ < χϑq2−w/2

or with the notation of Lemma 8.1,

(8.6)

∣∣∣∣ε− ϑk

wϑ− η

∣∣∣∣ < 2χϑ

(wϑ− η)π
q2−w/2.
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Note that due to a well-known theorem of Legendre we have the following: If

2χϑ

(wϑ− η)π
q2−w/2 ≤ 1

2(wϑ− η)2
,

which is true for large enough w, then (ϑk)/(wϑ − η) = P ′/Q′, where P ′/Q′ is a
convergent to ε. Since P ′ and Q′ are coprime, we have Q′ |wϑ− η, so wϑ− η = Q
for some multiple Q of Q′. �

Lemma 8.4. Suppose we have a bound wq for w (i.e., inequalities (5.1) do not
have any integer solutions for w ≥ wq) and suppose that a = 1 and either b = 0
or b = −2p. Let P/Q be an expanded fraction of a convergent (i.e., P/Q = P ′/Q′

for a convergent P ′/Q′) to ε = 2
π log

(
τ
|τ |

)
with the following properties. Suppose

WQ = Q is largest possible with WQ < wq (i.e., Q < wq) such that

Q |ε− P/Q| < 2χ

π
q2−WQ/2

with χ = 9 holds. If no such convergent exists, then set WQ = −∞.
Then the inequalities (5.1) do not have any integer solutions with our fixed a and

b as above, and with
w ≥ w̃a,b = max{WQ + 1, 25}.

Note that the bound 25 is sharp for q = 2, but for q > 2 a better bound could
be chosen.

Proof of Lemma 8.4. In both cases log
(

a+bτ
|a+bτ |

)
is an integral multiple of iπ

2 . There-

fore, we consider the inequality

(8.7)

∣∣∣∣w log

(
τ

|τ |

)
− k

iπ

2

∣∣∣∣ < χq2−w/2

which is similar to (8.5). In the same way as before (proof of Lemma 8.3) and with
the notation of Lemma 8.1 we obtain∣∣∣∣ε− k

w

∣∣∣∣ < 2χ

wπ
q2−w/2

and that k
w equals a convergent P ′/Q′ to ε if

(8.8)
2χ

wπ
q(−w+4)/2 ≤ 1

2w2

which is true for large w, in particular for all w ≥ 25. Therefore a solution w ≥ 25
to inequalities (5.1) corresponds to a fraction P/Q = P ′/Q′ such that Q = w. �

In order to get a reduced bound w̃q, we look at all possible combinations of a
and b and calculate a bound w̃a,b by the lemmata and considerations above. The
bound w̃q is the maximum of all these bounds.

9. Geometry of numbers

The theory of the geometry of numbers is used to show the existence of a lattice
point in the rectangle Rw with the desired properties (i.e., out of the lattice Λτ

but not in Λτ2). We use two other rectangles inside Rw, one which is wide but

low (called R̃WL) and one which is narrow but high (called R̃NH). Minkowski’s
lattice point theorem (Theorem 9.2) gives us the existence of a lattice point inside
each of these two rectangles (see Lemma 9.3), and we are able to construct our
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Rw

digit set D

R̃NH

R̃WL

λWL

λNH

R̃NH

R̃WL

λWL

λNH

Figure 9.1. The rectangles R̃NH and R̃WL, and points λNH and λWL.

desired lattice point out of it (Lemma 9.5), provided that the two found points are
linearly independent. This is guaranteed if the intersection of the two mentioned
rectangles with Λτ/2 only contains τw+1/2, which follows from the inequalities (5.1)
by Lemma 9.1. So much for a short overview on this section; let us begin.

We use the lattices Λτ and Λτ/2, which were defined in section 4. Throughout

this section, we further use the rectangle R̃NH with vertices

τw+1

2
± i

τw+1

|τ |w+1 q
2
√
q + 2

and

τw+1

2
+

τw+1

|τ |w+1

s

4q
± i

τw+1

|τ |w+1 q
2
√
q + 2

with s =
√

q−1/4
q+2 , and the rectangle R̃WL with vertices

τw+1

2
± i

τw+1

|τ |w+1

1

16q

q(w+1)/2√
q − 1

4

and

τw+1

2
+

τw+1

|τ |w+1 · 4q(3−w)/2
(
q − 1

4

)
± i

τw+1

|τ |w+1

1

16q

q(w+1)/2√
q − 1

4

.

Note that these two rectangles are both contained in (the closure) of Rw. See also
Figure 9.1.



840 DANIEL KRENN AND VOLKER ZIEGLER

In Lemmas 9.1, 9.4, and 9.5 we need that (at least) one of the conditions

• w ≥ 8 and q ≥ 258,
• w ≥ 9 and q ≥ 17,
• w ≥ 10 and q ≥ 7,
• w ≥ 11 and q ≥ 5,
• w ≥ 12 and q ≥ 4,
• w ≥ 13 and q ≥ 3, or
• w ≥ 16 and q ≥ 2

(9.1)

on q and w holds. These bounds are sharp in Lemma 9.4.

Lemma 9.1. Suppose q and w satisfy conditions (9.1). If inequalities (5.1) do not
have any integer solutions (for given q and w), then the only lattice point of Λτ/2

in R̃NH ∩ R̃WL is τw+1/2.

Since by construction R̃NH ∩ R̃WL is a rectangle with side lengths

(9.2) 2q2
√
q + 2 and 4q(3−w)/2

(
q − 1

4

)
,

therefore has an area which decreases with w, it seems very reasonable to assume

that the only lattice point contained in R̃NH ∩ R̃WL is 1
2τ

w+1. In order to prove
this result, we reformulate this geometric problem into a problem from Diophantine
analysis (finding solutions for inequalities (5.1)).

Proof of Lemma 9.1. First let us note that the shortest vector of Λτ/2 is τ
2 which

has length
√
q/2 (see Lemma 4.4). Therefore the angle between the lower long side

of Rw and λ ∈ R̃NH ∩ R̃WL with λ = τw+1

2 is at most

(9.3) arcsin
4q(3−w)/2

(
q − 1

4

)
1
2

√
q

= arcsin
(
8q2−w/2

(
1− 1

4q

))
in absolute values. Due to the conditions (9.1), the argument of the arcsine is less
than 0.11 and we have arcsin(x) < 9x/8; we obtain an upper bound for that angle.
On the other hand, the angle between the vector τw and a+ bτ is∣∣arg a+ bτ − arg τw

∣∣ = ∣∣∣∣log( a+ bτ

|a+ bτ |

)
− log

(
τw

|τw|

)∣∣∣∣
=

∣∣∣∣log( a+ bτ

|a+ bτ |

)
− w log

(
τ

|τ |

)
+ k

iπ

2

∣∣∣∣
for some integer k. This together with inequality (9.3) yields inequality (5.1a).

Now let us write λ = 1
2τ

w+1 + 1
2 (aτ + bτ2). Further, by (9.2) we know that∣∣ τ

2 (a+ bτ )
∣∣2 ≤ q5

(
1 + 2

q

)
+ 16q5−w

(
1− 1

4q

)2
< 4q5

provided that w ≥ 4. Thus

|a+ bτ | < ψq2

with ψ = 4 and a and b are bounded in terms of q. All together we obtain inequal-
ities (5.1). �

In order to find at least one point inside each of the rectangles R̃NH and R̃WL we
use Minkowski’s lattice point theorem (for example, see Theorem II in Chapter III
of Cassels [7]).
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Theorem 9.2 (Minkowski’s lattice point theorem). Let S ⊂ �n be a compact point
set of volume V which is symmetric about the origin and convex. Let Λ be any n-
dimensional lattice with lattice constant d(Λ). If V ≥ 2n d(Λ), then there exists a
pair of points ±λ ∈ Λ ∩ S, with λ = 0.

Lemma 9.3. For j ∈ {NH,WL} there exists a lattice point λj ∈ Λτ/2 in the

rectangle R̃j.

The situation of this lemma is shown in Figure 9.1.

Proof. First, note that the lattice Λτ/2 has lattice constant

d
(
Λτ/2

)
= 1

4 d(Λτ ) =
1
4q
√

q − 1
4 .

Let us mirror the rectangle R̃NH on the line joining the points v0τ
w and v1τ

w,

and consider the rectangle R̃NH joint with the mirrored rectangle. We obtain a
compact, symmetric around 1

2τ
w+1, convex set (a rectangle) of volume

2
s

4q
· 2q2

√
q + 2 = q

√
q − 1

4 = 4 d
(
Λτ/2

)
.

Now Minkowski’s lattice point theorem yields a λNH ∈ R̃NH ∩ Λτ/2.

Let us construct λWL similarly: Again we mirror the rectangle R̃WL on the line

joining the points v0τ
w and v1τ

w and consider the rectangle R̃WL joint with the
mirrored rectangle. We obtain a compact, symmetric around 1

2τ
w+1, convex set

again of volume

2 · 4q(3−w)/2
(
q − 1

4

)
· 2 1

8q

q(w+1)/2√
q − 1

4

= q
√
q − 1

4 = 4 d
(
Λτ/2

)
.

Minkowski’s lattice point theorem yields a λWL ∈ R̃WL ∩ Λτ/2. �

From now on we assume that we have λNH and λWL as in Lemma 9.3. The
following result is needed in the proof of Lemma 9.5.

Lemma 9.4. Suppose q and w satisfy conditions (9.1). Then all lattice points of
the form

τw+1

2
+ a

(
λNH − τw+1

2

)
+ b

(
λWL − τw+1

2

)
with non-negative integers a and b at most 2q are contained in the rectangle Rw.

Proof. All given points are contained in Rw if the two inequalities

2q · q2
√
q + 2 + 2q · 1

16q

q(w+1)/2√
q − 1

4

<
1

2

√
qw+1

4q − 1
−√

q

and

2q · s

4q
+ 2q · 4q(3−w)/2

(
q − 1

4

)
< s

with s =
√

q−1/4
q+2 are satisfied. This is the case for the given conditions. �

With the construction above (and the assumptions of Lemma 9.4) we are in a
position to prove the following lemma.
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Lemma 9.5. Suppose q and w satisfy conditions (9.1). If

R̃NH ∩ R̃WL ∩ Λτ/2 =
{

1
2τ

w+1
}
,

then there exists a λ ∈ Rw with λ ∈ Λτ \ Λτ2 .

Proof. First we show that the lattice points μNH = λNH − 1
2τ

w+1 and μWL =

λWL − 1
2τ

w+1 are linearly independent. Let us shift the origin to 1
2τ

w+1 and let us
rotate the coordinate system such that the long “lower side” of the rectangle Rw,
which contains the origin, is parallel to the real axis. In this new coordinate system,

we write λ̂NH and λ̂WL for λNH and λWL, respectively. We have
∣∣Re(λ̂NH

)∣∣ <∣∣Re(λ̂WL

)∣∣ and 0 < Im
(
λ̂WL

)
< Im

(
λ̂NH

)
, i.e., λNH and λWL are not colinear and

therefore μNH and μWL are linearly independent.
Since we know now that μNH and μWL are linearly independent, there exists a

basis ν1, ν2 of Λτ/2 such that

μNH = α11ν1 and μWL = α21ν1 + α22ν2

with 0 < α11 and 0 ≤ α21 < α22. In our case this means there exists a basis ν1, ν2
for Λτ/2 such that ν1 and ν2 are contained in the parallelogram with vertices 0, μNH,
μWL and μNH + μWL. Moreover, by the assumptions of the lemma and Lemma 9.4

all lattice points of the form λ = τw+1

2 + aν1 + bν2 ∈ Λτ/2 with 0 ≤ a ≤ 2q and
0 ≤ b ≤ 2q are contained in the rectangle Rw.

Now let us write

ν1 = β11τ + β12τ
2 and ν2 = β21τ + β22τ

2.

Since ν1 and ν2 as well as τ and τ2 are bases to the same lattice Λτ we conclude that(
β11 β12

β21 β22

)
∈ SL2(�). Our aim is to show that there exist non-negative integers a

and b at most 2q such that λ ∈ Λτ but λ ∈ Λτ2 . Setting

1
2τ

w+1 = uw
τ

2
+ vw

τ2

2
,

it suffices to prove that

(uw + aβ11 + bβ12)
τ

2
+ (vw + aβ21 + bβ22)

τ2

2
= γ1

τ

2
+ γ2

τ2

2

for some γ1 ≡ 2 mod 2q and γ2 ≡ 0 mod 2q has a solution. But a solution can be
found from a solution to the linear system

uw + aβ11 + bβ12 = 2,

vw + aβ21 + bβ22 = 0,

modulo 2q. Such a solution certainly exists since

(
β11 β12

β21 β22

)
∈ SL2(�). �

With the previous results, we are ready to prove the following proposition.

Proposition 9.6. For every q there exists an explicitly computable bound wq such
that for each w ≥ wq there exists a lattice point

aτ + b(q − pτ )

with a ∈ �, q � a and with b ∈ � in the rectangle Rw.
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Proof. Proposition 7.1 states a similar result for the non-existence of solutions of
inequalities (5.1). By Lemma 9.1 this translates to having the single intersection

point 1
2τ

w+1 in the rectangles R̃NH and R̃WL. This condition is then used in
Lemma 9.5 to find a lattice point inside Rw as desired. �

10. An algorithm to test for fixed q

In order to prove Proposition 5.1 for given q and p, but all w—this means showing
the existence of a lattice point in each rectangle Rw with the stated properties—we
apply the following algorithm.4

Algorithm 10.1. We fix q and fix a choice of p ∈ {−1, 1} as input. This algorithm
returns a list of values for w for which no lattice point in Rw exists. We proceed
as follows.

(1) Compute an upper bound wq for possible solutions (with w < wq) using
Matveev’s Theorem 7.3 and in particular inequality (7.1).

(2) Reduce the bound wq by the Baker–Davenport method (section 8).
(a) Compute sufficiently many5 (consecutive) convergents P/Q to ε= 2

iπ log
τ
|τ |

and save them in a list L. Precalculate and save κ with ‖Qε‖ = κ/wq as
well.

(b) Use Lemma 8.4 to deal with the case 2a + bp = 0 (i.e., a = 1, b = −2p)
and compute the new bounds w̃a,b.

(c) For all integers a, b with |a+ bτ | < ψq2, ψ = 4 and with b > 0, coprime
a, b and excluding the situations from step (b) do the following:

(i) Find η and ϑ such that(
τ

|τ |

)η

=

(
a+ bτ

|a+ bτ |

)ϑ

using Lemma 8.2.
(ii) If such η and ϑ do not exist in step (i), find the convergents P/Q

in L with smallest Q that satisfies κ < 1
4 and ‖Qδ‖ > 2κ with

δ = 2
iπ log a+bτ

|a+bτ | . Compute the new bound w̃a,b due to Lemma 8.1.

(iii) If such η and ϑ in step (i) exist, find an expanded fraction P/Q of
the convergents in L with largest Q that satisfies WQ = (Q+η)/ϑ ≤
wq and (8.4). Compute the new bound w̃a,b due to Lemma 8.3.

(d) Calculate w̃q as the maximum of all w̃a,b.
(3) For all 4 ≤ w < w̃q (with exceptions obtained by taking into account the

assumptions of Proposition 5.1), we verify Proposition 5.1 directly as described
in section 6.

Note that Algorithm 10.1 as it is written is not guaranteed to terminate.6 The
reason is that it might be impossible to find a convergent P/Q with the desired
properties in step (ii). Stopping this search at some point and not using the reduced
bound of step (2) will make the algorithm terminate for sure. However, a huge
amount of w have to be checked in step (3) then.

4See http://www.danielkrenn.at/koblitz2-non-optimal for the code.
5“sufficiently many” means that in step (ii) of the algorithm a convergent can be found for all

(non-dependent) situations a and b.
6One might call Algorithm 10.1 only a “procedure”.

http://www.danielkrenn.at/koblitz2-non-optimal
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Proposition 10.2. Let q ≥ 2. If Algorithm 10.1 terminates, then it is correct, i.e.,
it returns a list of values for w for which no lattice point in Rw with the properties
stated in Proposition 5.1 exists.

Proof. Section 9 reduces the problem of finding lattice points in Rw to showing
that inequalities (5.1) do not have any integer solutions. Step (1) provides a bound
for w; it can be computed effectively according to Proposition 7.1. Step (2) reduces
this bound. We get a bound for each possible combination of a and b (all the
different cases are analyzed in section 8); correctly determining whether we have a
linear dependence is done via Lemma 8.2.

Taking the maximum of all these bounds yields w̃q, a new bound. In step (3)
all remaining w are checked by a direct search according to Proposition 6.1. Since
this proposition finds a lattice point if and only if one exists, we are able to classify
all the w and return a list of the exceptional values. �

Proof of Proposition 5.1. We apply Algorithm 10.1. �

Part III. The part with the digits

11. Overview

In this part of the article, we construct the actual counterexamples to the mini-
mality of the width-w non-adjacent forms (see section 2 for the relevant definitions).
This means we have to find an expansion of a lattice point with a lower number of
non-zero digits than the width-w non-adjacent form (w-NAF) of this point.

We reuse the ideas of Heuberger and Krenn [12] for our construction. This work
also tells us that (if it exists) a counterexample using a (multi-)expansion of weight
two can be found. Therefore, we will try to find

(11.1) Aτw−1 + B = Cτw +D = Eτ2w + Fτw +G,

where the most left and the most right parts of the equation are valid digit expan-
sions, i.e., A, B, E, F and G are digits. Moreover, we assume that D is a digit
(equal to G), but, in order to get a counterexample to minimality, C is not allowed
to be a digit. However, the point C is important during the construction of this
counterexample: we will have C = Eτw + F and D = G, and, more important,
there will be a change Δ with τC = A+Δ and D = B −Δτw−1.

Some explicit constructions are given in section 13 and Proposition 17.1, but
most of the time we will consider a more general situation. There, the existence of
a construction as above relies on Proposition 5.1, which was proven in the previous
part. This lemma gives us the point C. The change Δ is discussed in section 14,
and section 15 deals with the digits B, D, and G. Everything is glued together in
sections 16 and 17.

We begin with a section which deals with the digit set we use. Note that this
digit set is strongly related to the Voronoi cell defined in section 3.

12. Digit sets

In this section, we make a formal definition of the used digit set. This is equiv-
alent to the definition stated in section 2 but uses the Voronoi cell to model the
minimal norm property. Afterwards we show that this choice of digits is unique.
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Definition 12.1 (Minimal norm digit set). Let w be an integer with w ≥ 2 and
D ⊆ �[τ ] consist of 0 and exactly one representative of each residue class of �[τ ]
modulo τw that is not divisible by τ . If all such representatives η ∈ D satisfy
η ∈ τwV , then D is called the minimal norm digit set modulo τw.

The minimal norm digit set above is uniquely determined; see below.

Proposition 12.2. Let D be a minimal norm digit set modulo τw. Then D is
uniquely determined. In particular, there exists a unique element of minimal norm
in each residue class modulo τw which is not divisible by τ .

This proposition was proved for q = 2 in Avanzi, Heuberger and Prodinger [4].
The proof there uses a result of Meier and Staffelbach [17], namely their Lemma 2.
This lemma and the result for q = 2 can be generalized in a straightforward way
for arbitrary primes q. We use a different method in this article, which gives us the
result for arbitrary integers q here.

Proof of Proposition 12.2. Digits strictly inside the scaled Voronoi cell τwV are
unique, since they are closer to 0 than to any other point of τw�[τ ] by the definition
of the Voronoi cell. In Lemma 4.3 we have already shown that there are no lattice
points on the boundary of the scaled Voronoi cell τwV . Therefore no non-uniqueness
can occur and thus the proposition is proved. �

13. Non-optimality for some values of w

We start here with a first family of counterexamples to optimality. We show the
existence of expansions as in (11.1). The following propositions are devoted to the
case when w = 2, where we give an explicit construction. Afterwards, we consider
the case w = 3.

Proposition 13.1. Let q ≥ 3 and p = 1, and set a = �q/2�. Set

E = 1,

A = (1− a)τ + a− q, F = q − a,

B = 1− τ, G = (a− 1)τ + 1.

Then

(13.1) Aτ +B = Eτ4 + Fτ2 +G

and both sides of the equation are valid digit expansions, i.e., the 2-NAF is not a
minimal digit expansion.

Proposition 13.2. Let q≥3 and p=−1, and set a=�q/2�. Set

E = 1,

A = (1− a)τ − a+ q, F = q − a,

B = (a− 1)τ − 1, G = −τ − 1.

Then

(13.2) Aτ +B = Eτ4 + Fτ2 +G

and both sides of the equation are valid digit expansions, i.e., the 2-NAF is not a
minimal digit expansion.
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Proof of Propositions 13.1 and 13.2. This proof is assisted7 by SageMath [24].
Equality in (13.1) and (13.2) is easy to verify and can be done by a simple symbolic
calculation over the ring �[τ ].

We are left with checking that we have valid digit expansions, i.e., that all claimed
digits are indeed digits. We do this by showing that these quantities are closer to
0 than to any neighboring lattice point of τ2�[τ ] (see also the construction of the
digit set via Voronoi cells, section 12). These neighboring lattice points are exactly
the τ2-multiples of the points 1, τ , τ − p, −1, −τ and −τ + p. This leads to six
inequalities for each digit. Note that we have |a+ bτ |2 = a2 + b2q + pab. We also
check that the point C = τ2 + (q − a) = pτ − a is not a digit for technical reasons,
which leads to one additional inequality. Note that we have Δ = −pa (with the
notation of section 11) here.

However, distinguishing between p = 1 and p = −1 and between q = 2q̃ (even)
and q = 2q̃ − 1 (odd), we get 25 polynomials (each as difference of the two sides
of an inequality) out of �[q̃]. All these polynomials have degree at most 3 and a
positive leading coefficient, and we can show, by using interval-arithmetic, that all
their roots are smaller than 2. This means all polynomials are positive for q̃ ≥ 2
and therefore the inequalities are satisfied.

Since the constant terms of the claimed digits are not divisible by q, they them-
selves are not divisible by τ . Therefore, we get valid digit expansions, which finishes
the proof. �

Proposition 13.3. Let q ≥ 3 and p = 1, and set a=�q/2� and b=
⌈
q2/(6q − 2)

⌉
.

For odd q set

E = 1,

A = (1− q)τ + (a− 1)q − 1, F = (q − a)τ + q − a,

B = (q − a)τ + a− 1, G = −aτ + a− 1,

and for even q set

E = 1,

A = (−a− b)τ + (a− 1)q + 1, F = (q − a− 1)τ + q − b,

B = aτ − aq + 1, G = −(a− 1)τ + (a− 1)q + 1.

Then

Aτ2 +B = Eτ6 + Fτ3 +G

and both sides of the equation are valid digit expansions, i.e., the 3-NAF is not a
minimal digit expansion.

Proposition 13.4. Let q ≥ 3 and p=−1, and set a=�q/2� and b=
⌈
q2/(6q − 2)

⌉
.

For odd q set

E = 1,

A = (q − 1)τ + (a− 1)q − 1, F = (q − a)τ + q − a,

B = −aτ + 1− a, G = (q − a)τ + 1− a,

7The worksheet can be found at http://www.danielkrenn.at/koblitz2-non-optimal.

http://www.danielkrenn.at/koblitz2-non-optimal
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and for even q set

E = 1,

A = (a+ b)τ + (a− 1)q + 1, F = (q − a− 1)τ − q + b,

B = −aτ − aq + 1, G = (a−)τ + (a− 1)q + 1.

Then

Aτ2 +B = Eτ6 + Fτ3 +G

and both sides of the equation are valid digit expansions, i.e., the 3-NAF is not a
minimal digit expansion.

Proof of Propositions 13.3 and 13.4. We use the same machinery as in the proof of
Propositions 13.1 and 13.2.

If p = 1 and q is odd, then we take C = (1 − a)τ − a for our technical point.
We use Δ = 1 − τ . Note that B = a − 1 + (q − a)τ and D = G = a − 1 − aτ .
To verify that A, B, E, F and G are digits, we, again, calculate the distance to 0
and its neighbors in τ3�[τ ]. This results in 31 inequalities, which are of polynomial
type. This leaves us to check if elements out of �[q̃] with degree at most 4 and
q = 2q̃ − 1 are positive, see the proof above for details. We can affirm this (it was
done algorithmically).

For p = −1 and odd q we use C = (1 − a)τ + a, Δ = −τ − 1, B = 1 − a − aτ ,
D = G = 1− a+ (q − a)τ and proceed in the same manner.

In the case that p = 1 and q is even, we have to be more careful because of the
definition of b. We start similarly and take C = −aτ − b for our technical point
and use Δ = q − 1. Moreover, we use B = 1 + aτ2 and D = G = 1 − (a − 1)τ2.
The verification of the digits is done as above, but we take b into account.

Since b =
⌈
q2/(6q − 2)

⌉
is obviously not polynomial, we cannot expect that these

distance inequalities are polynomials. To deal with the ceil-rounding, we use for the
moment b1 = q2/(6q − 2) + 1 and C1 = −aτ − b1 (note, this is not a lattice point)
instead of b and C in the resulting inequalities; we will correct this later. As this b1
is rational, we multiply the inequalities first by 6q − 2 and then check whether the
resulting polynomials (difference of the two sides of the inequality) out of �[q̃] are
positive for all q = 2q̃ as in the proof above. This verification is successful. This
particularly means, that the point −aτ − b1 is not in τ3V (the scaled Voronoi cell
containing the digits).

Next, consider C0 = −aτ − b0 with b0 = q2/(6q − 2). We have

C0 =
τ3

2
+ ciτ3

with c = Im(τ ) /(3q − 1). This means that C0 is on the boundary of τ3V (as τ3/2
is on the boundary). The point C = −aτ − b is located on the line from C0 to C1.
Due to convexity of τ3V , this lattice point C lies on the outside of τ3V and, thus,
is not a digit.

If we have p = −1, still with an even q, the proof works similarly, but we use
C = −aτ + b. �

14. Existence of a small change

From now on, in contrast to the previous section, where we have given an explicit
construction for a counterexample to minimality of the w-NAF, we start with a
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Figure 14.1. Parallelogram P of Lemma 14.1 for q = 5 and p = 1.

different approach. It still builds up on the ideas mentioned in the introduction
of Part III and will be described fully in section 16. Before we are ready for this
alternative construction, we need a couple of auxiliary results. In this section, we
look at the change Δ a bit more closely (see Lemma 14.2), but let us start with the
following lemma.

Lemma 14.1. Let P be the parallelogram with vertices 1, τ −p, −1, −τ +p. Then

a disc with center 0 and radius s =
√

q−1/4
q+2 fits exactly (i.e., the radius s is largest

possible) in the parallelogram P .

The situation is shown in Figure 14.1. Note that we have s ≥
√
7/4.

Proof. We can assume p = 1, since the other situation (p = −1) is just mirrored.
First, we calculate the difference of the areas of the two triangles with vertices τ−1,
− 1

2 , 1 and τ − 1, − 1
2 , 0 and get

1
2 Im(τ )

(
3
2 − 1

2

)
= 1

2

√
q − 1

4 .

This area is equal to the area of the triangle with vertices 0, 1 and τ − 1, which is

1
2s

√
Im(τ )

2
+ 9

4 = 1
2s
√
q + 2.

Therefore the desired s follows. �

Lemma 14.2. Let z be in the rectangle Rw. Then there exists a

Δ ∈ {−1, 1, τ − p,−τ + p} ,
such that z −Δ is in the interior of the scaled Voronoi cell τwV .

Note that we will have A = z − Δ and z = τC in the construction of our
expansions. Moreover, the point z is the point inside the rectangle Rw whose
existence was shown as the main result of Part II, Proposition 5.1.

Proof of Lemma 14.2. Let Pz be the parallelogram with vertices z + 1, z + τ − p,
z − 1, z − τ + p, i.e., a shifted version of the parallelogram P of Lemma 14.1; see
also Figure 14.1. Since z is in the (open) rectangle Rw, its distance to the line L
from τwv0 to τwv1 is smaller than s (note that s is the height of the rectangle Rw,
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section 3). Further, since the rectangle Rw starts
√
q away from the points τwv0

and τwv1, respectively, the distance from z to one of those two points is larger than√
q. Therefore, the line L cuts the parallelogram Pz into two parts. The two cutting

points are on different edges of Pz. This means, that there exists a vertex of the
parallelogram Pz on that side of the line L, where there is no rectangle Rw. Such
a point lies in the interior of the Voronoi cell τwV , which can be seen using some
properties of τwV , including that two neighboring edges of τwV have an obtuse
angle at their point of intersection and that a disc with center 0 and radius

√
q is

contained in τwV . �

15. Change in least significant digit

For our construction of the counterexample, we also have to deal with the change
in the least significant digit, i.e., with the digitsB, D andG in the expansions (11.1).

Lemma 15.1. We get

dA =

√
q

2
− 1

4
√
q

and dB =
1

4
√
q

in Figure 15.1.

Proof. The triangle v−1/2αv0 is similar to the triangle 0v1/2v1. Therefore

dA = Im(v0)
1
2 |τ |

Im(v1)
=

q − 1
2

2q

√
q =

√
q

2
− 1

4
√
q
.

To calculate dB we start as above. The triangle v3/2βv1 is similar to the triangle
−τδ0, so dB = dDdC/ |−τ |. We have

dC =
1

2

√
(Im(v1)− Im(v2))

2 +

(
1

2

)2

=
1

2

√
1

4
+

1

16(q − 1
4 )

=
1

4

√
1 +

1

4q − 1

by the Pythagorean theorem. The distance dD is the projection of −τ on the
normalized vector with direction iτ . Therefore

dD = Re

(
−τi

τ

|τ |

)
= − 1

|τ | Re
(
iτ2

)
=

1

|τ | Im
(
τ2
)
=

1
√
q

1

2

√
4q − 1 =

√
1− 1

4q
.

Now we can calculate dB as

dB =
1
√
q

√
1− 1

4q

1

4

√
1 +

1

4q − 1
=

1

4
√
q
. �

Lemma 15.2. For each point in z ∈ � there is a lattice point u ∈ �[τ ] not divisible
by τ with

|z − u| < 1
2 |τ |+ 1 = 1

2

√
q + 1

Proof. First note that if η ∈ �[τ ] is divisible by τ , then η + 1 and η − 1 are not
divisible by τ . Consider the lines z(z + τ/2) and z(z − τ/2). One of these lines
cuts a horizontal line with lattice points ηk = jτ + k, for some fixed j ∈ � and all
k ∈ �, on it. This means that a lattice point u can be found by first going from
z at most a distance of |τ | /2 and then at most 1 on the horizontal line. Strictly
smaller holds since both directions are linearly independent. �
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d A

d B

Im
v 1

1 2
|τ
|

Im
v 0

dC

dD

τ−τ

0

v0

v1

v2

v−1/2

v1/2v3/2

α

β

δ

γ

τv0

τv1 −τv2

Figure 15.1. Distances and points used in Lemma 15.1 and Proposition 15.3.

Proposition 15.3. If either w ≥ 4 and q ≥ 11 or w ≥ 8, then there is a possible
compensate change.

More precisely, if w ≥ 5 or q ≥ 5, then there is a digit a such that a+ τw−1 is a
digit as well. If either w ≥ 4 and q ≥ 11 or w ≥ 8, then there is a digit b such that
b+ ττw−1 is a digit as well.

Proof. The digit set D is contained in τwV . Consider the line form τw−1v−1/2 =
1
2τ

w−1 to −τw−1v−1/2 = − 1
2τ

w−1. From each end point of that line there is a
lattice point not divisible by τ within a radius

√
q/2+ 1 by Lemma 15.2. With the

quantities of Lemma 15.1 one can easily check that the inequality

1

2

√
q + 1 < |τ |w dA

|τ | =
√
q
w−1

(√
q

2
− 1

4
√
q

)



NON-MINIMALITY OF THE WIDTH-w NON-ADJACENT FORM 851

holds for either w ≥ 5 or q ≥ 5 (fixing w = 2 makes it easy to check the inequality
for q ≥ 5, then use monotonicity in w; use the same argumentation starting with
q = 2 and w ≥ 5). Thus, the lattice points found above are in the interior of τwV ,
and so are our desired digits a and a+ τw−1.

Now we do similarly to get digits b and b + ττw−1. We consider the line from
τw−1v3/2 = − τ

2 τ
w−1 to −τw−1v3/2 = − τ

2 τ
w−1 and have to check the inequality

1

2

√
q + 1 < |τ |w dB

|τ | =
√
q
w−1 1

4
√
q
.

That inequality is satisfied either if w ≥ 4 and q ≥ 11 or if w ≥ 8, which can again
be checked easily by monotonicity arguments. For w = 2 or w = 3 the inequality
is never satisfied. �

16. Finding a non-optimal w-NAF

In contrast to section 13, where we have given an explicit construction for a
counterexample to minimality of the w-NAF, we use a different approach here. It
still builds up on the ideas mentioned in the introduction of Part III, i.e., for our
construction we consider an element

z = Aτw−1 +B ∈ �[τ ]

with non-zero digits A ∈ D and B ∈ D with the following additional properties.
We want to find a change Δ with

• τ | (A+Δ),
• τ2 � (A+Δ),
• τ−1(A+Δ) ∈ D, and
• B −Δτw−1 ∈ D.

We will restrict ourselves here to

Δ ∈ {−1, 1, τ − p,−τ + p} ,

which turns out to be a good choice. (Note that this restriction was already used
in section 14; we only will relax it in Proposition 17.1)

Then the w-NAF-expansion of C = τ−1(A +Δ) has weight at least 2, because
it (its value) is not a digit. We obtain

z = Aτw−1 +B = Cτw +
(
B −Δτw−1

)
,

which shows that z has a (non-w-NAF) expansion with weight 2 and a w-NAF-
expansion with weight at least 3. For all of our cases, the right hand side of the
previous equation can be rewritten in an expansion

z = Eτ2w + Fτw +G

with some digits E, F and G = D = B −Δτw−1.
The finding of a point A+Δ is based on the main result of Part II, A and Δ are

discussed in section 14, and section 15 is devoted to get digits B and G = D. We
just have to glue all the results together, which is done in the proposition below
and in the next section. Alternatively, a direct search can be used to find those
lattice point configurations; we use this when Part II does not provide a result.
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Proposition 16.1. Suppose either w ≥ 4 and q ≥ 11 or w ≥ 8 (as in Proposi-
tion 15.3). Moreover, set

C = τ−1 (aτ + b(q − pτ ))

and suppose we have

τC ∈ Rw

for some a ∈ � with q � a and b ∈ �. Then there exist digits A, B and D such that

Aτw−1 +B = Cτw +D.

Note that C cannot be a digit because of the following reasons. The point τC
lies in the rectangle Rw, and thus C is outside of τwV ; see also Remark 3.1. Since
C not divisible by τ (because q � �) either, it has an expansion of weight at least 2.
Using this expansion leads to our desired counterexample.

Proof. Consider the lattice point τC ∈ Rw. By Lemma 14.2 there exists a Δ ∈
{−1, 1, τ − p,−τ + p} such that

A = τC −Δ

lies in the interior of the scaled Voronoi cell τwV . Since C is a lattice point (and
Δ is not divisible by τ ), the lattice point A is not divisible by τ . Therefore A is a
digit (see section 12).

Proposition 15.3 gives us the digits B and D = B −Δτw−1. This completes the
proof. �

17. Collecting all results

In this final section, we prove Theorems 2.3 and 2.4 and Proposition 2.5.

Proof of Theorem 2.3. If we have a lattice point τC ∈ Rw not divisible by τ2,
then we are able to construct a counterexample by Proposition 16.1. Fortunately
Proposition 9.6 provides the explicitly computable bound wq and that for all w ≥ wq

a τC as above exists. �

Before proving Theorem 2.4 we need to consider one special case first.

Proposition 17.1. Let q = 4 and p ∈ {−1, 1} and w = 6. Set

E = 1,

A = 7τ − 66p, F = −16pτ + 10,

B = −65, G = 10pτ − 9.

Then

(17.1) Aτ5 +B = Eτ12 + Fτ6 +G

and both sides of the equation are valid digit expansions, i.e., the 6-NAF is not a
minimal digit expansion.

Proof. We use a direct search following the same ideas as presented above (espe-
cially in section 16). However, we have to relax our conditions on Δ, in particular,
we use Δ = −2p. Moreover, we have C = 17pτ − 10 as intermediate result in the
construction. �
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Proof of Proposition 2.5 and Theorem 2.4. We start as in the proof of Theorem 2.3,
i.e., we need a lattice point τC ∈ Rw not divisible by τ2. The main result of Part II,
namely Proposition 5.1, provides the existence of such a lattice point for a fixed q
with finitely many (only a few) exceptional values for w. For these exceptions,
we perform a direct search over all possible lattice points to get τC (not lying in-
side Rw) and construct the counterexample as described in section 16. Note that a
possible compensate change (section 15) can be found by a lattice search as well.

This construction of the actual counterexample and lattice search for the excep-
tions extends Algorithm 10.1; thus completes the proof of Proposition 2.5.

Applying this algorithm, the existence of counterexamples for all w ≥ 4 is shown;
the only exceptions are q = 4, p ∈ {−1, 1} and w = 6 which are handled separately
by Proposition 17.1.

Non-minimality of the cases w = 2 and w = 3 (and arbitrary q ≥ 3) is proven in
section 13. Minimality for q = 2 and w ∈ {2, 3} is shown in [2, 3, 8]. This finishes
the proof of Theorem 2.4. �
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[20] A. Pethő and B. M. M. de Weger, Products of prime powers in binary recurrence sequences.
I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation,
Math. Comp. 47 (1986), no. 176, 713–727, DOI 10.2307/2008185. MR856715

[21] B. Phillips and N. Burgess, Minimal weight digit set conversions, IEEE Trans. Comput. 53
(2004), 666–677.

[22] G. W. Reitwiesner, Binary arithmetic, Advances in Computers, Vol. 1, Academic Press, New
York, 1960, pp. 231–308. MR0122018

[23] P. Ribenboim, Classical Theory of Algebraic Numbers, Universitext, Springer-Verlag, New
York, 2001. MR1821363

[24] The SageMath Developers, SageMath Mathematics Software (Version 7.0), 2016, http://
www.sagemath.org.

[25] J. A. Solinas, An improved algorithm for arithmetic on a family of elliptic curves, Advances
in Cryptology — CRYPTO ’97. 17th Annual International Cryptology Conference, Santa
Barbara, CA, August 17–21, 1997. Proceedings (B. S. Kaliski, ed.), Lecture Notes in Comput.
Sci., vol. 1294, Springer, Berlin, 1997, pp. 357–371.

[26] J. A. Solinas, Efficient arithmetic on Koblitz curves, Des. Codes Cryptogr. 19 (2000), no. 2-3,
195–249, DOI 10.1023/A:1008306223194. Towards a quarter-century of public key cryptog-
raphy. MR1759617

Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Universitätsstraße
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