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ON THE EVALUATION OF SOME SPARSE POLYNOMIALS

DORIAN NOGNENG AND ÉRIC SCHOST

Abstract. We give algorithms for the evaluation of sparse polynomials of the
form

P = p0 + p1x+ p2x
4 + · · ·+ pN−1x

(N−1)2 ,

for various choices of coefficients pi. First, we take pi = pi, for some fixed p; in
this case, we address the question of fast evaluation at a given point in the base

ring, and we obtain a cost quasi-linear in
√
N . We present experimental results

that show the good behavior of this algorithm in a floating-point context, for
the computation of Jacobi theta functions.

Next, we consider the case of arbitrary coefficients; for this problem, we
study the question of multiple evaluation: we show that one can evaluate such
a polynomial at N values in the base ring in subquadratic time.

1. Introduction

The evaluation and interpolation of polynomials, either dense or sparse, are
fundamental problems in computer algebra, and have been studied for decades.
One particular reason for their importance is that these problems form the basis
of a host of modular algorithms [13, Chapter 5], one of the key examples being
polynomial multiplication by means of Fast Fourier Transform techniques.

Consider the polynomial

P = p0 + p1x+ · · ·+ pN−1x
N−1,

with coefficients in a ring A. Given q in A, for general coefficients p0, . . . , pN−1,
computing P (q) takes Θ(N) operations in A; for the actual constants involved in
the big-Theta, in terms of additions and multiplications, see [24, 25]. Although
one cannot improve on such a linear-time bound, it is, however, possible to obtain
meaningful results by looking at slight variations of the problem:

• For some choices of coefficients p0, . . . , pN−1, it is possible to evaluate the
corresponding polynomial P in sublinear time: this is the case if the pi’s are
polynomial in i (for a polynomial whose degree is assumed to be constant),
or of the form ci for some constant c, . . . .

• If several evaluations are needed, savings are possible: for instance, evalu-
ation at N points can be done in O(M(N) log(N)) operations in A, using
the divide-and-conquer algorithm described in [13, Chapter 10]. Here, and
throughout this paper, M : N → N is such that one can multiply polyno-
mials of degree N in A[x] in M(N) operations; we also ask that the super-
linearity conditions of [13, Chapter 8] are satisfied. Since one can take
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M(n) in O(N log(N) log log(N)) using the Cantor-Kaltofen algorithm [9],
this shows that for evaluation at N points, the amortized cost per point is
logarithmic in N .

In this paper, we are interested in similar questions for evaluating sparse polyno-
mials. Consider a polynomial P of the form

P = p0x
e0 + p1x

e1 + · · ·+ pN−1x
eN−1 ,

for some increasing sequence of non-negative integers ei. For a general choice of
coefficients p0, . . . , pN−1, evaluating P at a point requires to read all of these coeffi-
cients, so the cost is Ω(N); on the other hand, using repeated squaring, an obvious
upper bound on the cost of computing P (q), for q in A, is O(N log(eN−1)). Pro-
vided eN−1 is polynomial in N , this is O(N log(N)), so the lower and upper bound
differ by at most a logarithmic factor.

In this context, it makes sense to consider again the two questions above, evalua-
tion for special choices of coefficients, and evaluation at multiple points. It would be
highly desirable to obtain results for arbitrary choices of exponents; in this paper,
we take the first steps in this direction by addressing the case where the exponent
ei takes the form ei = i2, so that we have

P = p0 + p1x+ p2x
4 + · · ·+ pN−1x

(N−1)2 .

More generally, we will be able to take ei = ai2 + bi, for some rationals a, b chosen
such that ei remains a non-negative integer for all i. Explicitly, we call a pair
k = (a, b) in Q2 admissible if ai2 + bi takes non-negative integer values for all i in
N; this is equivalent to a+ b and 2a being themselves non-negative integers.

The questions we consider are then the following:

• Working over a ring A as before, take an admissible pair k = (a, b) in
Q2 and p in A, and define the polynomial having coefficients pi = pi and
exponents ei = ai2 + bi:

PN,k,p =
∑

0≤i<N

pixai2+bi ∈ A[x].

For such a polynomial, we will obtain in section 2 a bound of O (̃
√
N)

operations in A for the evaluation at a point q ∈ A; here, and in the rest
of this paper, the O˜ notation indicates the omission of polylogarithmic
factors.

• For the case of general coefficients, we obtain in section 3 a bound of
O (̃N (ω+5)/4) for multiple evaluation at N points in A. Here, ω is such
that over any ring A, one can multiply r× r matrices in O(rω) operations.
Using the latest refinements to date on the Coppersmith-Winograd algo-
rithm [22], one can take ω < 2.3728639; we will assume ω > 2 below, in
order to slightly simplify some bounds.

As soon as ω < 3, the resulting exponent (ω+5)/4 in less than 2, so the
total cost is subquadratic. This is to be compared to the direct algorithm
that does N distinct evaluations, with cost O(N2 log(N)) (as we will see in
section 3, this can easily be improved to O(N2)).

The polynomials PN,k,p with coefficients in geometric progression seen in our
particular case are obtained by truncating the sums defining Jacobi theta functions
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such as

(1) ϑ(z; τ ) =
∞∑

n=−∞
eπi(2nz+n2τ) =

∞∑

n=−∞
ηnqn

2

,

with η = e2iπz and q = eiπτ (the above is often written ϑ3). These functions show
up in a number of situations, often of a geometric or number theoretic nature;
see, for instance, [23] in a context of algebraic geometry (construction of Abelian
varieties), [7, Chapters 2, 3, 9] for relations to the Arithmetic Geometric Mean
and elliptic integrals or [4] for connections to the heat equation. The Dedekind eta
function, which is the specialization of a theta function at suitable choices of the
arguments, also admits such an expansion:

η(τ ) = eiπτ/12
∞∑

n=−∞
(−1)nqn(3n−1)/2, with this time q = e2iπτ .

Sums such as
∑

0≤i<N xai2+bi, that is, PN,k,1 for our notation above, also show up

in the algorithm of [26] for the construction of prime numbers. Lemma 3.1 in that
reference is the only previous result known to us for the evaluation of polynomials
PN,k,p at an arbitrary point with sublinear complexity; the cost given in the proof

of the lemma is O(Nω/3), so our cost of O (̃
√
N) is an improvement on that result.

Particular cases include as well polynomials
∑

0≤i<N xi2 , whose values at points

of the form e2iπs/N are known as (quadratic) Gauss sums and are used to prove,
e.g., quadratic reciprocity [1].

Because of their importance in analytic contexts, obtaining fast algorithms that
approximate truncated sums as above is highly relevant, see for instance appli-
cations in [11] to the computation of modular polynomials or in [16, 17] to the
computation of the Riemann zeta function. In this context, we mention the results
of Labrande [21], building on previous work by Dupont [10], which give an algo-
rithm for the computation of theta functions with quasi-linear bit complexity in N ,
the requested precision.

One should be careful when trying to extend to such floating point calculation
results of an algebraic complexity nature such as the ones we obtain in this paper.
In order to get an understanding of the behavior of our algorithm in this context,
we implemented the use of the Arb library [18] (a C library for arbitrary-precision
floating-point ball arithmetic). In section 2, we present experimental results for the
computation of theta functions; for high precision, our algorithm improves on the
algorithm built-in in Arb, and on Labrande’s implementation of his algorithm.

Regarding the algorithm in section 3, we are not aware of previous results on the
cost of the multiple evaluation of such polynomials at general points. An algorithm
due to Canny, Kaltofen and Lakshman [8] gives a quasi-linear time algorithm for
the evaluation at points in geometric progression of an arbitrary sparse polynomial,
using the fact that the matrix of the resulting linear map is transpose-Vandermonde.
There also exists extensive literature on the interpolation of sparse polynomials, of
which [2, 3, 5, 12, 14, 19, 20, 27] is only a sample. For such interpolation algorithms,
determining the exponents is usually the main issue; once they are known, choosing
again interpolation points in geometric progression makes it rather straightforward
to recover the coefficients.
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2. Coefficients in geometric progression

2.1. Main results. Consider an admissible pair k = (a, b), an element p in a ring
A, and recall the definition of the polynomial PN,k,p:

PN,k,p =
∑

0≤i<N

pixai2+bi ∈ A[x].

We keep N and k as indices in such a notation, as we will have to change their
values later on, and wish to avoid all ambiguities. Our goal is to compute PN,k,p(q),
for a given q in A. As pointed out in the introduction, this can be done in a naive
manner using O(N log(N)) operations; the following proposition gives an upper

bound softly linear in
√
N .

Unless otherwise specified, we assume in our cost estimates that the entries a
and b in k are fixed constants.

Proposition 1. There exist algorithms Evalff (fraction free) and Evalinv (relying
on inversion) with the following characteristics:

• on input q in A, Evalff computes PN,k,p(q) using O(M(
√
N) log(N)) opera-

tions +,−,× in A;
• on input q in A∗ and 1/q, Evalinv computes PN,k,p(q) using O(M(

√
N))

operations +,−,× in A.

The only difference between these two algorithms lies in a subroutine for multi-
point evaluation of a polynomial. Given a ring A, a polynomial F in A[x] of degree
less than some integer N , and an element q in A, consider the question of computing
the values F (q2i) for i = 0, . . . , N − 1. This can be done using O(M(N) log(N))
operations +,−,× in A using the divide-and-conquer algorithm of [13, Chapter 10]
that was already mentioned in the introduction. However, if q is a unit and 1/q is
known, the Bluestein algorithm [6] reduces the cost to M(N) + O(N) operations
+,−,×.

Since we assume that a and b are constant, the cost given in the proposition
above only depends on N , so there is no possible confusion as to the meaning of
the big-O notation. Below, we also write big-O’s involving several variables; in that
case, f(a, b, . . . ) = O(g(a, b, . . . )), for non-negative integers a, b, . . . , will mean that:

• f and g are defined at all values of the variables, except maybe finitely
many;

• there exists K in R such that for all values of the variables, except maybe
finitely many, f(a, b, . . . ) ≤ Kg(a, b, . . . ).

In particular, we will avoid using the function log in this context (since it may
violate the first condition); instead, we will use the function logp : N → R, defined
as logp(a) = log(max(a, 1)), so that logp(0) = 0.

2.2. A direct algorithm. In this subsection, we consider an admissible pair κ =
(α, β) in Q2, together with an element p in A. For integers μ, ν, with μ ≤ ν, define
the polynomial

Pμ,ν,κ,p =
∑

μ≤i<ν

pixαi2+βi.

There are at most ν terms in this sum; if we assume that κ = (α, β) is constant, each
of them can be computed using O(log(ν)) multiplications using repeated squaring.
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Hence, as was already mentioned in the introduction for μ = 0, we can compute
Pμ,ν,κ,p(q) using O(ν log(ν)) operations +,× in A.

It is folklore that one can do slightly better, using suitable addition chains; this
is the object of the following lemma and its corollary. In this lemma, we do not
consider that κ is constant, so we give costs that involve (α, β). Since by convention
our multi-variable big-Os involve only non-negative integer arguments, we introduce
u = 2α and v = α+ β; both lie in N, by assumption on (α, β).

Lemma 1. For μ, ν and κ as above, given a ring A and p, q in A, one can compute

(piqαi
2+βi)μ≤i<ν using

O(logp(u+ v) + logp(μ) + (ν − μ))

multiplications in A.

Note that under our convention, the bound above is O(logp(u + v) + logp(ν) +
(ν−μ)), but not O(logp(u+v)+(ν−μ)), as can be seen by looking at the situation
u = v = 0 and μ = (ν − 1) → ∞.

Proof. Define the sequences (ri)i∈N and (si)i∈N by ri = pq2αi+α+β and si =

piqαi
2+βi, so that we have for i in N,

ri+1 = q2αri,

si+1 = risi.

Given p and q in A, this will allow us to compute all (si)μ≤i<ν = (piqαi
2+βi)μ≤i<ν

in the claimed cost. As mentioned above, we will write u = 2α and v = α + β
below.

Computing q2α = qu can be done by repeated squaring using O(logp(u)) =
O(logp(u+ v)) multiplications. Similarly, the values of

(rμ, sμ) = (pquμ+v, pμquμ(μ−1)/2+vμ)

can be obtained using

O(1 + logp(μ) + logp(uμ+ v) + logp(uμ(μ− 1)/2 + vμ))

multiplications, which is seen to be

O(logp(u+ v) + logp(μ)).

Then, the formula above shows that we can deduce the values of (ri+1, si+1) from
those of (ri, si) using O(1) operations. As a result, the sequence (rμ, sμ), . . . ,
(rν−1, sν−1) can be deduced in O(ν − μ) operations. Summing all costs proves
the lemma. �

In the particular case where the entries of κ are fixed constants, we deduce the
following consequence.

Corollary 1. For μ, ν and κ as above, with κ constant, given a ring A and p, q in
A, one can compute Pμ,ν,κ,p(q) using O(logp(μ) + (ν − μ)) multiplications in A.

Proof. It suffices to compute all elements (piqαi
2+β)μ≤i<ν and add them. Since

κ = (α, β), and thus u and v, is supposed to be constant, the only terms remaining
in the cost estimate of the previous lemma are O(logp(μ) + (ν − μ)). �
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2.3. The main algorithm. Let us consider again the question of computing
PN,k,p(q), for some given admissible pair k = (a, b). We assume here that all
entries in k are fixed constants.

We first reduce to the case where N is a square. Let m0 = �
√
N�; if m0 is even,

we take m = m0, otherwise we take m = m0 − 1, so that in any case m is even.
Define M = m2; thus, we have

PN,k,p = PM,k,p +
∑

M≤i<N

pixai2+bi = PM,k,p + PM,N,k,p,

using the notation of the previous subsection. The difference N −M is O(
√
N), so

by Corollary 1, given q in A we can compute PM,N,k,p(q) using O(
√
N) operations.

We will now focus on the calculation of PM,k,p(q), which will take a comparable
cost; the cost given in the following lemma, together with the estimate above for
PM,N,k,p, is then enough to prove Proposition 1.

Lemma 2. Suppose that k is fixed. There exist algorithms EvalSquareff (fraction
free) and EvalSquareinv (relying on inversion) with the following characteristics: for
any ring A, given M = m2 as above,

• on input q in A, EvalSquareff computes PM,k,p(q) using O(M(
√
M) log(N))

operations +,−,× in A;
• on input q in A∗ and 1/q, EvalSquareinv computes PM,k,p(q) using O(M(

√
N))

operations +,−,× in A.

Proof. Decomposing i ∈ {0, . . . ,M − 1} as i = j + mk, with both j and k in
{0, . . . ,m− 1}, we can rewrite PM,k,p as

PM,k,p =
∑

0≤i<M

pixai2+bi

=
∑

0≤j,k<m

p(j+mk)xa(j+mk)2+b(j+mk)

=
∑

0≤j,k<m

pj+mkxaj2+bj+2amjk+am2k2+bmk.

It follows that if we define

LM,k,p =
∑

0≤j<m

pjxaj2+bjyj ∈ A[x, y],

we have

PM,k,p =
∑

0≤k<m

LM,k,p(x, x
2amk)pmkxam2k2+bmk.

This leads us to the following algorithm:

(1) Compute all powers

sj = pjqaj
2+bj and tk = pmkqam

2k2+bmk for j and k in {0, . . . ,m− 1}.

The left-hand terms sj come from a direct application of Lemma 1, with in-
put parameters κ = (a, b), p, q and (μ, ν) = (0,m); since (a, b) are assumed
to be constant, the cost is O(m) operations.
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For the right-hand terms tk, we first compute pm using O(log(m)) op-
erations. Then, we recall Lemma 1 again, with input parameters κ =
(am2, bm), pm, q and (μ, ν) = (0,m), and thus with u + v = O(m2). The
cost is now O(log(m2) +m), which remains O(m).

(2) Compute ξ = qam; because m is even, the exponent is an integer, so this is
well-defined. The cost is O(log(m)) operations.

(3) Form the polynomial λ = LM,k,p(q, y) =
∑

0≤j<m sjy
j in A[y], and com-

pute the values

vk = λ(ξ2k) for 0 ≤ k < m.

In view of the discussion in subsection 2.1, this can be done in either
O(M(m) log(m)) or O(M(m)) operations in A, depending on whether q
is a unit, and its inverse is known, or not.

(4) Compute and return
∑

0≤k<m vktk, for a cost of O(m).

The sum of all costs seen so far is either O(M(m) log(m)) or O(M(m)), depending
on our choice of the algorithm for evaluating λ, so the lemma is proved. �

2.4. Experimental results. We implemented the previous algorithm in two dif-
ferent contexts: over a small prime field using the C library FLINT [15], and using
ball arithmetic using the Arb library as an extension of FLINT [18]. All timings
are obtained on an Intel i7-5600U, with 8GB RAM, and given in seconds.

Figure 1 shows results obtained when computing an N term sum of the kind
seen above (for N a square); we compare a direct algorithm using a naive addition
chain to the algorithm Evalinv of Proposition 1. For such computations, arithmetic
operations count as a rather reliable prediction of practical performance; the new
algorithm is significantly faster than the addition chain.

 0

 0.5

 1

 1.5

 2

 2.5

 0  100000  200000  300000  400000  500000  600000  700000  800000  900000

Our algorithm
Direct

Figure 1. Experiments modulo 1125899906842679; number of
terms vs. time in seconds.

Figure 2 gives results for computing approximations of the theta function ϑ(z; τ )
given in equation (1). Given a target precision ε, we determine N such that the
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truncated sums
N−1∑

n=0

ηnqn
2

+
N−1∑

n=0

η−nqn
2 − 1

approximate ϑ(z; τ ) with error at most ε, with η = e2iπz and q = eiπτ . Follow-
ing [21], in our tests, we take z = 0.123456789+0.123456789i and τ = 0.23456789+
1.23456789i, which ensures sufficiently rapid convergence to obtain meaningful in-
tervals in the output.

We compare our implementation to the built-in Arb routine acb modular theta

sum, which uses an addition chain (denoted by Arb in Figure 2), and with Labrande’s
implementation of his algorithm [21] (denoted by FastThetas in Figure 2). The li-
brary Arb performs all operations using ball arithmetic, so that an error bound
is automatically attached to each variable, allowing us to assess the quality of the
output; Labrande’s algorithm involves an iterative process, whose proof relies on a
detailed precision analysis. It is important to note that these previous algorithms
compute several theta functions at once; if only one is needed, as here, savings may
be possible, albeit by an amount that is unclear to us. In our experiments, the
arguments are fixed to the values given above, and the requested precision varies
as ε = 2−p (p is in abscissa in Figure 2).

 0
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 20

 30

 40

 50

 60

 0  100000  200000  300000  400000  500000  600000  700000  800000  900000  1e+06

Our algorithm
Arb

FastThetas

Figure 2. Experiments using high precision arithmetic; precision
vs. time in seconds.

In this context, for our algorithm, calculations are done using ball arithmetic;
as a result, the cost analysis of Proposition 1 is not expected to be a good model
of practical performance, since it overlooks all issues related to size of coefficients
and precision management. At the heart of our algorithm, Bluestein’s evaluation
algorithm involves a product of polynomials, one of them having rapidly decreasing

coefficients of the form qi
2

, i = 0, . . . . This may possibly make it poorly suited to
fast computations in a ball arithmetic context, and as a result, it is hard to predict
whether our approach will turn out to be superior to others.

Our experiments show that this is partially the case, as our algorithm outper-
forms the other implementations for high precisions. A more precise analysis is



ON THE EVALUATION OF SOME SPARSE POLYNOMIALS 901

required to understand this behavior; this would necessarily have to take into ac-
count the specifics of the implementation of polynomial arithmetic in Arb. In terms
of quality of the output, the differences between the three outputs were always sig-
nificantly smaller than the requested precision 2−p.

3. Arbitrary coefficients

In this section, we consider the case of a polynomial with arbitrary coefficients,
and exponents as before, that is,

P =
∑

0≤i<N

pi x
ai2+bi.

Since both the number of terms N and the exponents ai2 + bi are fixed throughout
this section, there is no need to make them explicit as indices, as we did in the
previous section.

As explained in the introduction, evaluating P at a given point q ∈ A takes time
Ω(N), since we have to use all coefficients. This bound is sharp, since using the
same techniques as in Corollary 1, we can compute P (q) in linear time. In this
section, we show that we can do better when several evaluations are needed.

Proposition 2. The following hold:

• for any monic polynomial M of degree N in A[X], one can compute P mod
M using O(N (ω+2)/4M(N3/4)) = O (̃N (ω+5)/4) operations in A;

• given q0, . . . , qN−1 in A, one can compute (P (qi))0≤i<N using

O(N (ω+2)/4M(N3/4)) = O (̃N (ω+5)/4) operations in A.

The second part follows readily from the first one: given q0, . . . , qN−1, we can
construct the polynomial M = (x− q0) · · · (x− qN−1) using O(M(N) log(N)) oper-
ations in A using the algorithm of [13, Chapter 10]. Applying the first part of the
proposition, we compute Q = P mod M in O(N (ω+2)/4M(N3/4)) operations in A.
Finally, we evaluate Q at q0, . . . , qN−1, using the multi-point evaluation algorithm
of [13, Chapter 10]; the cost is again O(M(N) log(N)). The dominant cost is the
computation of P mod M , so we can focus on proving the first assertion.

Without loss of generality, by adding O(N) zero coefficients, we may suppose
that N is a fourth power, that is, N = n4 for some integer n. This allows us to
write any index i in {0, . . . , N − 1} uniquely under the form i = j + kn+ �n2, with
j, k in {0, . . . , n− 1} and � in {0, . . . , n2 − 1}, which leads to the decomposition

P =
∑

0≤i<N

pi x
ai2+bi

=
∑

0≤�<n2

∑

0≤j,k<n

pj+kn+�n2 xa(j+kn+�n2)2+b(j+kn+�n2)

=
∑

0≤�<n2

∑

0≤j,k<n

pj+kn+�n2 xa(j2+k2n2+�2n4+2jkn+2j�n2+2k�n3)+b(j+kn+�n2)

=
∑

0≤�<n2

∑

0≤k<n

xa(k2n2+�2n4+2k�n3)+b(kn+�n2)

×
∑

0≤j<n

pj+kn+�n2 xa(j2+2jkn+2j�n2)+bj .
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For indices j, k, � as above, define the polynomials

Ak,� = xa(k2n2+�2n4+2k�n3)+b(kn+�n2) mod M,

Bj,� = xa(j2+2j�n2)+bj mod M ;

these definitions make sense, since

a(k2n2 + 2k�n3 + �2n4) + b(kn+ �n2) = a(kn+ �n2)2 + b(kn+ �n2)

is a non-negative integer, and similarly for

a(j2 + 2j�n2) + bj = (aj2 + bj) + (2a)j�n2.

This yields

P mod M =
∑

0≤�<n2

∑

0≤k<n

Ak,�

∑

0≤j<n

pj+kn+�n2 x2ajknBj,� mod M.

The point behind this particular decomposition is that the terms x2ajkn all have
small degree; we use this remark in the following lemma. First, however, notice
that there are O(n3) polynomials Ak,� and Bj,�. Since the exponents involved are
all O(N2) = O(n8), each such polynomial can be computed by repeatedly squaring
modulo M , using O(M(n4) log(n)) operations in A, for a total of O(n3M(n4) log(n))
operations.

Lemma 3. For any � in {0, . . . , n2 − 1}, one can compute all

Ck,� =
∑

0≤j<n

pj+kn+�n2 x2ajknBj,� mod M

for k in {0, . . . , n− 1}, using O(nωM(n3)) operations in A.

Proof. For given k and �, computing a single polynomial Ck,� amounts to doing
the dot-product between the polynomial vectors (pj+kn+�n2 x2ajkn)0≤j<n (seen as
a row) and (Bj,�)

t
0≤j<n (seen as a column). Because we assume that a is constant,

the monomial x2ajkn has degree O(n3), whereas Bj,� mod M has degree less than
n4. Let us write

Bj,� =
∑

0≤s<n

Bj,�,sx
sn3

,

with all Bj,�,s of degree less than n3; computing this decomposition is free, as it
amounts to coefficient extraction.

Let us then compute the row vector (Ck,�,s)0≤s<n obtained as the product of
the row vector (pj+kn+�n2 x2ajkn)0≤j<n and the matrix (Bj,�,s)0≤j,s<n. Given this

vector, one can recover Ck,� =
∑

0≤s<nCk,�,sx
sn3

in linear time O(n4), since all

Ck,�,s have degree O(n3).
Let us now fix �, and vary k. To compute all Ck,�, for k in {0, . . . , n−1}, we are led

to multiply the polynomial matrices (pj+kn+�n2 x2ajkn)0≤k,j<n and (Bj,�,s)0≤j,s<n.
Since all polynomials involved have degree O(n3), this product can be obtained in
O(nωM(n3)) operations in A. As a consequence of what we saw above, recovering
all Ck,� takes negligible time O(n5). �

With this lemma, we can conclude the proof of Proposition 2. The lemma shows
that all polynomials Ck,� can be computed using O(nω+2M(n3)) operations in A.
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From this, we can recover P mod M as

P mod M =
∑

0≤�<n2

∑

0≤k<n

Ak,� Ck,� mod M.

There are n3 terms in the sum, and each can be computed in O(M(n4)) operations,
so the total time to deduce P mod M from all Ck,� is O(n3M(n4)).

Overall, since we assumed that ω > 2, the dominant cost is the one of the
matrix products of Lemma 3, which is O(nω+2M(n3)). Since N = n4, this proves
Proposition 2.
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