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ON EIGENMODE APPROXIMATION FOR DIRAC EQUATIONS:

DIFFERENTIAL FORMS AND FRACTIONAL SOBOLEV SPACES

SNORRE H. CHRISTIANSEN

Abstract. We comment on the discretization of the Dirac equation using
finite element spaces of differential forms. In order to treat perturbations by
low order terms, such as those arising from electromagnetic fields, we develop
some abstract discretization theory and provide estimates in fractional order
Sobolev spaces for finite element systems. Eigenmode convergence is proved,
as well as optimal convergence orders, assuming a flat background metric on
a periodic domain.

1. Introduction

This paper is devoted to the discretization of the Dirac operator with finite ele-
ment spaces of differential forms. We learned this technique in a talk by Ari Stern,1

written up in [36]. It seems that a special case of this method, corresponding to
tensor-product Whitney forms on cubes, has already been considered by physicists
[8]. We also noticed the work [35], which, like this one, concerns spurious-free ap-
proximations to the Dirac equation, from a mathematically rigorous viewpoint. It
contains many references to other works on this topic, including some from the
physics literature.

From the theoretical point of view, it should be noted that finite element meth-
ods, like the ones considered here, do not produce subspaces of the domain of the
Dirac operator, not even of a square root, though 1/2 is the critical exponent.
Moreover the discrete Hodge decomposition is different from the continuous one, in
the sense of Remark 4.2. Nevertheless we prove, in this paper, convergence for the
spectral problem for finite element spaces of differential forms Xh, constructed as
finite element systems [17], on quasi-uniform cellular complexes Th, in the so-called
h-setting, as the mesh-width h goes to 0. For simplicity we restrict attention to
toruses, or, equivalently, periodic boundary conditions.

Actually, eigenmode convergence for the Hodge-Dirac operator, discretized with
finite element differential forms, follows quite easily from the known theory devel-
oped for the Hodge-Laplace operator, which can be found in [29], [16], [2], [26], [27].
For an overview of discrete Hodge theory, see [3]. However, it seems that this theory
by itself does not allow for zero order perturbations of the Hodge-Dirac operator,
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as would correspond, for instance, to adding an electromagnetic field to the Dirac
equation. Special emphasis is placed on covering such cases as well. These points
are explained more fully in Section 6, at the abstract level.

To use the abstract framework we develop, we require some estimates in Sobolev
spaces Hs(S), with 0 < s < 1/2, which are provided in Section 5. Notice that these
Sobolev spaces contain piecewise smooth functions, in particular finite element
differential forms, yet are compactly embedded in L2(S). That part of the theory is
developed without reference to the Dirac equation, for greater reusability. Remark
5.1 puts the results concerning discrete Hodge decompositions in context. As a
preparation for these estimates we review some recent techniques for analyzing
finite element spaces of differential forms in Section 4 and extend them in particular
towards the use of two different discrete H1 seminorms.

The paper is organized as follows. We start by recalling some notations related
to the Dirac equation expressed with differential forms in Section 2. The functional
framework used for the continuous problem is reviewed in Section 3. Finite element
spaces are introduced in Section 4 together with some error analysis in integer
order Sobolev spaces. This analysis is extended to fractional order Sobolev spaces,
in Section 5. We also develop some abstract discretization theory, in Section 6.
Finally we combine these techniques to conclude in Section 7.

2. Forms of the Dirac equation

This section is meant mainly to fix notations and explain how the Dirac equation
of physicists can be expressed with differential forms. For this purpose we make a
detour via quaternions. We make no claims of originality for the facts listed here,
but hope the exposition has other virtues.

Dirac equation. We adopt the following standard definitions.
The (2× 2 complex) Pauli matrices are:

(2.1) σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

The (4× 4 complex) Dirac matrices are:

(2.2) γ0 =

[
I 0
0 −I

]
, γk =

[
0 σk

−σk 0

]
.

Here I denotes the 2× 2 identity matrix.
The Dirac equation with minimal coupling to an electromagnetic gauge potential

A = (A0, . . . , A3), is to find a function ψ : R4 → C
4 satisfying

(2.3) i�γμ(∂μ + iAμ)ψ −mcψ = 0.

Einstein summation convention is used. Such a function ψ is referred to as a spinor-
valued field on time-space. The three constants �, c andm are referred to as reduced
Planck constant, light velocity and mass, respectively. We choose units such that
� = 1 and c = 1 in the following.

Remark 2.1. Concerning boundary conditions: In this section, the focus is on the
differential operators so we might as well work on the whole Minkowski space R4

as on some open subset of it. In the next section, where Fredholmness of the Dirac
operator is discussed, we recall how results on bounded contractible domains can
be obtained from exactness of some sequences of differential forms with or without
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Dirichlet boundary conditions. For more general domains we just state the result.
For the numerical method we consider, we prefer to avoid boundary conditions as
much as possible, so we will work on a torus (periodic boundary conditions). Thus
we avoid some interesting difficulties, but not all.

Quaternions. The quaternions will be identified with the following space of com-
plex 2× 2 matrices:

(2.4) H = {
[
a −b̄
b ā

]
: a, b ∈ C}.

Under matrix addition and multiplication, they constitute a real associative algebra,
where nonzero elements are invertible.

The real elements in H are by definition the multiples of the identity matrix I.
The imaginary elements are those spanned (over R) by the elements Jk = −iσk,
k = 1, 2, 3. We have the direct sum decomposition

(2.5) H = RI ⊕ RJ1 ⊕ RJ2 ⊕ RJ3.

For a vector x ∈ R3 we use the notation

(2.6) x · J =
3∑

k=1

xkJk.

Any element X of H can be uniquely written as

(2.7) X = x0I + x · J with x0 ∈ R and x ∈ R
3.

We let Ξ denote the identification

(2.8) Ξ :

{
R⊕ R

3 → H,
(x0, x) �→ x0I + x · J.

Multiplication in H has the form

(2.9) (x0I + x · J)(y0I + y · J) = (x0y0 − x · y)I + (x0y + y0x+ x× y) · J.

Via Ξ we get the following product on R⊕ R3:

(2.10) (x0, x)(y0, y) = (x0y0 − x · y, x0y + y0x+ x× y).

Conjugation in H is Hermitian conjugation of matrices, denoted X �→ Xh. Via Ξ
it corresponds to the map

(2.11) (x0, x) �→ (x0, x) = (x0,−x) on R⊕ R
3.

The Euclidean scalar product on H is

(2.12) X · Y = Re(XhY ) =
1

2
tr(XhY ).

Via Ξ we recover the standard Euclidean product on R⊕ R3:

(2.13) (x0, x) · (y0, y) = Re (x0, x)(y0, y) = x0y0 + x · y.
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Differential operators. The differential operator J · ∇ is by definition

(2.14) J · ∇ =
3∑

k=1

Jk∂k.

It acts in particular on fields R3 → H and as such is symmetric, with respect to
the L2 product deduced from the Euclidean product (2.12). On the other hand,
the operator σ · ∇, defined in a similar manner, acts from fields R3 → H to fields
R3 → iH. We notice that we have a direct sum decomposition (over the reals)

(2.15) C
2×2 = H⊕ iH.

Moreover σ · ∇, as an operator on fields R3 → C2, is anti-symmetric.
We change the notation slightly, and write the electromagnetic gauge potential

as a combination of an electric scalar potential V (corresponding to A0) and an
R3-valued magnetic vector potential A = (A1, A2, A3). In terms of 2 × 2 matrices
the Dirac equation (2.3), acting on C4-valued fields, can be written as

(2.16) i

[
∂0 + iV 0

0 −∂0 − iV

]
ψ = −

[
0 −J · (∇+ iA)

J · (∇+ iA) 0

]
ψ +mψ.

We can also write this as

(2.17) ∂0ψ = −
[

0 σ · (∇+ iA)
σ · (∇+ iA) 0

]
ψ −mi

[
I 0
0 −I

]
ψ − iV ψ.

The differential operator appearing on the right-hand side is anti-selfadjoint, in
L2(R3 → C

4), so the differential equation may be regarded as a well-posed equation
of wave type.

If we look for solutions with a time-dependence of the form t �→ exp(−iEt) with
E ∈ R, we get the self-adjoint eigenvalue problem

(2.18) Eψ =

[
0 J · (∇+ iA)

J · (∇+ iA) 0

]
ψ +m

[
I 0
0 −I

]
ψ + V ψ.

Differential forms. Via Ξ, the operator J · ∇ becomes the following operator on
the fields R3 → R⊕ R3:

(2.19) Ξ−1(J · ∇)Ξ :

[
f
g

]
�→

[
− div g

grad f + curl g

]
.

Recall the identification of alternating forms with scalars and vectors:

(2.20) Alt•(R3) ≈ R⊕ R
3 ⊕ R

3 ⊕ R.

Introduce the rearrangement map

(2.21) Θ :

⎡
⎢⎢⎣
R

R3

R3

R

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣
s
u
v
t

⎤
⎥⎥⎦ �→

⎡
⎢⎢⎣
s
v
t
u

⎤
⎥⎥⎦ ∈

⎡
⎢⎢⎣
R

R
3

R

R
3

⎤
⎥⎥⎦ .

It can be interpreted as putting the alternating forms of even order on top and
those of odd order at the bottom.

Looking at the right-hand side in (2.18), we define the differential operator

(2.22) D = Θ−1

[
0 Ξ−1(J · ∇)Ξ

Ξ−1(J · ∇)Ξ 0

]
Θ.
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We obtain the mapping property, on scalar and vector fields,

(2.23) D :

⎡
⎢⎢⎣
s
u
v
t

⎤
⎥⎥⎦ �→

⎡
⎢⎢⎣

− div u
grad s+ curl v
curlu+ grad t

− div v

⎤
⎥⎥⎦ .

This map is of the form

(2.24) D = d + d� : C∞Alt•(R3) → C∞Alt•(R3),

for the slightly nonstandard exterior derivative

(2.25) d = grad⊕ curl⊕− div .

Therefore D may be referred to as a Hodge-Dirac operator.

Almost complex structure. Unfortunately the magnetic vector potential does
not contribute nicely under these identifications. This is related to the fact that,
for A ∈ R

3, J · iA maps H not to itself but to iH (compare with the fact that J · ∇
acts as an endomorphism on smooth fields S → H). In other words, under the
above identifications, the magnetic vector potential yields a zero order operator on
C∞Alt•(R3), but we found the expression to be unenlightening.

The following identities will not be used, but we found them intriguing. At least
they provide an interpretation of the fact that the spectrum of the Dirac operator
is symmetric with respect to the origin. We introduce the operator on Alt•(R3):

(2.26) J :

⎡
⎢⎢⎣
s
u
v
t

⎤
⎥⎥⎦ �→

⎡
⎢⎢⎣
−t
v
−u
s

⎤
⎥⎥⎦ .

Since J 2 = −1, J provides an almost complex structure on Alt•(R3). Up to signs
one can also identify it as a Hodge-star operator. We notice

(2.27) DJ = −JD.

In particular, if φ is an eigenvector of D with eigenvalue λ, then J φ is an eigenvector
for the eigenvalue −λ.

One way of viewing this is to introduce the map

(2.28) Z :

{
Alt•(R3) → C2×2,
(s, u, v, t) �→ (s+ v · J) + i(t+ u · J).

We also let H denote Hermitian conjugation on C2×2. Some computations then
provide the formulas

(2.29) ZDZ−1 = (σ · ∇) ◦ H
and

(2.30) ZJZ−1 = i.

From this, identity (2.27) follows, since σ ·∇ is C-linear, whereas H is C-antilinear.

3. Functional framework for the Hodge-Dirac operator

We fix some notations and recall some rather well-known results. The Hilbertian
setting for the exterior derivative is in [3]. Additional information on the Dirac
operator can be found in [40].



552 SNORRE H. CHRISTIANSEN

Contractible domains. Let S be a bounded contractible Lipschitz domain in Rn,
with its standard Euclidean structure. We study the Hodge-Dirac operator on the
space of differential forms:

(3.1) D = d + d�, on O• = L2Alt•(S).

This is an unbounded operator and we proceed to define its domain. The grading
implied by the notation O• is given by the degree of differential forms and the scalar
product in O• is the L2 product of forms deduced from the standard Euclidean
structure on Rn.

We denote by γ the pullback of differential forms to the boundary ∂S of S. If u
is a differential form, γu remembers the action of u only on vectors tangent to ∂S.
We put, for integer k,

Xk = {u ∈ Ok : du ∈ Ok+1},(3.2)

Xk
0 = {u ∈ Xk : γu = 0},(3.3)

Y k = {u ∈ Xk
0 : d�u ∈ Ok−1}.(3.4)

When k is outside the range [0, n], these spaces are 0. In these formulas, the
exterior derivative d is defined a priori in the sense of distributions, and d� is its
formal adjoint, also defined in the sense of distributions. We define the domain of
D to be Y •. Sometimes, to simplify notation we omit the grading, so that O = O•,
X = X•, X0 = X•

0 and Y = Y •.
It is straightforward to check that D with domain Y is symmetric. Self-adjoint-

ness follows from the next results.
Recall the following two variants of the Poincaré lemma.

Proposition 3.1. The following two sequences, involving the exterior derivative,
are exact:

(3.5) 0 → R → X0 → · · · → Xn → 0,

with inclusion of constants in second position, and

(3.6) 0 → X0
0 → · · · → Xn

0 → R → 0,

with integration in second to last position.

One deduces the following variant of the Hodge decomposition. Notice in par-
ticular the choice of boundary conditions.

Proposition 3.2. For any v ∈ Ok, with
∫
v = 0 if k = n, there is a unique

(u,w) ∈ Y k−1 × Y k+1 such that

(3.7) v = du+ d�w,

subject to
∫
u = 0 if k − 1 = 0 and d�u = 0 if not, as well as

∫
w = 0 if k + 1 = n

and dw = 0 if not.

It is the main ingredient in the proof of the following.

Proposition 3.3. For any v• ∈ O•, with
∫
vn = 0, there is a unique u• ∈ Y •, with∫

un = 0, such that

(3.8) v• = Du•.



ON EIGENMODE APPROXIMATION FOR DIRAC EQUATIONS 553

More general domains. For more general compact Lipschitz domains S, includ-
ing compact smooth manifolds without boundary, the inclusion map Y → O is still
compact and the operator D : Y → O is still Fredholm of index zero. The kernel
of D is the graded cohomology group

(3.9) G = {u ∈ X0 : du = 0 and u ⊥ dX0}.
We also adopt the following notation:

W = {u ∈ X0 : du = 0},(3.10)

V = {u ∈ X0 : u ⊥ W}.(3.11)

We have the Hodge decompositions

X0 = V ⊕W and W = dV ⊕G.(3.12)

Now define the operator K : O → Y by inverting D on the O-orthogonal of G. We
note the following for future reference.

Proposition 3.4. The following operator is compact and selfadjoint:

(3.13) K : O → O.

4. Finite element differential forms

Discretization spaces. In this section we choose the domain S to be of the fol-
lowing type. We let (ei) denote a basis of Rn (1 ≤ i ≤ n) and define a lattice L

by

(4.1) L =
n∑

i=1

Zei.

Then we define

(4.2) S = R
n/L.

We also consider a quasi-uniform sequence (Th) of cellular complexes. As is
customary, the parameter h > 0 also denotes the largest diameter of a cell in Th,
and we are interested in the asymptotic behavior as h → 0. Quasi-uniformity can
be taken to mean that Th has a simplicial refinement, which is quasi-uniform in
the usual sense, and such that the cells of Th are composed of a uniformly bounded
number of simplices.

Remark 4.1. Both the choice of working on a domain without boundary and
the choice to restrict attention to quasi-uniform meshes, are made in order to
use smoothing by convolution, in combination with standard interpolation, in the
proofs. It is possible that the techniques of [26] (which introduces a space depen-
dent smoother and an offset to treat essential boundary conditions) can be extended
to treat the Dirac operator on domains with boundary and general shape-regular
meshes, but the proofs are already quite technical without these complicating fac-
tors.

Recall that | · | stands for the L2(S) norm and 〈·, ·〉 for the L2(S) scalar product.
We also use the notation O = O• for the Hilbert space of differential forms of all
degrees, equipped with this scalar product. For any cell T of some Th, as well as
the low-dimensional ones, we write

(4.3) |u|T = ‖u‖L2(T ).
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For each discretization parameter h, we consider a sequence of finite dimensional
spaces Xk

h of k-forms (0 ≤ k ≤ n). The exterior derivative should induce maps

d : Xk
h → Xk+1

h . We define the graded space Xh:

(4.4) Xh =
⊕
k

Xk
h .

The graded space Xh is equipped with the endomorphism d and the scalar product
deduced from the L2 product of differential forms. We denote by Wh the kernel of
d on Xh and Vh the orthogonal of Wh in Xh, with respect to the L2 inner product.
That is, comparing with (3.10), (3.11), we put

Wh = {u ∈ Xh : du = 0},(4.5)

Vh = {u ∈ Xh : u ⊥ Wh}.(4.6)

Remark 4.2. A key point is that we are interested in cases where Vh is not a
subspace of V .

Comparing with (3.9), we may also identify the graded cohomology group

(4.7) Gh = {u ∈ Xh : du = 0 and u ⊥ dXh}.

We suppose that the spaces Xh have been constructed as finite element systems
on Th, in the h-setting. The framework of finite element systems was developed
in particular in [17], [18], [23]. It includes the finite element spaces of differential
forms treated in [32], [2]. See [24] for more information on how standard mixed
finite elements fit in the framework of finite element systems. This framework also
includes some more recent finite elements developed in [20], [1], [28]. These are all
minimal finite element systems under various constraints, as detailed in [22].

Estimates for smoothed projections. Estimates of the form, there exists a
constant C ≥ 0 such that, for all h,

(4.8) Ah ≤ CBh,

where Ah and Bh are some h-dependent quantities (typically some norm of some
elements of Xh) will be written as

(4.9) Ah � Bh.

Stability estimates for discrete Hodge decompositions have the following form:

Proposition 4.1. (i) Choose a k-form uk ∈ Xk
h . We write the discrete Hodge

decomposition uk = dvk−1 + vk + gk, with vk−1 ∈ V k−1
h , vk ∈ V k

h and gk ∈ Gk
h.

Then we have the estimates

|vk−1| � |uk|.(4.10)

(ii) Continuous and discrete cohomology groups are related by

(4.11) δ̂(Gh, G) → 0,

where the symmetrized gap δ̂ is evaluated in the O-norm.
(iii) For any subsequence vh ∈ Vh with |dvh| bounded, there is a subsubsequence

converging in O to an element in V .
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Recall that the gap and symmetrized gap between to subspaces Ah and Bh of a
normed vector space, are defined as

δ(Ah, Bh) = sup
u∈Ah : ‖u‖=1

inf
v∈Bh

‖u− v‖,(4.12)

δ̂(Ah, Bh) = max{δ(Ah, Bh), δ(Bh, Ah)}.(4.13)

Proofs of the above three statements (i), (ii) and (iii) were provided for closed
manifolds in Proposition 9, Corollary 4 and Corollary 5 of [16]. That Gh and G
have the same dimension is essentially de Rham’s theorem. That the symmetrized
gap between Gh and G goes to 0 can be interpreted as an example of eigenmode
convergence. Convergence of other eigenmodes usually relies on the third property,
referred to as discrete compactness.

Discrete compactness properties, as introduced by Kikuchi [34] for Maxwell
eigenmode problems in cavities, have been thoroughly studied in finite element
contexts [9]. We refer to [27] for more details on eigenmode convergence at an
abstract level, exploring both sufficiency and necessity of various conditions on dis-
cretization spaces. A first proof of eigenmode convergence for the Hodge-Laplace
operator, discretized with Whitney forms, was provided in [29]. See [3] for a more
detailed overview on continuous and discrete Hodge theory.

Remark 4.3. When S is a flat torus, the kernel G consists of the constant differential
forms, and so does Gh provided that they are contained in the Galerkin space, so

that δ̂(Gh, G) = 0. However, we prefer to refrain as much as possible from appealing
to this special property of toruses in our discussions.

The most efficient tool so far to prove discrete compactness and related estimates,
seems to be a combination of standard interpolation with a smoothing technique,
a method that has been developed in [29], [38], [16], [2], [26], [23]. In this paper we
use the simplest smoothing technique, consisting of smoothing by convolution.

Then let φ be a mollifier: a smooth function on R
n which is supported in the

unit ball and positive (in the French sense, which is more permissive), with integral
1. For ε > 0 we define φε on Rn by

(4.14) φε(x) = ε−nφ(ε−1x),

so that φε is supported in the ball with radius ε and has integral 1.
We let Ih be a standard interpolator onto Xh, defined for smooth functions and

commuting with the exterior derivative. Typically Ih is the projection deduced
from a choice of degrees of freedom and is ill-defined on O.

We recall the main steps in the construction of mollified interpolators Πh : O →
Xh. They can also be referred to as smoothed projections.

Proposition 4.2. (i) For any δ > 0, by fixing ε small enough, we have, for all h
and all u ∈ Xh,

|u− φεh ∗ u| ≤ δ|u|,(4.15)

|u− Ihφεh ∗ u| ≤ δ|u|.(4.16)

In particular, for δ < 1 we get a norm-equivalence on Xh:

(4.17) |u| ≈ |φεh ∗ u| ≈ |Ih(φεh ∗ u)|.
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(ii) For small enough fixed ε > 0, the operators

(4.18)

{
O → Xh,

u �→ Ih ◦ (φεh ∗ u)

are h-uniformly stable O → O.
(iii) For a small enough fixed ε > 0, composing (4.18) with the inverse of its

restriction to Xh, we get a projector Πh : O → Xh which is uniformly stable
O → O and commutes with the exterior derivative on X.

The ε appearing in this proposition is chosen so that in particular the (εh)-
neighborhood of any cell T ∈ Th is included in the macro-element consisting of cells
in Th touching T . The constants that are implicit in the estimates will typically
depend on the constants that determine the shape-regularity and quasi-uniformity
of the family of meshes.

One way to sum up the virtues of the smoothed projections is to say that com-
mutation with the exterior derivative guarantees that Wh is a nice subspace of W ,
whereas stability in O guarantees that Vh is close to V . These themes will be more
amply developed below, in particular by giving several precise interpretations of
the second principle.

In all of the following, p is a natural number, which could very well be 0. We
suppose that the finite element spaces contain the differential forms which are
polynomials of degree up to p. We choose the mollifier φ so that for any polynomial
u of degree up to p we have

(4.19)

∫
φ(−x)u(x)dx = u(0).

Then convolution by φεh preserves polynomials of degree up to p.
We get the following optimal orders of convergence.

Proposition 4.3. We have

(4.20) |u−Πhu| � |u− Ih(φεh ∗ u)| � hp+1|∇p+1u|.

A discrete H1 seminorm. The following discrete seminorm is defined for fields
u which are piecewise of class H1 with respect to Th:

(4.21) �u�2h =
∑
T

|∇u|2T +
∑
T ′

h−1
T |[[u]]|2T ′ .

On the right-hand side, the first term is the broken H1(S) seminorm, and the second
term collects jumps on codimension one interfaces, with an appropriate scaling.

Remark that d�u is not well defined in L2(S) for u ∈ Xh. However, it may be
defined weakly by integration by parts and we then have a bound on the norm, as
follows.

Proposition 4.4. Suppose u is piecewise H1 with respect to the mesh Th (for
instance u ∈ H1Alt•(S) +Xh). We have an estimate

(4.22) sup
v∈Xh

|〈u, dv〉|
|v| � �u�h.
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Proof. With the above notations, and introducing the Hodge star operator �, we
write

(4.23) 〈u, dv〉 =
∑
T

∫
T

u · dv = ±
∑
T

∫
T

�u ∧ dv.

Then we integrate each term on the right by parts, in the cell T . Collecting terms,
we identify jumps of �u on the interfaces between cells.

Next we use a discrete trace theorem for elements of Xh, obtained by scaling:
when T ′ is a codimension-1 face of a cell T ′′ we have an estimate

(4.24) ‖v‖L2(T ′) � h
−1/2
T ′′ ‖v‖L2(T ′′).

All in all we get

(4.25) |〈u, dv〉| �
∑
T

|
∫
T

d�u · v|+
∑
T ′

h
−1/2
T ′′ |[[�u]]|T ′ |v|T ′′ ,

where for each interface T ′ we choose a cell T ′′ containing it.
One concludes with Cauchy-Schwarz. �
Recall the following result from [23, Section 5.4, Proposition 5.67] (notice changes

in notations compared with that paper).

Proposition 4.5. Fix ε > 0 small enough. For all h we have, for all u ∈ Xh, an
equivalence of discrete seminorms:

(4.26) |∇(φεh ∗ u)| ≈ �u�h.
In what follows, recall that Πh denotes the smoothed projection (mollified inter-

polator) defined in Proposition 4.2.
For the following we refer to Proposition 5.68 of [23], which extends Proposition

4.2 from L2 to a discrete H1 setting. It is proved similarly, by scaling from reference
elements.

Proposition 4.6. For any δ > 0, for fixed ε small enough, we have, for u ∈ Xh,

(4.27) �u− Ih(φεh ∗ u)�h ≤ δ�∇u�h.
For u ∈ H1Alt•(S) we have the estimates

�Ih(φεh ∗ u)�h � |∇u|,(4.28)

�Πhu�h � |∇u|.(4.29)

Estimates on discrete Hodge decompositions. Recall the notations (3.10),
(3.11). We let V be the completion of V inO. We also let H denote theO-orthogonal
projection onto V . It realizes a Hodge decomposition in the form u = Hu+(u−Hu).
Remark that, since u− Hu ∈ W , we have dHu = du.

Discrete compactness properties are usually deduced from the following inequal-
ity (e.g. [23, Proposition 5.66]).

Lemma 4.7. For u ∈ Vh,

(4.30) |u− Hu| ≤ |Hu−ΠhHu|.
One deduces for instance the following.

Proposition 4.8. For u ∈ Vh,

(4.31) |u− Hu| ≤ h|du|.
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In this proposition, the power of h will be lower in cases where full elliptic
regularity does not hold. This estimate may be interpreted as a convergence of
the gap δ(Vh, V ) to 0, in the X norm. In [27] we showed that this condition
is intermediate between two discrete Friedrich estimates, equivalent to eigenmode
convergence and related to estimates on bounded commuting projections, all at an
abstract level, but for semidefinite problems. See Remark 5.1 below.

Define a projector Ph : X → Vh, by imposing, for all v ∈ Vh,

(4.32) 〈dPhu, dv〉 = 〈du, dv〉.

The following is an Aubin-Nitsche trick for Ph. Compared with the standard one,
the main difficulty is that Vh is not a subspace of V . As always, the discrepancy is
handled with Proposition 4.8. The point is to obtain estimates in O for a variational
problem which is naturally well posed in V , as in §3.5 of [3].

Proposition 4.9. For u ∈ V we have an error estimate

(4.33) |u− Phu| � h|du|.

Proof. We will use elliptic regularity on the torus, in the form

(4.34) inf
u∈V

sup
v∈V ∩H2(S)

〈du, dv〉
|u| ‖v‖H2

� 1.

Now choose u ∈ V . We have, using in particular Proposition 4.8,

|u− Phu| ≤ |u− HPhu|+ |Phu− HPhu|(4.35)

� |u− HPhu|+ h|dPhu|(4.36)

� |u− HPhu|+ h|du|.(4.37)

Since u− HPhu ∈ V we may write

|u− HPhu| � sup
v∈V ∩H2(S)

〈d(u− HPhu), dv〉
‖v‖H2

(4.38)

� sup
v∈V ∩H2(S)

〈d(u− Phu), d(v − vh)〉
‖v‖H2

,(4.39)

for any choice vh ∈ Vh. Let Qh be the O-projection onto Wh. We choose vh =
Πhv −QhΠhv ∈ Vh and remark that dvh = dΠhv. Therefore

|u− HPhu| � sup
v∈V ∩H2(S)

〈d(u− Phu), d(v −Πhv)〉
‖v‖H2

(4.40)

� sup
v∈V ∩H2(S)

|d(u− Phu)| |d(v −Πhv)|
‖v‖H2

.(4.41)

Since |dPhu| � |du| and moreover

|d(v −Πhv)| = |dv −Πhdv| � h‖dv‖H1 � h‖v‖H2 ,(4.42)

we get

(4.43) |u− HPhu| � h|du|.

Plugging this into (4.37) we conclude. �
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A discrete domain seminorm. In this subsection we introduce a discrete semi-
norm motivated by the domain of the Hodge-Dirac operator. One first checks that
for u ∈ L2Alt•(S), Du ∈ L2(S) if and only if du ∈ L2 and d�u ∈ L2. On flat toruses
one may then integrate by parts the identity

(4.44) ∇�∇ = Δ = d�d + dd�.

One gets that Du ∈ L2(S) if and only if u ∈ H1(S). A discrete analogue of this
result will play a role later on.

We define the discrete domain seminorm

(4.45) [u]2h = |du|2 + ( sup
v∈Xh

|〈u, dv〉|
|v| )2.

On Xh ∩ G⊥
h it defines a norm which dominates the L2 norm, as follows from

Proposition 4.1.

Proposition 4.10. We have a uniform equivalence of norms, for u ∈ Xh,

(4.46) [u]h ≈ �u�h.

Proof. It follows from Proposition 4.4 that we have a bound

(4.47) [u]h � �u�h.
We proceed to prove the converse bound.

We write, using first Proposition 4.5, then integrating the identity Δ = d�d+dd�

by parts, and finally using Proposition 4.2

�u�h ≈ |∇φεh ∗ u|(4.48)

≈ |d(φεh ∗ u)|+ |d�(φεh ∗ u)|(4.49)

≈ |du|+ |d�(φεh ∗ u)|,(4.50)

for ε small enough.
To estimate the last term in (4.50) we do the discrete Hodge decomposition of u

(4.51) u = v + dw + g, with v ∈ Vh, w ∈ Wh and g ∈ Gh.

We treat v, w and g separately.
(i) We first treat v. Convolution by φεh commutes with the exterior derivative,

so preserves W . Since it is also selfadjoint it preserves the orthogonal V , and since
it improves regularity it also preserves V :

|d�(φεh ∗ v)| = |d�(φεh ∗ v − φεh ∗ Hv)|(4.52)

� |∇φεh ∗ (v − Hv)|(4.53)

� h−1|v − Hv|(4.54)

� |dv|.(4.55)

(ii) For w we write

|d�(φεh ∗ dw)| � sup
w′∈V

|〈φεh ∗ dw, dw′〉|
|w′|(4.56)

� sup
w′∈V

|〈dw, dφεh ∗ w′〉|
|w′|(4.57)

� sup
w′∈V

|〈dw, dPh(φεh ∗ w′)〉|
|w′| .(4.58)
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Then we write, for w′ ∈ V , since φεh ∗ w′ ∈ V ,

|Ph(φεh ∗ w′)| ≤ |φεh ∗ w′|+ |φεh ∗ w′ − Ph(φεh ∗ w′)|(4.59)

� |w′|+ h|d(φεh ∗ w′)|(4.60)

� |w′|+ h|dw′|(4.61)

� |w′|.(4.62)

Therefore

|d�(φεh ∗ dw)| � sup
w′∈Vh

|〈dw, dw′〉|
|w′| .(4.63)

(iii) For g we skip a general proof. On a flat torus the constants are stable under
convolution and have coderivative zero, so |d�(φεh ∗ g)| = 0. �

5. Fractional order Sobolev space estimates

In the following, we obtain estimates in fractional order Sobolev spaces, for
finite element systems, using the technique of mollified interpolators. These results
include three inverse estimates, stability of mollified interpolators, approximations
orders and stability of discrete Hodge decompositions, all with respect to fractional
order Sobolev norms.

Recall the definition of the Slobodetskij seminorms on Hs(S) for s ∈ ]0, 1[:

(5.1) �u�2s,S =

∫∫
S×S

|u(x)− u(y)|2
|x− y|n+2s

dxdy.

In this notation we may occasionally replace S by a subdomain of S. We often
omit S from the notation when the whole domain is considered. Such seminorms
have already been extensively used in finite element contexts; see for instance [10,
Chapter 14]. See also [31] for details on interpolation inequalities, in particular how
the constants may be taken uniformly with respect to a family of domains, such
as a compact family of reference macro-elements of given combinatorial structure.
The interested reader is also referred to [33].

Stability and inverse inequalities.

Proposition 5.1. For any 0 < s < 1/2 and any δ > 0, fixing ε small enough, we
have, for all h and all u ∈ Xh,

(5.2) |u− φεh ∗ u| ≤ δhs�u�s.

Proof. On a cell T of diameter 1, with a corresponding macro-element M(T ), we
may get an estimate

(5.3) |u− φεh ∗ u|T ≤ δ�u�s,M(T ).

Then we scale to size h, square and sum over T . Then we bound the sum of
seminorms squared on the right-hand side, by the seminorm squared on the whole
domain. �

The following is an inverse inequality for the Slobodetskij seminorms.

Proposition 5.2. For 0 < s < s′ < 1/2, we have h-uniform estimates for u ∈ Xh:

(5.4) �u�s′ � hs−s′�u�s.
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Proof. We square the two sides of the inequality to be proved, and write the semi-
norm over S as a sum indexed by pairs of cells T and T ′ in Th. That is,

(5.5) �u�2s =
∑
T,T ′

∫∫
T×T ′

|u(x)− u(y)|2
|x− y|n+2s

dxdy.

We distinguish two kinds of configurations for T, T ′ ∈ Th:
(i) If T ∩ T ′ �= ∅, we use the Slobodetskij seminorm on T ∪ T ′. We use scaling

from an estimate on reference elements, to get

(5.6)

∫∫
T×T ′

|u(x)− u(y)|2
|x− y|n+2s′

dxdy � h2(s−s′)�u�2s,T∪T ′ .

(ii) If T ∩ T ′ = ∅, we have, for x ∈ T and y ∈ T ′, an estimate h � |x− y|, which
yields

(5.7)
|u(x)− u(y)|2
|x− y|n+2s′

� h2(s−s′) |u(x)− u(y)|2
|x− y|n+2s

.

We integrate this inequality for (x, y) ∈ T × T ′.
Finally we sum the inequalities obtained in (i) and (ii), and notice that the

right-hand side is dominated by h2(s−s′)�u�2s. �

The following result will be used repeatedly. It shows in particular that elements
of Xh are close in Hs(S) to smooth functions. It enables one to transfer arguments
valid for smooth fields to Xh.

Proposition 5.3. For 0 < s < 1/2 and δ > 0, fixing ε small enough, we may
obtain, for all u ∈ Xh,

(5.8) �u− φεh ∗ u�s ≤ δ�u�s.

Proof. Pick μ > 0 such that s+μ < 1/2. Use the interpolation inequality to write,
for u ∈ Xh,

�u− φεh ∗ u�s � |u− φεh ∗ u|
μ

s+μ �u− φεh ∗ u�
s

s+μ

s+μ(5.9)

� |u− φεh ∗ u|
μ

s+μ �u�
s

s+μ

s+μ ,(5.10)

using uniform boundedness of convolution by in φεh in Sobolev spaces.
We apply Proposition 5.1 to the first term and Proposition 5.2 to the second

term. We get

�u− φεh ∗ u�s � (hs�u�s)
μ

s+μ (h−μ�u�s)
s

s+μ(5.11)

� �u�s.(5.12)

In this estimate, the constant may be rendered arbitrarily small by picking ε small
enough, due to Proposition 5.1. �

We have a second inverse inequality for Slobodetskij seminorms.

Proposition 5.4. For 0 < s < 1/2 we have an estimate, for all u ∈ Xh,

(5.13) �u�s � h−s|u|.
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Proof. We write, using Proposition 5.3, an interpolation inequality, an inverse in-
equality and Proposition 4.2,

�u�s � �φεh ∗ u�s(5.14)

� |φεh ∗ u|1−s|∇(φεh ∗ u)|s(5.15)

� |φεh ∗ u|1−s h−s|u|s(5.16)

� h−s|u|,(5.17)

as announced. �

Here is a third type of inverse inequality.

Proposition 5.5. For 0 < s < 1/2 , we have an inverse inequality, for u ∈ Xh,

|du| � hs−1�u�s.(5.18)

Proof. By scaling from a reference element. �

Here is a strengthening of Proposition 5.5, proved in the same way.

Proposition 5.6. For 0 < s < 1/2 we have an inverse inequality, for u ∈ Xh,

�u�h � hs−1�u�s.(5.19)

Proposition 5.7. For 0 < s < 1/2, we have a discrete interpolation estimate of
the form, for u ∈ Xh,

(5.20) �u�s � |u|1−s�u�sh.

Proof. We write, using Proposition 5.3, an interpolation inequality, Proposition 4.2
and Proposition 4.5,

�u�s � �φεh ∗ u�s(5.21)

� |φεh ∗ u|1−s|∇(φεh ∗ u)|s(5.22)

� |u|1−s�u�sh,(5.23)

as announced. �

We deduce the following.

Proposition 5.8. The mollified interpolator (smoothed projector) Πh is stable in

Hs′(S) → Hs(S), for 0 < s < s′ < 1/2.

Proof. We write, for u ∈ H1(S), using Proposition 5.7 and Proposition 4.6,

�Πhu�s � |Πhu|1−s�Πhu�sh(5.24)

� |u|1−s|∇u|s.(5.25)

One concludes by interpolation theory (see Lemma 25.3 in [39]). �
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Approximation orders. To obtain convergence estimates in Hs(S) we use the
next lemma.

Lemma 5.9. We have

(5.26) �u�2s,S �
∑

T∈T n
h

�u�2s,M(T ) +
1

sh2s
|u|2S ,

where we sum over n-cells T in Th, given that M(T ) denotes the macro-element
surrounding T .

Proof. We first prove, with constants independent of h,

(5.27) �u�2s,S �
∫∫

(x,y)∈S×S
|x−y|≤h

|u(x)− u(y)|2
|x− y|n+2s

dxdy +
1

sh2s
‖u‖2L2(S).

In the case S = Rn we write

(5.28)

∫∫
(x,y)∈S×S
|x−y|≥h

|u(x)− u(y)|2
|x− y|n+2s

dxdy =

∫
|z|≥h

‖u− τzu‖2L2

|z|n+2s
dz.

Then we remark that

(5.29)

∫
|z|≥h

1

|z|n+2s
dz � 1

sh2s
.

This proves (5.27) when S = Rn.
This estimate extends to other domains S because there exist continuous exten-

sion operators from Lipschitz subdomains of Rn to Rn.
Then we replace h by εh, for a fixed ε small enough so that the (εh)-neighborhood

of a cell T is in M(T ). In the first term on the right-hand side of (5.27), we may
let the integration domain consist of pairs (x, y) ∈ T × M(T ), for T ∈ Th. This
integral is in turn dominated by the first term on the right-hand side of (5.26). �

The point of this lemma is that the norms on the right-hand side are local enough
that standard scaling techniques from reference macro-elements may be used.

Recall that we suppose that our finite element spaces contain polynomials up to
degree p. We get the following.

Proposition 5.10. For 0 < s < s′ < 1/2 we have

(5.30) �u−Πhu�s � �u− Ih(φεh ∗ u)�s′ � hp+1−s′ |∇p+1u|.

Proof. The first inequality follows from Proposition 5.8.
The second inequality is based on Lemma 5.9, as follows. We look at the two

terms on the right-hand side of (5.26) separately.
When T is an n-cell in Th we denote by M2(T ) the macro-element of order 2,

defined by adding one more layer of elements around M(T ). We have, by scaling,

(5.31) �u− Ih(φεh ∗ u)�s′,M(T ) � hp+1−s′ |∇p+1u|M2(T ).

This is combined with the more standard estimate

(5.32)
1

hs′
|u− Ih(φεh ∗ u)| � hp+1−s′ |∇p+1u|.

This completes the proof. �
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Proposition 5.11. We have, for s ∈ ]0, 1[ and u ∈ Hp+1Alt•(S),

(5.33) ‖du− dΠhu‖H−s � hp+s|∇p+1u|.

Proof. We write

|du− dΠhu| = |du−Πhdu|(5.34)

� hp|∇pdu|(5.35)

� hp|∇p+1u|.(5.36)

We also have

‖du− dΠhu‖H−1 � |u−Πhu|(5.37)

� hp+1|∇p+1u|.(5.38)

One then concludes by interpolation theory. �

Fractional estimates on discrete Hodge decompositions.

Proposition 5.12. For 0 < s < s′ < 1/2 we have an estimate, for u ∈ Vh,

(5.39) �u�s � ‖du‖Hs′−1 � |du|.

Proof. We use Proposition 5.4, the stability of Πh in L2 and also Proposition 5.8,
Lemma 4.7 and the error estimate for Πh for Hs(S) data, and finally the continuous
theory of the Hodge decomposition. For u ∈ Vh,

�u�s = �Πhu�s(5.40)

≤ �Πh(u− Hu)�s + �ΠhHu�s(5.41)

� h−s|Πh(u− Hu)|+ �ΠhHu�s(5.42)

� h−s|u− Hu|+ �Hu�s′(5.43)

� h−s|Hu−ΠhHu)|+ �Hu�s′(5.44)

� �Hu�s′(5.45)

� ‖du‖Hs′−1(5.46)

� |du|.(5.47)

This concludes the proof. �

The following proposition reflects the proximity of Gh to G and the equivalence
of norms on the finite dimensional space G.

Proposition 5.13. For 0 < s < 1/2 we have an estimate, for u ∈ Gh,

(5.48) �u�s � |u|.

Proof. This proof is designed so as to extend to general S. Remark 4.3 would
provide an alternative trivial proof for flat toruses.

Let Qh denote the L2 projection onto Wh. We remark that it maps G to Gh.
We also use that Πh maps W to Wh, which follows from commutation with the
exterior derivative. We may write, for u ∈ G,

(5.49) |u−Qhu| ≤ |u−Πhu| � h|∇u|.
Since G and Gh have the same dimension, one deduces that Qh : G → Gh is
eventually invertible with an inverse which is uniformly bounded O → O.
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Then we write, for u ∈ G, using Propositions 5.4 and 5.8, equivalence of norms
on G and the above remark,

�Qhu�s ≤ �Qh(u−Πhu)�s + �QhΠhu�s(5.50)

� h−s|Qh(u−Πhu)|+ �Πhu�s(5.51)

� h−s|u−Πhu|+ �u�s′ (with s < s′ < 1/2)(5.52)

� �u�s′(5.53)

� |u|(5.54)

� |Qhu|.(5.55)

This concludes the proof. �

The following proposition shows that solutions to discrete problems may have
an improved regularity. For instance, for 0-forms, it provides H1+s(S) estimates for
finite element approximations to the Laplace equation.

Proposition 5.14. For 0 < s < 1/2 we have an estimate, for u ∈ Vh,

(5.56) �du�s � sup
v∈Xh

|〈du, dv〉|
|v| .

Proof. We write, for u ∈ Vh, using Proposition 5.3 and elliptic regularity,

�du�s ≈ �d(φεh ∗ u)�s(5.57)

≈ |d�d(φεh ∗ u)|Hs−1 .(5.58)

From this estimate we continue:

�du�s � sup
v∈V ∩H1−s(S)

〈d(φεh ∗ u), dv〉
|v|+ �v�1−s

(5.59)

� sup
v∈V ∩H1−s(S)

〈du, d(φεh ∗ v)〉
|v|+ �v�1−s

(5.60)

� sup
v∈V ∩H1−s(S)

〈du, dPh(φεh ∗ v)〉
|v|+ �v�1−s

.(5.61)

Next we write, for v ∈ V ∩ H1−s(S), using Proposition 4.9,

|φεh ∗ v − Ph(φεh ∗ v)| � h |d(φεh ∗ v)|(5.62)

� h1−s|dv|H−s(S)(5.63)

� h1−s�v�1−s.(5.64)

We deduce

|Ph(φεh ∗ v)| � |φεh ∗ v|+ h1−s�v�1−s(5.65)

� |v|+ �v�1−s.(5.66)

So we obtain

(5.67) �du�s � sup
v∈Vh

|〈du, dv〉|
|v| .

This is a little stronger than the announced result. �
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Remark 5.1. The results of this section give in particular estimates for elements of
Vh that mimic similar estimates known to hold for elements of V . Various results
along these lines have been obtained the last decade.

• The property that for u ∈ Vh, |u| � |du| is known as the Poincaré-Friedrichs
estimate, and was proved for closed manifolds in [16]. It is equivalent to
the wellposedness of equations related to the Hodge-Laplace operator [2].

• The stronger result, that for u ∈ Vh, |u| � |du|H−1 was proved in [19] in
3D, and used there to prove a discrete div-curl lemma. It can in general be
deduced from the existence of L2 bounded commuting projections.

• The property that for uh ∈ Vh, if duh is bounded in L2, then a subsequence
of (uh) converges in L2, is known as discrete compactness, in the sense of
Kikuchi [34]. It is used for proving convergence of eigenvalue problems in
particular for Maxwell’s equations [9]. This property is discussed in general,
in relation to the previous two variants of Poincaré-Friedrichs estimates, in
[27]. Discrete compactness is equivalent to the gap property δ(Vh, V ) → 0 in
the norm of X. The gap property has applications outside spectral theory,
for instance to prove inf-sup conditions for noncoercive problems, see [12],
[11] and Lemma 4.4.1 in [14].

• For u ∈ Vh, the Lp norm of u is bounded by the L2 norm of du, for the
exponents p such that we have a Sobolev embedding H1(S) → Lp(S). For
differential forms this result is included in [23] (Propositions 5.69 and 5.70).
Such discrete Sobolev embeddings were used to study nonlinear problems
in 2D in [25].

Remark 5.2. In [30] a quite general framework for analyzing numerical schemes is
proposed, mainly in the context of scalar equations but including mixed methods. It
encompasses both nonconforming Galerkin methods and finite volume like schemes,
and involves in particular an axiomatic approach to discrete compactness properties.
It is quite different from discrete compactness in the sense of Kikuchi. On the other
hand, that discrete compactness in their sense (see Definition 2.8 of [30]) holds for
the present type of discretizations is proved in Proposition 5.71 of [23], for the L2

setting.

6. Abstract discretization of the Hodge-Dirac operator

For the Hodge-Dirac operator discretized with differential forms, Xh is not a
subspace of Y and X is not compact in O. Contrary to the case of Maxwell
problems, the operator is unsigned, even after shifting by multiples of the identity.
Below we provide ways around these difficulties. A first theory is given, showing
how far one can get with a theory based onXh interpreted as a subspace ofX. Then
we provide a second theory, where Xh is viewed as a nonconforming discretization
of Y . This theory allows for lower order perturbations, as detailed in the third part
of this section.

A first general theory. We suppose we have a separable Hilbert space O, with
scalar product 〈·, ·〉 and norm | · |. We suppose we have another Hilbert space X
which is dense and compactly embedded in O. We are given a continuous operator
d : X → O, such that the bilinear form on X,

(6.1) (u, v) �→ 〈du, dv〉+ 〈u, v〉,
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defines the norm of X, or at least an equivalent one. We suppose that d maps X
to X and in fact that d2 = 0.

We let W denote the kernel of d on X. We let V be the orthogonal of W in X
with respect to the scalar product of O, or, equivalently, that of X. We suppose
that the injection of V in O is compact.

We let a denote the continuous symmetric bilinear form on X defined by

(6.2) a(u, v) = 〈du, v〉+ 〈u, dv〉.
We are interested in the eigenmode problems, find u ∈ X and λ ∈ R such that,

for all v ∈ X,

(6.3) a(u, v) = λ〈u, v〉.
The kernel of a, or equivalently the 0-eigenspace, is

(6.4) G = {u ∈ X : du = 0 and u ⊥ dX}.
We suppose that it is finite dimensional.

To study these eigenmode problems, we introduce the bilinear form b on X
defined by

(6.5) b(u, v) = 〈du, dv〉.
This bilinear form is semi-positive and its kernel is W . The orthogonal of the
kernel is V , which is compactly embedded in O. We are therefore in the setting of
[27]. The nonzero eigenvalues are positive, constitute an increasing and diverging
sequence and have finite dimensional associated eigenspaces.

We let μ[k], k ∈ N, denote the increasing sequence of strictly positive eigenvalues
of b, counted with multiplicities and with a corresponding choice of eigenvector v[k].
We suppose that they are orthonormalized in O, so they constitute a Hilbertian
basis of V , the closure of V in O. We let λ[k] = μ[k]1/2. We remark that the vectors
λ[k]−1dv[k] constitute a Hilbertian basis of the subspace of W orthogonal to G.

Using that v[k] ⊥ W and dX ⊂ W we compute, for w ∈ X,

a(v[k]± λ[k]−1dv[k], w) = 〈v[k]± λ[k]−1dv[k], dw〉+ 〈dv[k], w〉(6.6)

= 〈±λ[k]v[k], w〉+ 〈dv[k], w〉.(6.7)

We get:

• +λ[k] is an eigenvalue of a for the eigenvector v[k] + λ[k]−1dv[k],
• −λ[k] is an eigenvalue of a for the eigenvector v[k]− λ[k]−1dv[k].

Together, these two families of vectors constitute a Hilbertian basis of the sub-
space of O orthogonal to G, after a scaling by

√
2.

We suppose that we are given a sequence of finite-dimensional subspaces Xn of
X, n ∈ N. We then look at the discrete eigenvalue problems: find un ∈ Xn and
λn ∈ R such that, for all wn ∈ Xn,

(6.8) a(un, wn) = λn〈un, wn〉.
We may also study the discrete eigenvalue problems for b.

We suppose that d maps Xn toXn. Then the algebraic properties, of the relation
between the eigenvalue problems for a and b, carry through exactly as above, to
the discrete setting.

For the analysis, we suppose that each Xn is equipped with a projector Πn : O →
Xn, that these are uniformly bounded in O, commute with d and converge pointwise
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to the identity. Under these hypotheses the discrete eigenvalue problem for b falls
under the scope of [27]. There, convergence is proved for the discrete eigenmodes
of b, and we deduce that convergence also holds for the discrete eigenmodes of a.

The problem is that, as far as we can see, this analysis does not allow one
to perturb a by a bilinear form c continuous on O, because X is not compactly
embedded in O. The bilinear form c would model 0-order terms in the Dirac
equation, such as the ones produced by the electromagnetic field. It would also
be of interest to weaken the hypothesis d2 = 0 to the following: d2 extends to a
bounded operator O → O. This would cover the case where d is a covariant exterior
derivative and d2 represents curvature terms.

A second general theory. We suppose we have a separable Hilbert space O,
with scalar product 〈·, ·〉 and norm | · |. We suppose we have another Hilbert space
Y which is dense and compactly embedded in O. We are given a bilinear form a
which is continuous and symmetric on Y × Y and extends continuously to Y × O
and O × Y . We define an operator A : Y → O by, for all u ∈ Y and all v ∈ O,

(6.9) 〈Au, v〉 = a(u, v).

We make the hypothesis that A : Y → O is Fredholm. By symmetry, its index is
necessarily 0. Care is taken so that the theory covers the case where A is unsigned.

From the point of view of computations, the difficulty is to construct “nice”
subspaces of Y . For instance, in the first theory developed above, “nice” meant
equipped with bounded projectors commuting with the differential d. These were
not subspaces of H1Alt•(S), not even of H1/2Alt•(S) . Now we consider a theory
without explicit mention of such a differential. We will consider discretization
spaces Xn which are not subspaces of Y . Since then a cannot be simply restricted
to Xn, we adopt the setting of nonconforming methods. We suppose we have finite
dimensional subspaces Xn of O, equipped with symmetric bilinear forms an, and
proceed to define suitable consistency and stability requirements.

We suppose that we have a space Z, intermediate between O and Y , with con-
tinuous inclusions and such that the injection Z → O is compact, and such that
for all n, Xn ⊆ Z.

Remark 6.1. For instance, a choice of Z could be of the form

(6.10) Z ⊆ [O, Y ]s, for some s ∈]0, 1].

For the Hodge-Dirac operator, one can use a fractional order Sobolev space

(6.11) Zk = HsAltk(S) for some s ∈]0, 1/2[.

Notice that the boundary condition does not make sense in this norm. On the
other hand, this norm is weak enough to allow finite element spaces without full
interelement continuity.

We will also use the space

(6.12) Zk = {u ∈ Hs1Altk(S) : du ∈ H−s2Altk(S)} for some s1, s2 ∈]0, 1/2[.

The forms an are required to be consistent with a in the following sense.

Definition 6.1. We say that the forms an are consistent with a when the following
holds. There is a dense subset Y ∞ of Y such that for all u ∈ Y ∞ there is a sequence
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un ∈ Xn such that un → u in O and

(6.13) lim
n→∞

sup
v∈Xn

|a(u, v)− an(un, v)|
‖v‖Z

= 0.

We also need a stability estimate for an. The following one is reasonable when
A is injective.

Definition 6.2. We say that we have a weak stability, when the following holds,
uniformly in n:

(6.14) 1 � inf
u∈Xn

sup
v∈Xn

|an(u, v)|
|u| ‖v‖Z

.

Suppose that A is injective, so that it is invertible Y → O. Let K be the inverse.
Equivalently, the operator K : O → Y is defined by, for all u, v ∈ O,

(6.15) a(Ku, v) = 〈u, v〉.

As an operator O → O, K is symmetric and compact, but unsigned. The spec-
tral theorem for compact self-adjoint operators applies. Under the weak inf-sup
condition, one can also define an operator Kn : O → Xn, by, for all v ∈ Xn,

(6.16) a(Knu, v) = 〈u, v〉.

Convergence of the discrete eigenmode problem is obtained by comparing Kn with
K. The following estimate appears to be the most convenient sufficient condition
for convergence.

Proposition 6.1. Suppose A is injective. Under the conditions of consistency and
stability of the preceding definitions, we have convergence in the operator norm:

(6.17) ‖K −Kn‖O→O → 0.

Proof. Define the space Z ′ to be the dense subspace of O which is dual of Z with
respect to a. In other words, choose Z ′ so that bilinear form a extends to a contin-
uous and invertible one on Z ′ × Z. For instance, in the case of equality in (6.10),
we would have

(6.18) Z ′ = [O, Y ]1−s.

Define an operator Pn : Z ′ → Xn, by, for all v ∈ Xn,

(6.19) an(Pnu, v) = a(u, v).

From the discrete inf-sup condition, the sequence Pn is uniformly bounded Z ′ → O.
Moreover for u ∈ Y ∞, choose un ∈ Xn such that un → u in O and (6.13) holds.

We have

|Pnu− un| � sup
v∈Xn

|an(Pnu− un, v)|
‖v‖Z

= sup
v∈Xn

|a(u, v)− an(un, v)|
‖v‖Z

→ 0.(6.20)

Hence Pnu → u in O. Combining with the above uniform boundedness, it follows
that Pn → I pointwise, as operators Z ′ → O.

Since the injection Z → O is compact, K : O → Z ′ is compact. Therefore
Kn = PnK converges to K in operator norm O → O. �
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Perturbations in the second general theory. We consider the second abstract
setting, but notations are compatible with the first one also.

In practice the operators A : Y → O we consider will not be invertible. Even if
they were, we would be interested in perturbations of A of the form A+C where C :
O → O is bounded and symmetric. For these, invertibility would not be guaranteed.
Notice, however, that by adding multiples of the identity I : O → O, invertibility
may be achieved, and that such perturbations do not alter the eigenmode problem
other than by a shift in the eigenvalues.

Let G denote the kernel of A, which, we remind, is finite dimensional. We

suppose that the kernel Gn of an satisfies δ̂(Gn, G) → 0, in O-norm. In particular
they must eventually have the same dimension. Notice that for differential forms
and the Hodge-Dirac operator, this hypothesis is guaranteed by Proposition 4.1.

Let C : O → O be bounded and symmetric. We let c be the associated bilinear
form on O, defined by

(6.21) c(u, v) = 〈Cu, v〉.
Moreover we suppose that we have symmetric bilinear forms cn on Xn, with a
consistency estimate of the form, for all u, v ∈ Xh,

(6.22) |c(u, v)− cn(u, v)| ≤ εn|u| ‖v‖Z ,
for some sequence of positive reals (εn) converging to 0.

Proposition 6.2. We recall the hypothesis δ̂(Gn, G) → 0. We denote X̃n = Xn ∩
G⊥

n and suppose that an satisfies

(6.23) inf
u∈X̃n

sup
v∈Xn

|an(u, v)|
|u|‖v‖Z

� 1.

Suppose that A+C : Y → O is injective. Then we have the discrete weak stability,
for n large enough,

(6.24) inf
u∈Xn

sup
v∈Xn

|an(u, v) + cn(u, v)|
|u|‖v‖Z

� 1.

Proof. We proceed by contradiction, and suppose the condition is not satisfied.
Choose a subsequence un ∈ Xn such that |un| = 1, and

(6.25) sup
v∈Xn

|an(un, v) + cn(un, v)|
‖v‖Z

→ 0.

Upon extracting subsequences, we may suppose in addition that (un) converges
weakly in O to some u ∈ O. It follows from the two consistency estimates that, for
v ∈ Y ∞,

(6.26) a(u, v) + c(u, v) = 0.

Therefore u = 0.
By consistency (6.22) we deduce

(6.27) sup
v∈Xn

|cn(un, v)|
‖v‖Z

→ 0;

hence

(6.28) sup
v∈Xn

|an(un, v)|
‖v‖Z

→ 0.
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We may decompose

(6.29) un = fn + gn,

with fn ∈ X̃n and gn ∈ Gn.

Since δ̂(Gn, G) → 0, we get that both fn and gn converge weakly to 0 in O.
Actually gn converges strongly in O, since G is finite dimensional.

So |fn| → 1 and

(6.30) sup
v∈Xn

|an(fn, v)|
‖v‖Z

→ 0.

This contradicts (6.23). �

In the above considerations we could replace boundedness of C : O → O by
boundedness C : Z → O, which is somewhat weaker.

Remark 6.2. It can be noticed that the principles behind Proposition 6.2 are that,
under suitable conditions, firstly, inf-sup conditions on the orthogonal of some well-
behaved finite dimensional subspaces provide full inf-sup conditions for injective
operators, and secondly, the property of having an inf-sup condition on the or-
thogonal of the kernel is stable under compact perturbations. Variants of these
principles were developed under slightly different hypotheses in [15], in particu-
lar we did not consider weak norms there. On the other hand, the use of weak
norms is in [21], but there special care was given to the fact that the kernels were
infinite-dimensional.

Strengthened stability. The previous two subsections are natural from the point
of view of establishing the convergence Kh → K in the operator norm O → O, as
in Proposition 6.1. However, to study the forward problem in terms of stability and
convergence rates, the techniques yield suboptimal results. In this subsection we
indicate how an almost optimal stability estimate can be obtained. It is the basis
for establishing almost optimal convergence rates for the forward problem, which
in turn provide convergence rates for the eigenvalue problem [4], [7], [5].

The functional setting is as in the second general theory. We suppose that we
have a space Z, intermediate between O and Y , with continuous inclusions and
such that the injection Z → O is compact. We also suppose that we have finite
dimensional subspaces Xn of Z, equipped with symmetric bilinear forms an and
cn.

We make the following hypotheses:

• There is a dense subset Y ∞ of Y such that for all u ∈ Y ∞ there is a
sequence un ∈ Xn such that un → u in Z (not only O as in Definition 6.1)
and

(6.31) lim
n→∞

sup
v∈Xn

|a(u, v)− an(un, v)|
‖v‖Z

= 0.

• As before the kernel of a is denoted G, the kernel of an is denoted Gn. We
suppose that δ(Gn, G) → 0 in the norm of Z (before the norm of O was
used).
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• The bilinear form cn is consistent with c and in the sense that for a sequence
(εn) of positive reals converging to 0 we have, for all u, v ∈ Xh,

(6.32) |c(u, v)− cn(u, v)| ≤ εn‖u‖Z ‖v‖Z .

This condition is weaker than (6.22).

Under these circumstances we obtain the following variant of Proposition 6.2.
The proof is almost identical.

Proposition 6.3. We denote X̃n = Xn ∩G⊥
n and suppose that an satisfies

(6.33) inf
u∈X̃n

sup
v∈Xn

|an(u, v)|
‖u‖Z‖v‖Z

� 1.

Suppose that A+ C : Y → O is injective. Then we have, for n large enough,

(6.34) inf
u∈Xn

sup
v∈Xn

|an(u, v) + cn(u, v)|
‖u‖Z‖v‖Z

� 1.

Proof. We proceed by contradiction, and suppose the condition is not satisfied.
Choose a subsequence un ∈ Xn such that ‖un‖Z = 1, and

(6.35) sup
v∈Xn

|an(un, v) + cn(un, v)|
‖v‖Z

→ 0.

Upon extracting subsequences, we may suppose in addition that (un) converges
weakly in Z to some u ∈ Z. It follows from the consistency estimates that, for
v ∈ Y ∞,

(6.36) a(u, v) + c(u, v) = 0.

Therefore u = 0.
By consistency (6.32) we deduce

(6.37) sup
v∈Xn

|cn(un, v)|
‖v‖Z

→ 0;

hence

(6.38) sup
v∈Xn

|an(un, v)|
‖v‖Z

→ 0.

We may decompose

(6.39) un = fn + gn,

with fn ∈ X̃n and gn ∈ Gn.

Since δ̂(Gn, G) → 0 in Z, we get that both fn and gn converge weakly to 0 in
Z. Actually gn converges strongly in Z, since G is finite dimensional.

So ‖fn‖Z → 1 and

(6.40) sup
v∈Xn

|an(fn, v)|
‖v‖Z

→ 0.

This contradicts (6.23). �
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7. Concrete discretization of the Hodge-Dirac operator

In this section we discretize the Hodge-Dirac operator of Section 3, with differ-
ential forms as detailed in Section 4. We adopt notations both from the concrete
setting of Section 4 and the abstract setting of Section 6. In particular, the abstract
setting is employed with the choices

O = L2Alt•(S),(7.1)

X = {u ∈ O : du ∈ O},(7.2)

Y = H1Alt•(S),(7.3)

For the space Z several choices will be relevant. See Remark 6.1 for a list of choices.
Recall that

(7.4) a(u, v) = 〈du, v〉+ 〈u, dv〉.
SinceXh is a subspace ofX and a is continuous onX we can let ah be the restriction
of a to Xh.

We first obtain convergence for the eigenmode problem, allowing for zero order
perturbations of a. Then we establish convergence rates.

Convergence. Recall the definition of the seminorm (4.45). The following propo-
sition is almost tautological.

Proposition 7.1. Define X̃h = Xh ∩G⊥
h . We have an estimate

(7.5) 1 � inf
u∈X̃h

sup
v∈X̃h

|ah(u, v)|
|u| [v]h

.

Proof. We define an operator d�h : O → Vh by requiring, for u ∈ O and v ∈ Vh,

(7.6) 〈d�hu, v〉 = 〈u, dv〉.
Notice that with this definition, the equality then holds for v ∈ Xh. We also notice
that

(7.7) sup
v∈Xh

|〈u, dv〉|
|v| = |d�hu|.

Choose u ∈ Xh. Let v = du+ d�hu. We have

a(u, v)

|v| =
|du|2 + |d�hu|2

(|du|2 + |d�hu|2)1/2
= [u]h.(7.8)

One concludes by restricting attention to X̃h and using the fact that a map and its
transpose have the same norm. �

One could say that the whole point of Section 5 was to prove that the discrete
seminorm (4.45) dominates a sufficiently strong true seminorm, namely the Slo-
bodetskij one. Here is a precise statement.

Proposition 7.2. For 0 < s < 1/2 we have an estimate, for u ∈ Xh ∩G⊥
h ,

(7.9) �u�s � [u]h,

and for u ∈ Xh,

(7.10) �u�s � |u|+ [u]h.
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Proof. Choose u ∈ Xh. We write the discrete Hodge decomposition

(7.11) u = dw + v + g, with w ∈ Vh, v ∈ Vh and g ∈ Gh.

Then we combine Propositions 5.12, 5.13 and 5.14, as follows. We estimate

�u�2s ≤ 3�dw�2s + 3�v�2s + 3�g�2s(7.12)

� ( sup
u′∈Xh

|〈dw, du′〉|
|u′| )2 + |dv|2 + |u|2(7.13)

� ( sup
u′∈Xh

|〈u, du′〉|
|u′| )2 + |du|2 + |u|2(7.14)

� [u]2h + |u|2.(7.15)

This gives the second estimate (7.10). To obtain the first estimate (7.9) one sup-
poses g = 0 in the above computations. �

We deduce a stability estimate in the following form.

Proposition 7.3. For 0 < s < 1/2, the following weak inf-sup condition holds:

(7.16) 1 � inf
u∈X̃h

sup
v∈X̃h

|ah(u, v)|
|u| (|v|+ �v�s)

.

Proof. From Propositions 7.1 and 7.2. �

We also check the consistency requirement of the abstract theory.

Proposition 7.4. Consistence in the sense of Definition 6.1 holds. For u ∈
H1Alt•(S) such that du ∈ H1Alt•(S) we may find uh ∈ Xh such that

(7.17) sup
v∈Xh

|a(u, v)− ah(uh, v)|
|v|+ �v�s

→ 0.

Proof. For such u define uh = Πhu ∈ Xh. Since the local spaces attached to cells
contain the constants, we have convergence rates

|u− uh| � h,(7.18)

|du− duh| � h.(7.19)

For any v ∈ Xh we have

(7.20) a(u, v)− ah(uh, v) = 〈du− duh, v〉+ 〈u− uh, dv〉;
hence

(7.21) |a(u, v)− ah(uh, v)| � h(|v|+ |dv|).
Using Proposition 5.5 we deduce

(7.22) |a(u, v)− ah(un, v)| � h|v|+ hs�v�s.
This concludes the proof. �

Finally, combing all the above results, we apply the general perturbation theory
with the choice

(7.23) Z = HsAlt•(S),

with s ∈]0, 1/2[. We obtain the following.
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Corollary 7.5. Denote by A : Y → O the Hodge-Dirac operator. Consider a vari-
ational discretization with differential forms, as discussed above. Let C : O → O
be a bounded self-adjoint operator. It could represent for instance a smooth enough
electromagnetic field in the Dirac equation. Consider a consistent variational dis-
cretization of C by symmetric bilinear forms ch on Xh. Choose μ ∈ R such that
A + C + μI is injective. Then the associated discrete eigenmodes converge, in the
sense given by Proposition 6.1.

Convergence rates. The previous results did not provide explicit convergence
rates, and should one try to deduce rates from the proofs, one would get suboptimal
ones. In this subsection we establish stronger stability estimates and almost optimal
convergence rates.

On the space X̃h = Xh ∩G⊥
h we denote in this subsection

(7.24) [u]2h,1 = |du|2 + ( sup
v∈Xh

|〈u, dv〉|
|v| )2

and

(7.25) [u]2h,0 = |u|2.

More generally we introduce, on X̃h, the norms [u]2h,s for 0 ≤ s ≤ 1 defined by

interpolation between [·]2h,1 and [·]2h,0, say by the complex method. The space X̃h

equipped with the norm [u]2h,s will be denoted X̃h,s. Actually we need only the

cases s = 0, 1/2, 1.

Proposition 7.6. We have an estimate

(7.26) 1 � inf
u∈X̃h

sup
v∈X̃h

|a(u, v)|
[u]h,1/2 [v]h,1/2

.

Proof. We introduce the map

(7.27) Ah

{
X̃h → X̃�

h,
u �→ a(u, ·).

From Proposition 7.1 and the symmetry of ah we get thatA−1
h is uniformly bounded

in operator norm X̃�
h,1 → X̃h,0 and X̃�

h,0 → X̃h,1. By interpolation theory it is

uniformly bounded in operator norm X̃�
h,1/2 → X̃h,1/2. This can be expressed with

the claimed inf-sup condition. �

Proposition 7.7. For 0 < s < 1/2 we have an estimate, for u ∈ X̃h,

(7.28) �u�s � [u]h,1/2.

Proof. Combining Propositions 5.7 and 4.10 we get, for u ∈ X̃h,

(7.29) �u�s � [u]1−s
h,0 [u]sh,1 .

From there we may deduce, for s < s′ ≤ 1,

(7.30) �u�s � [u]h,s′ .

We choose s′ = 1/2 and obtain the announced estimate. �
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Proposition 7.8. We have an estimate

(7.31) 1 � inf
u∈X̃h

sup
v∈X̃h

|ah(u, v)|
�u�s �v�s

.

Proof. From Propositions 7.6 and 7.7. �

We will perturb this estimate, by interpolating with the natural norm on X,
which will be written

(7.32) ‖u‖2d = |u|2 + |du|2.
We notice the following.

Proposition 7.9. We have an estimate

(7.33) 1 � inf
u∈X̃h

sup
v∈X̃h

|a(u, v)|
‖u‖d ‖v‖d

.

Proof. For u ∈ X̃h write u = v + dw with v, w ∈ Vh. Define u′ = w + dv. We have

‖u′‖2d = |w|2 + |dv|2 + |dw|2(7.34)

≈ |dv|2 + |dw|2(7.35)

≈ |dv|2 + |dw|2 + |v|2 = ‖u‖2d.(7.36)

We also have

a(u, u′) = 〈du, dv〉+ 〈u, dw〉(7.37)

= |dv|2 + |dw|2.(7.38)

Therefore u′ provides a quasi-optimal test function for u. �

We require the following interpolation result (where it is understood that we are
working with differential forms).

Lemma 7.10. We have the interpolation result, for θ ∈]0, 1[,

(7.39) [X,Hs(S)]θ ⊆ {u ∈ Hθs(S) : du ∈ Hθ(s−1)(S)}.

Proof. The axioms of interpolation theory imply that the identity is continuous as
a map:

(7.40) [X,Hs(S)]θ → [L2(S),Hs(S)]θ = Hθs(S),

and that the exterior derivative is continuous as a map:

(7.41) [X,Hs(S)]θ → [L2(S),Hs−1(S)]θ = Hθ(s−1)(S).

The interpolation spaces on the right are identified by the reiteration theorem
(Theorem 26.3 in [39]). �

Remark 7.1. It seems likely that one has not only inclusion but equality between
the two spaces of Lemma 7.10. This is proved in [33] for a closely related problem,
by Fourier techniques. Notice also that the result is of the type covered by [6] since
the equality is essentially of the form

(7.42) [X,Hs]θ = {u ∈ [L2,Hs]θ : du ∈ [L2,Hs−1]θ}.
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Now we choose s ∈]0, 1/2[ close to 1/2. Then we choose θ ∈]0, 1[ close to 1 such
that θ(1− s) ∈]0, 1/2[. Then we set s1 = θs and s2 = θ(1− s). By choosing s and
θ cleverly we may get s1 and s2 as close to 1/2 as we wish, yet strictly smaller. We
then introduce the following norms corresponding to Lemma 7.10:

(7.43) ‖u‖2s1,s2 = ‖u‖2Hs1 + ‖du‖2H−s2 .

These norms are well defined on Xh. Combining Propositions 7.8 and 7.9 with
Lemma 7.10 we get the following.

Proposition 7.11. We have an estimate

(7.44) 1 � inf
u∈X̃h

sup
v∈X̃h

|a(u, v)|
‖u‖s1,s2 ‖v‖s1,s2

.

In what follows we suppose C is a zero order operator with smooth coefficients,
such that A+C is injective. The bilinear form associated with C is denoted c. We
denote by b the bilinear form a+ c.

Applying Proposition 6.3 we obtain the following.

Proposition 7.12. We have an estimate

(7.45) 1 � inf
u∈Xh

sup
v∈Xh

|b(u, v)|
‖u‖s1,s2 ‖v‖s1,s2

.

Let Z be the space defined by the norm (7.43). Let Z ′ be the space with norm

(7.46) ‖u‖2s2,s1 = ‖u‖2Hs2 + ‖du‖2H−s1 .

Then b is continuous on Z ′ ×Z (actually it can be checked that Z ′ is the dual of Z
with respect to b). By construction s1 < s2, so Z ′ ⊂ Z with continuous injection.
Notice the crucial fact that Xh is a subspace of both Z and Z ′.

Define the Galerkin projection Rh : Y → Xh by

(7.47) ∀v ∈ Xh b(Rhu, v) = b(u, v).

Proposition 7.12 shows that Rh is uniformly stable Z ′ → Z. This stability is then
combined with the approximation orders proved in Propositions 5.10 and 5.11, to
give the following.

Proposition 7.13. We have convergence estimates

(7.48) ‖u−Rhu‖s1,s2 � hp+s1 |∇p+1u|.

Proof. We have

‖u−Rhu‖s1,s2 ≤ ‖u−Πhu‖s1,s2 + ‖Rh(u−Πhu)‖s1,s2(7.49)

� ‖u−Πhu‖s1,s2 + ‖u−Πhu‖s2,s1(7.50)

� max{hp+1−s1−ε, hp+s2 , hp+1−s2−ε, hp+s1}|∇p+1u|,(7.51)

for arbitrary small ε > 0. We notice that 1− s1 > 1 − s2 > s2 > s1, so we end up
with the announced estimate. �

This convergence order is as close to hp+1/2 as we wish. The convergence order
is therefore optimal except for a loss of h−ε, for ε > 0 arbitrarily small (the involved
constants are not controlled as ε → 0).
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We can also get approximation orders in L2 by an Aubin-Nitsche trick:

Proposition 7.14. We have convergence orders, for arbitrary s < 1/2,

(7.52) |u−Rhu| � hp+2s|∇p+1u|.
Proof. We write

|u−Rhu| � sup
v∈H1

|b(u−Rhu, v)|
‖v‖H1

(7.53)

� sup
v∈H1

|b(u−Rhu, v −Rhv)|
‖v‖H1

(7.54)

� sup
v∈H1

‖u−Rhu‖Z′‖v −Rhv‖Z
‖v‖H1

.(7.55)

Then we use Proposition 7.13. �
If we define K and Kh as in (6.15), ( 6.16), but with respect to the bilinear form

b instead of a, we may use the identity K−Kn = (I−Rh)K. From the convergence
rates obtained for Rh, convergence rates for the eigenvectors and values are obtained
by the techniques of [13], [4], [7], [5].

Outlook. We finish with some remarks on possible future work. The general-
ity of the above abstract framework seems particularly adapted to the following
extensions.

• First, one could be interested in a variable background Riemannian met-
ric. A technique to obtain a fully discrete theory, would be to approximate
the metric by discrete metrics, such as those defined by Regge [37], [21].
This approximation step should fall under the scope of the abstract con-
sistency requirement we defined. This topic would be interesting to pursue
on general manifolds, not just toruses.

• Second, the framework also sheds light on second order equations, and non-
conforming discretizations thereof. Let ∇ be the Levi-Civita connection as-
sociated with a Riemannian metric. Recall that ∇�∇, acting on differential
forms, differs from the Hodge-Laplace by lower order curvature terms. The
eigenvalue problem for ∇�∇ could be approached using Crouzeix-Raviart
elements. Remarkably, these are well defined in Regge calculus.

• Third, we have already motivated our results by applications to electromag-
netic fields. The continuous Dirac equation has a gauge symmetry, associ-
ated with adding gradients to the magnetic vector potential. It would seem
interesting to try to achieve a consistent gauge invariant discrete method.
On the other hand, this does not seem as important for the Dirac equation
as for the Yang-Mills equations, the difference being the size of the kernel,
which is infinite dimensional in the second case.
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[38] J. Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp. 77 (2008),

no. 262, 633–649, DOI 10.1090/S0025-5718-07-02030-3. MR2373173
[39] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the

Unione Matematica Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007. MR2328004
[40] M. E. Taylor, Partial Differential Equations. II: Qualitative Studies of Linear Equations,

Applied Mathematical Sciences, vol. 116, Springer-Verlag, New York, 1996. MR1395149

Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, NO-0316

Oslo, Norway

E-mail address: snorrec@math.uio.no

http://www.ams.org/mathscinet-getitem?mr=2854122
http://www.ams.org/mathscinet-getitem?mr=3507275
http://www.ams.org/mathscinet-getitem?mr=2805152
http://www.ams.org/mathscinet-getitem?mr=3434870
http://www.ams.org/mathscinet-getitem?mr=2804657
http://www.ams.org/mathscinet-getitem?mr=2373181
http://www.ams.org/mathscinet-getitem?mr=3020954
http://www.ams.org/mathscinet-getitem?mr=3143686
http://www.ams.org/mathscinet-getitem?mr=0488179
http://www.ams.org/mathscinet-getitem?mr=3109434
http://www.ams.org/mathscinet-getitem?mr=3194499
http://www.ams.org/mathscinet-getitem?mr=2009375
http://www.ams.org/mathscinet-getitem?mr=2875840
http://www.ams.org/mathscinet-getitem?mr=1039483
http://www.ams.org/mathscinet-getitem?mr=2640293
http://www.ams.org/mathscinet-getitem?mr=0127372
http://www.ams.org/mathscinet-getitem?mr=2373173
http://www.ams.org/mathscinet-getitem?mr=2328004
http://www.ams.org/mathscinet-getitem?mr=1395149

	1. Introduction
	2. Forms of the Dirac equation
	Dirac equation
	Quaternions
	Differential operators
	Differential forms
	Almost complex structure

	3. Functional framework for the Hodge-Dirac operator
	Contractible domains
	More general domains

	4. Finite element differential forms
	Discretization spaces
	Estimates for smoothed projections
	A discrete \rmH¹ seminorm
	Estimates on discrete Hodge decompositions
	A discrete domain seminorm

	5. Fractional order Sobolev space estimates
	Stability and inverse inequalities
	Approximation orders
	Fractional estimates on discrete Hodge decompositions

	6. Abstract discretization of the Hodge-Dirac operator
	A first general theory
	A second general theory
	Perturbations in the second general theory
	Strengthened stability

	7. Concrete discretization of the Hodge-Dirac operator
	Convergence
	Convergence rates
	Outlook

	Acknowledgments
	References

