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OPTIMAL RATES FOR LAVRENTIEV REGULARIZATION

WITH ADJOINT SOURCE CONDITIONS

ROBERT PLATO, PETER MATHÉ, AND BERND HOFMANN

Abstract. There are various ways to regularize ill-posed operator equations
in Hilbert space. If the underlying operator is accretive, then Lavrentiev regu-
larization (singular perturbation) is an immediate choice. The corresponding
convergence rates for the regularization error depend on the given smooth-
ness assumptions, and for general accretive operators these may be both with
respect to the operator or its adjoint. Previous analysis revealed different con-
vergence rates, and their optimality was unclear, specifically for adjoint source
conditions. Based on the fundamental study by T. Kato [J. Math. Soc. Japan
13(1961), no. 3, 247–274], we establish power type convergence rates for this
case. By measuring the optimality of such rates in terms of limit orders we
exhibit optimality properties of the convergence rates, for general accretive
operators under direct and adjoint source conditions, but also for the subclass

of positive semidefinite selfadjoint operators.

1. Introduction

We shall consider in a Hilbert space setting ill-posed linear operator equations of
the form

Au = f, f ∈ R(A),(1.1)

where A : H → H is a bounded linear operator with range R(A) in an infinite-
dimensional and separable complex Hilbert space H with norm ‖ · ‖ and complex-
valued inner product 〈·, ·〉. The ill-posedness of equation (1.1) arises when the range
R(A) is a non-closed subset of H. Hence, for the stable approximate solution of
the ill-posed equation (1.1), regularization methods are required when we observe,
instead of the right-hand side f , noisy data fδ ∈ H with

(1.2) ‖f − fδ ‖ ≤ δ,

where δ > 0 denotes the noise level.
In the sequel we restrict our considerations to the class of accretive operators, to

be introduced in Section 2. Such operators allow for calculus similar to the one for
positive semidefinite selfadjoint operators (cf., e.g., [3, Section 2.3]). In particular,
one can use the Lavrentiev regularization as a specific form of singular perturbation,
where for a regularization parameter γ > 0 the approximate solutions uδ

γ satisfy
the equation

(A+ γI)uδ
γ = fδ;(1.3)
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see the pioneering work [13] and for more general results on the method of Lavren-
tiev regularization the monograph [1]. For accretive operators A the operator A+γI
is continuously invertible for all γ > 0, with operator norm bound γ−1, and
hence uδ

γ ∈ H.

There is an immediate representation of the difference u− uδ
γ between the solu-

tion u and its approximation uδ
γ by

u− uδ
γ = (A+ γI)−1 (Au+ γu− fδ) = γ (A+ γI)−1 u+ (A+ γI)−1(Au− fδ).

Clearly, under the noise assumption (1.2) the last term can be norm bounded by

‖ (A+ γI)−1 (Au− fδ)‖ ≤ δ‖ (A+ γI)−1 ‖L(H) ≤
δ

γ
,

where ‖ · ‖L(H) denotes the operator norm of the Banach space L(H) of bounded
linear operators mapping in H. Thus, introducing the bias (regularization error for

noise-free data) ‖γ (A+ γI)−1 u‖, we arrive at the following bound for the overall
regularization error:

(1.4) ‖u− uδ
γ ‖ ≤ ‖γ (A+ γI)−1 u‖+ δ

γ
.

So, in order to obtain an overall regularization error bound, consideration can be
restricted to bounding the bias. Such an approach has been undertaken in [10],
where the functional dependence of the bias in terms of the parameter is called
profile function. This can be done by imposing some smoothness on the unknown
solution u, and a good portion of regularization theory is concerned with this topic.

Often smoothness is given in terms of source conditions, in most cases with

respect to the selfadjoint companion A∗A of A, say as u = (A∗A)p/2 v, for some
p > 0 and some source element v ∈ H. However, for accretive operators one
can directly use the operator A, since one defines fractional powers through the
Balakrishnan representation, and we outline this construction in Section 2. But,
along with the operator A, its adjoint A∗ is also accretive, and hence we may use
both types of source conditions u = Apv or u = (A∗)

p
v, the first being the direct

one, and the latter being the adjoint source condition.
Error bounds for Lavrentiev regularization and for non-selfadjoint accretive oper-

ators have been considered earlier, and we shall review some results in this direction
in Section 3. Those results have in common that the best possible error rate is δ1/3,
however, obtained under adjoint source conditions with p = 1. This contrasts to the
selfadjoint case, and the case of direct source conditions, where this rate is obtained
for p = 1/2, already. The goal of this study is to discuss optimal rates under ad-
joint source conditions, in particular to derive tight upper bounds; see Theorems 1
and 2 in Section 4. Moreover, we indicate in Section 5 that in general, i.e., for
arbitrary accretive operators, these bounds cannot be improved; see Corollary 1.
In this context, the class of fractional integration operators in L2(0, 1) serves as a
counterexample for preventing higher bias rates. As a conclusion, Section 6 sum-
marizes the essential results of the preceding sections with respect to the worst case
bias over all source elements and all normalized accretive operators by introducing
the concept of limit orders for the decay of the bias. We accomplish the study in
Section 7 with some discussion and extensions with respect to a restricted class of
accretive operators. An appendix collects proofs or sketches of proofs for presented
lemmas, propositions and theorems.
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The present study provides some error estimates and results on convergence rates
for Lavrentiev regularization. These results also have an impact on the numerical
analysis of ill-posed problems with accretive operators, similar to the known theory
for selfadjoint operators.

2. Accretive operators and related source conditions

Definition 1 (Accretive operator). A bounded linear operator A : H → H is called
accretive if we have

(2.1) Re 〈Au, u〉 ≥ 0 for all u ∈ H.

Notice that from the very definition, the operator A is accretive if and only if this
holds true for the adjoint A∗. Evidently, for a real Hilbert space H the concepts of
accretive and monotone linear operators coincide.

For any bounded linear accretive operator A : H → H and each constant γ > 0,
the operator A+ γI : H → H possesses a bounded inverse on H, and we have

(2.2) ‖(A+ γI)−1 ‖L(H) ≤ 1
γ for all γ > 0.

As outlined in the introduction, we shall focus on tight bounds for the bias
‖u−uγ ‖, where uγ solves the equation (A+ γI) uγ = f . However, uγ is practically
not available since f is unknown.

Definition 2 (Bias). Given a bounded linear accretive operator A : H → H, u ∈ H
and a parameter γ > 0, the bias (regularization error for noise-free data) is given
as

bγ(u) := ‖γ (A+ γI)
−1

u‖.

As highlighted earlier, the decay rate of the bias for γ → 0 depends on properties
of the unknown solution element u ∈ H. Such properties are often given in terms of
source conditions, preferably of power type. For selfadjoint operators such powers
can be defined through spectral calculus. However, for accretive operators this can
alternatively be done as follows, and we refer to [8, Chapt. 3] for details.

Definition 3 (Fractional power). For 0 < p < 1, the fractional power Ap of a
bounded linear accretive operator A : H → H is defined by the improper Banach
space-valued integral (Balakrishnan representation)

Ap :=
sin πp

π

∫ ∞

0

sp−1 (A+ sI)−1 A ds.(2.3)

For arbitrary values p > 0, the fractional power Ap of the operator A is defined by
Ap := Ap−�p�A�p�, where 	p
 denotes the largest integer which does not exceed p.

Remark 1. As general references for fractional powers of operators we refer to
[8, 12, 17]. Below, some more properties of fractional powers considered in those
references will be tacitly used.

Thus for 0 < p < ∞ and for the accretive operator A one can consider source
conditions, both in direct form as u ∈ R(Ap), and in its adjoint form u ∈ R((A∗)p).
The validity of source conditions reflects features of the underlying solution. For
instance, if an element u belongs to the range of the fractional integration operator
A = V introduced below in Example 1, then we have necessarily u(0) = 0 as a
consequence of formula (2.11), and if u belongs to the range of its adjoint, then
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formula (2.12) yields u(1) = 0. Therefore, it depends on the given context whether
to assume direct or adjoint source conditions.

For both types, some direct and adjoint source conditions bounds for the bias
have been obtained earlier. Here we shall mainly focus on studying the bias un-
der adjoint source conditions, but we shall also give results for direct ones, for
comparison.

Definition 4 (Direct and adjoint source conditions). Let A : H → H be a bounded
linear accretive operator. The element u obeys a direct or an adjoint source condi-
tion, if there is some 0 < p < ∞, and an element v ∈ H such that

(2.4) u = Apv

or

(2.5) u = (A∗)p v,

respectively.

We recall the following results involving fractional powers of accretive operators;
these will be crucial in our analysis. The first one represents one of the main
ingredients in our paper. The original version [11] is for unbounded operators, but
we formulate it in correspondence with our setting for bounded operators only.

Proposition 1 (Kato [11]). Let A : H → H be a bounded linear accretive operator
and 0 < p < 1

2 . Then

‖(A∗)pu‖ ≤ ep‖Apu‖ for all u ∈ H,(2.6)

where ep = tan π(1+2p)
4 .

Remark 2.

(1) It is shown in [15] that there exists an unbounded accretive operator which
does not satisfy an estimate of the form (2.6) for the case p = 1

2 and any
finite constant e1/2 > 0, in general.

(2) Extensions of Proposition 1 are possible in special cases, and we refer to
Proposition 10 in Section 7 for further details.

In addition we shall use the following moment inequality.

Proposition 2. For bounded linear accretive operators A : H → H and for 0 <
p ≤ 1 we have that

‖Apv‖ ≤ 2‖Av‖p‖v‖1−p for all v ∈ H.(2.7)

Remark 3. This inequality (2.7), with the factor 2 replaced by some finite constant,
may be found, e.g., in [20, Thm. 2.3.1]. The inequality (2.7) with the factor 2 on
the right-hand side follows as a consequence of a careful examination of the proof
of [17, Thm. 1.1.18], and of the fact that

‖(A+ γI)−1A‖L(H) ≤ 1 for all γ > 0.

In order to better understand the character of the range type source conditions
(2.4) and (2.5) from Definition 4 we mention a relation between the ranges of the
fractional powers of accretive linear operators A and A∗.
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Proposition 3. Let A : H → H be a bounded linear accretive operator. Then we
have for 0 < p < 1/2

R(Ap) = R((A∗)p).(2.8)

Moreover, we have for 0 < p ≤ 1

(2.9) R(Ap) = R((AA∗)p/2) and R((A∗)p) = R((A∗A)p/2).

The proof of the equality (2.8) is based on the seminal result by Kato given in
Proposition 1. Additional details are given in the appendix, where also the proof of
the equality (2.9) can be found. Note that, for 0 < p ≤ 1, as a consequence of the
identities in (2.9) only the two types of range conditions occurring in Definition 4
are of interest, whereas source conditions for ranges R((AA∗)p/2) and R((A∗A)p/2)
need not be considered separately.

Example 1 (Fractional integration operators). We introduce here as a typical
non-selfadjoint accretive operator the Riemann–Liouville fractional integration op-
erator V (for details see also [17,19]), sometimes called Volterra operator (cf. [8, Sec-
tion 8.5]), defined as

[V u](x) :=

∫ x

0

u(y) dy, 0 ≤ x ≤ 1,(2.10)

on the complex Hilbert space H = L2(0, 1), supplied with the standard L2-norm
‖ · ‖L2(0,1), and its fractional powers for exponents 0 < p < 1 of the form

[V pu](x) =
1

Γ(p)

∫ x

0

(x− y)−(1−p)u(y) dy, 0 ≤ x ≤ 1,(2.11)

where Γ denotes Euler’s gamma function. One easily obtains for 0 < p ≤ 1 also the
adjoint operators as

[(V ∗)pu](x) =
1

Γ(p)

∫ 1

x

(y − x)−(1−p)u(y) dy, 0 ≤ x ≤ 1.(2.12)

Also for 0 < p ≤ 1, along with V all operators V p and their adjoints (V p)∗ =
(V ∗)p are accretive. Moreover, we note that for such p the ranges of V p can be
verified explicitly as subspaces of the Sobolev spaces Hp(0, 1) of fractional order
(cf. [5, Theorem 2.1] and for special cases [19, Remark 18.1 and Theorem 18.3]).
A similar explicit structure (cf. [6, Lemma 8]) can also be found for the ranges of
(V ∗)p taking into account that for a function u ∈ L2(0, 1) with u = V pv ∈ R(V p)
the function ũ ∈ L2(0, 1) defined as ũ(t) := u(1− t), 0 ≤ t ≤ 1, obeys the condition
ũ = (V ∗)p ṽ ∈ R((V ∗)p) for ṽ(t) := v(1− t), 0 ≤ t ≤ 1.

Now we turn to estimates for the bias of Lavrentiev-regularized solutions and
highlight the following upper bound.

Proposition 4. Let A : H → H be a bounded linear accretive operator. Suppose
that u = Apv, ‖v‖ ≤ E, for some 0 < p ≤ 1. Then we have the inequality

bγ(u) ≤ 2Eγp, γ > 0.

Therefore, under noisy data (1.2) the a priori parameter choice γ(δ) ∼ δ1/(p+1)

gives

‖u− uδ
γ(δ) ‖ = O(δp/(p+1)) as δ → 0 whenever u ∈ R(Ap).(2.13)
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Proof. We first observe that

‖γ (A+ γI)
−1

Apv‖ = γ‖Ap (A+ γI)
−1

v‖
≤ 2γ‖A (A+ γI)

−1
v‖p‖ (A+ γI)

−1
v‖1−p

≤ 2γ‖v‖γp−1 = 2‖v‖γp.

From the error bound (1.4) we then have

‖u− uδ
γ(δ) ‖ ≤ 2E γ(δ)p +

δ

γ(δ)
.

With the given a priori parameter choice this completes the proof. �

Remark 4. Up to the factor 2 this resembles the known bounds in the selfadjoint
case. This also shows that the maximal decay rate for the bias achieves the order γp

within the range 0 < p ≤ 1. We note that the rate result (2.13) was also mentioned
by Tautenhahn in [21]. For similar rates in the case of an a posteriori parameter
choice applied to an iterated version of Lavrentiev regularization we refer to [18].

3. Known results for Lavrentiev regularization under adjoint

source conditions

For adjoint source conditions, and for real Hilbert spaces, the bias and the overall
regularization error have been treated several times.

(1) In Liu and Nashed [14] it has been shown for a non-linear setting that the
convergence rate in the noise-free case

‖γ (A+ γI)
−1

u‖ = O(
√
γ) as γ → 0 whenever u ∈ R(A∗)

can be derived. This immediately yields the following proposition.

Proposition 5. Let A : H → H be a bounded linear accretive operator. For the
scheme (1.3) of Lavrentiev regularization with noisy data as in (1.2), and for the
a priori parameter choice γ(δ) ∼ δ2/3 we have the convergence rate

‖u− uδ
γ(δ) ‖ = O(δ1/3) as δ → 0 whenever u ∈ R(A∗).(3.1)

(2) Hofmann, Kaltenbacher, and Resmerita [9] studied Lavrentiev regularization
under variational source conditions. These authors did not explicitly focus on the
bias, instead they showed the convergence rate for the overall regularization error.

Proposition 6. Let A : H → H be a bounded linear accretive operator. For each
0 < p ≤ 1, the convergence rate

‖u− uδ
γ(δ) ‖ = O(δp/(2p+1)) as δ → 0 whenever u ∈ R((A∗)p)

holds true for the a priori parameter choice γ(δ) ∼ δ(p+1)/(2p+1).

Actually, for the specific question the arguments in both papers are similar, and
we briefly sketch the following bound for the bias.

Proposition 7. Let A : H → H be a bounded linear accretive operator. If u obeys
an adjoint source condition (2.5) for some 0 < p ≤ 1, then there is a constant
Cp,u > 0 such that

bγ(u) ≤ Cp,uγ
p/(p+1), γ > 0.
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Proof. We start with the interpolation inequality (2.7) and bound, for u = (A∗)p v

〈u, u−uγ〉 = 〈v,Ap(u−uγ)〉 ≤ ‖v‖‖Ap(u−uγ)‖ ≤ 2‖v‖‖A(u−uγ)‖p‖u−uγ ‖1−p.

Now, from the definition of Lavrentiev regularization in (1.3), by testing with u−uγ

and A(u − uγ) we derive the following two ‘basic inequalities’ (see equations (9)
and (11) with δ = 0 in [9]):

‖u− uγ ‖2 ≤ 〈u, u− uγ〉 and ‖A(u− uγ)‖ ≤ γ‖u‖.
Combining the above inequalities this gives

‖u− uγ ‖2 ≤ 2‖v‖‖A(u− uγ)‖p‖u− uγ ‖1−p ≤ 2‖v‖‖u− uγ ‖1−pγp‖u‖p,
which finally implies

‖u− uγ ‖ ≤ (2‖v‖)1/(p+1) (γ‖u‖)p/(p+1) = (2‖v‖‖u‖p)1/(p+1) γp/(p+1),

which completes the proof with Cp,u = (2‖v‖‖u‖p)1/(p+1). �

This bound actually indicates the following deficit. The constant depends on the
norm of the underlying solution, and hence, some tightness in the estimate may be
lost. Below, we shall break new ground in order to obtain optimal bounds.

4. Tight upper bounds under adjoint source conditions

We turn to proving tight bounds for the bias under adjoint source conditions.
From Proposition 1 we immediately derive the following result.

Proposition 8. Let A : H → H be a bounded linear accretive operator, and let
0 < p < 1

2 . Then we have

‖γ(A+ γI)−1(A∗)p ‖L(H) ≤ cpγ
p , γ > 0 ,(4.1)

with cp = 2ep, where the constant ep is taken from Proposition 1.

Proof. Evidently, we have ‖S∗ ‖L(H) = ‖S ‖L(H) for each bounded linear operator
S mapping in H and moreover

(A∗)p = (Ap)∗

(see [8, Prop. 7.0.1 (e)]), with the consequence that

‖(A+ γI)−1(A∗)p ‖L(H) = ‖Ap(A∗ + γI)−1 ‖L(H).

Based on that fact and (2.6) we can proceed with the estimation of the right-hand
side of the latter identity. For each z ∈ H we have

γ‖Ap(A∗ + γI)−1z ‖ ≤ epγ‖(A∗)p(A∗ + γI)−1z ‖ ≤ 2epγ
p‖z ‖.

The latter inequality follows from the interpolation inequality (2.7) and from esti-
mate (2.2) (with A := A∗, respectively). �

We are now in a position to present the first main result of this paper.

Theorem 1. Let A : H → H be a bounded linear accretive operator. If the ele-
ment u obeys an adjoint source condition (2.5) with 0 < p < 1

2 and ‖v‖ ≤ E, then
the bias is bounded by

bγ(u) ≤ cpEγp , γ > 0 .
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Therefore, under noisy data (1.2) the a priori parameter choice γ(δ) ∼ δ1/(p+1)

gives

‖u− uδ
γ(δ) ‖ = O(δp/(p+1)) as δ → 0 whenever u ∈ R((A∗)p).(4.2)

Proof. We start again from the error bound (1.4), and we use Proposition 8. Then
we have for u = (A∗)p v, v ∈ H, that

‖u− uδ
γ(δ) ‖ ≤ cp γ(δ)

p ‖v‖+ δ

γ(δ)
,

where the constant cp is chosen as in Proposition 8. With the given a priori pa-
rameter choice this completes the proof of the theorem. �
Remark 5. Notice that we obtain the same rates as for the direct source conditions;
cf. Proposition 4 and Remark 4. However, for the adjoint source condition this
applies to the limited range 0 < p < 1/2.

We now consider the case p = 1/2.

Theorem 2. Let A : H → H be a bounded linear accretive operator. If the ele-
ment u obeys an adjoint source condition (2.5) with p = 1

2 and ‖v‖ ≤ E, then the
bias is bounded by

bγ(u) ≤ cE | ln γ| γ1/2, 0 < γ < exp(−2),

where c > 0 denotes some constant. Therefore, under noisy data (1.2) the a priori

parameter choice γ(δ) ∼ (δ/ |ln δ|)2/3 gives

‖u− uδ
γ(δ) ‖ = O

((
δ |ln δ|2

)1/3
)

as δ → 0 whenever u ∈ R((A∗)1/2).

The proof of Theorem 2 is given in the appendix.

Remark 6. The authors in [1] and [9] prove convergence results u − uδ
γ(δ)→ 0 as

δ → 0, both for a priori and a posteriori parameter choices, under the additional
assumption that the solution u of (1.1) is a minimum-norm solution. For elements u
which satisfy a source condition, either direct or adjoint, this automatically holds
true, because u is in the orthogonal complement of the nullspace N (A). The latter

is a consequence of the fact that the orthogonal decompositions N (A)⊕R(A∗) = H
and N (A) ⊕ R(A) = H are valid for accretive operators, and taking into account

that for each p > 0 we have R(Ap) ⊂ R(A) and R((A∗)p) ⊂ R(A∗); cf. [8, Corol-
lary 3.1.11].

5. Lower bounds for fractional integration operators

The fractional integration operators from Example 1 can be used here to obtain
lower bounds for the decay rate of the bias functions. To this end we shall find lower
bounds for specifically chosen elements; see (5.2), below. Precisely, we consider for
real parameters q the function

fq(x) := (1− x)q, 0 ≤ x < 1.

For each − 1
2 < q < ∞ we obviously have fq ∈ H = L2(0, 1). It follows from

elementary calculus that

(V ∗)pfq−p =
Γ(q − p+ 1)

Γ(q + 1)
fq, for 0 < p < ∞, q > p− 1

2 .(5.1)
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Thus we have, in particular, fq ∈ R((V ∗)p) for q > p − 1
2 . Moreover, we consider

in the sequel with γ > 0 the function

uq,γ := γ(V + γI)−1fq, for − 1
2 < q < ∞.(5.2)

The function uq,γ is given as the solution to the initial value problem

u′
q,γ(x) +

1
γuq,γ(x) = f ′

q(x) for 0 ≤ x < 1, uq,γ(0) = 1,

and hence we have that uq,γ = uγ,hom + uγ,par, with

uγ,hom(x) = e−x/γ , and uγ,par(x) =

∫ x

0

e−(x−y)/γf ′
q(y) dy.

We shall use this construction in several cases, for − 1
2 < q < 0, and for q = n =

1, 2, . . . . We start with the first case.

Lemma 1. The function uq,γ from (5.2), with − 1
2 < q < 0, satisfies the inequality

‖uq,γ ‖L2(0,1) ≥ cqγ
q+1/2 for sufficiently small parameter γ > 0, where cq > 0

denotes some constant that depends on q.

Proof. We shall show the following bounds:

‖uγ,hom ‖L2(0,1) ≤
√

γ
2 for γ > 0, ‖uγ,par ‖L2(0,1) ≥ c′qγ

q+1/2 for 0 < γ ≤ 1
2 ,

(5.3)

where c′q > 0 denotes some constant that depends on q and which is specified below.
The first estimate in (5.3) follows easily, and the proof of the second estimate will
be given in the following. For each γ ≤ 1

2 and each γ < x < 1 we have

uγ,par(x) ≥
∫ x

x−γ

e−(x−y)/γf ′
q(y) dy ≥ f ′

q(x− γ)

∫ x

x−γ

e−(x−y)/γ dy

= γ(1− e−1)|q|(1 + γ − x)q−1.

From that we obtain

‖uγ,par ‖L2(0,1) ≥
(∫ 1

γ

uγ,par(x)
2 dx

)1/2

≥ γ(1− e−1)|q|
(∫ 1−γ

0

(1− x)2q−2 dx
)1/2

= γ(1− e−1)
|q|

(1− 2q)1/2
(γ2q−1 − 1)1/2 ≥ c′qγ

q+1/2

with c′q = (1−e−1) |q|
(2−4q)1/2

, where the last estimate follows from γ2q−1−1 ≥ 1
2γ

2q−1

for γ ≤ 1
2 . This gives the second estimate in (5.3). The term c′qγ

q+1/2 in (5.3)

dominates the term
√
γ/2 as γ → 0. This completes the proof of the lemma. �

Now we turn to the case q = 1. In this case we have that f1 ∈ R(V ∗).

Lemma 2. The function u1,γ obeys ‖u1,γ ‖L2(0,1) ≥
√
γ/16 for 0 < γ ≤ 1

16 . More
generally, for each n = 1, 2, . . . there is a constant γ0 such that ‖un,γ ‖L2(0,1) ≥√
γ/16 provided that 0 < γ ≤ γ0.

Proof. With a slight abuse of notation, we again use the decomposition uq,γ =

uγ,hom+uγ,par, now with q = 1. Again, it is easy to see that ‖uγ,hom ‖L2(0,1) ≥
√
γ/4

for, e.g., γ ≤ 1. We shall show that ‖uγ,par ‖L2(0,1) ≤ γ.
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We explicitly compute, since for q = 1 we have f ′
1 = −1,

‖uγ,par ‖2L2(0,1) =

∫ 1

0

(∫ x

0

e−(x−y)/γ dy

)2

dx = γ2

∫ 1

0

(
1− e−x/γ

)2

dx ≤ γ2.

Since for γ ≤ 1
16 we have that

√
γ/4 − γ ≥

√
γ/16, we can complete the proof.

For larger n the following observation is important. The particular solutions uγ,par

at level n, denoted by u
(n)
γ,par are negative. Moreover, we find that −n ≤ f ′

n ≤ 0,

such that
∣∣∣u(n)

γ,par

∣∣∣ ≤ n
∣∣∣u(1)

γ,par

∣∣∣, which gives ‖u(n)
γ,par ‖L2(0,1) ≤ n‖u(1)

γ,par ‖L2(0,1) ≤ nγ.

This allows one to complete the proof. �

We summarize the lower bounds.

Corollary 1. Consider the operator equation (1.1), now for A := V . The following
lower bounds hold true:

(1) For each 0 < p < 1
2 , ε > 0 there exist constants cp,ε > 0 and γ0 > 0 such

that

‖γ(V + γI)−1(V ∗)p ‖L(L2(0,1)) ≥ cp,εγ
p+ε for 0 < γ ≤ γ0.

(2) For each integer n ≥ 1 there exist constants cn > 0 and γ0 > 0 such that

‖γ(V + γI)−1 (V ∗)
n ‖L(L2(0,1)) ≥ cn

√
γ for 0 < γ ≤ γ0.

Proof. For the verification of item (1) we first assume that p < 1
2 and ε > 0 are

chosen such that p + ε < 1
2 . Then the assertion follows from (5.1), (5.2) and

Lemma 1 by letting q := p− 1
2 + ε:

‖γ(V + γI)−1(V ∗)p ‖L(L2(0,1)) ≥
‖γ(V + γI)−1(V ∗)pf1/2−ε ‖L2(0,1)

‖f1/2−ε ‖L2(0,1)

≥ cp,εγ
p+ε with cp,ε :=

Γ( 12 + ε)
√
2ε

Γ(p+ 1
2 + ε)

cq

for γ > 0 sufficiently small, where the constant cq is taken from Lemma 1. If p+ε ≥
1
2 , then we select ε̃ > 0 such that p+ ε̃ < 1/2 ≤ p+ ε. The first part of this proof,
applied with q := p− 1/2 + ε̃, then yields

‖γ(V + γI)−1(V ∗)p ‖L(L2(0,1)) ≥ cp,ε̃γ
p+ε̃ ≥ cp,ε̃γ

p+ε

for γ > 0 small enough. Item (2) follows in a similar way from equations (5.1),
(5.2) and Lemma 2. �

The impact of Corollary 1 is considered comprehensively in Section 6.

Remark 7. The conclusions made from Corollary 1 and based on the class of frac-
tional integration operators V p introduced in Example 1 are not limited to the
specific Hilbert space L2(0, 1). Taking into account that every separable infinite-
dimensional complex Hilbert space H is isometrically isomorphic to the space
�2 of infinite sequences of square-summable complex numbers, the operator V :
L2(0, 1) → L2(0, 1) can be transformed in an invariant manner with respect to its

properties, as Ṽ = JV J∗ : H → H, to the separable Hilbert space H using the
associated isomorphism J : L2(0, 1) → H. Because of isometry, also all the norm

assertions carry over from V mapping in L2(0, 1) to Ṽ mapping in H.
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6. Limit orders for the bias decay of general accretive operators

We shall formalize the assertions of the previous sections as follows. Recall the
notion of the bias bγ in Definition 2 and note that the function bγ(u) = bAγ (u), u ∈
H, depends on the accretive operator A. Related to this we introduce for p > 0
source sets

M∗
p := {u ∈ H : u = (A∗)pv, ‖v‖ ≤ 1},(6.1)

as well as

Mp := {u ∈ H : u = Apv, ‖v‖ ≤ 1}.(6.2)

In this context we mention that obviously for p > 0

(6.3) sup
‖v‖≤1

bAγ ((A∗)pv) = sup
‖v‖≤1

‖uγ − (A∗)pv‖ = ‖γ(A+ γI)−1(A∗)p‖L(H)

and

(6.4) sup
‖v‖≤1

bAγ (Apv) = sup
‖v‖≤1

‖uγ −Apv‖ = ‖γ(A+ γI)−1Ap‖L(H),

which means that (6.3) and (6.4) characterize the corresponding suprema of the
bias over all normalized elements from M∗

p and Mp, respectively.
To continue we consider source sets as mappings V , which assign to the operator

A the corresponding subset V(A) of H. Then the worst case bias restricted to V
over all normalized accretive linear operators A is given as

(6.5) B(γ,V) := sup
A accretive,
‖A‖L(H)≤1

sup
u∈V(A)

bAγ (u), γ > 0.

We mention that, for all parameters γ > 0, the estimate B(γ,V1) ≤ B(γ,V2)
holds, whenever V1(A) ⊂ V2(A) for all considered A. In particular, we have for
V = V∗

p with V∗
p (A) := M∗

p and V = Vp with Vp(A) := Mp as a consequence of
(6.3) and (6.4) that the functions

B∗
p(γ) := B(γ,V∗

p )= sup
A accretive,
‖A‖L(H)≤1

‖γ(A+ γI)−1(A∗)p‖L(H), γ > 0,

and
Bp(γ) := B(γ,Vp)= sup

A accretive,
‖A‖L(H)≤1

‖γ(A+ γI)−1Ap‖L(H), γ > 0,

are the suprema over all normalized accretive linear operators A of the operator
norms ‖γ(A+ γI)−1(A∗)p‖L(H) and ‖γ(A+ γI)−1Ap‖L(H), respectively.

In addition we consider the similar construction when restricted to the subclass
of selfadjoint operators A = A∗, which are automatically positive semidefinite.
Hence, we consider the version

Bsa(γ,V) := sup
A accretive,

A=A∗,‖A‖L(H)≤1

sup
u∈V(A)

bAγ (u), γ > 0,

of the worst case bias (6.5) restricted to selfadjoint accretive operators A. We have

Bsa(γ,V∗
p ) = Bsa(γ,Vp), γ > 0,

because the source sets (6.1) and (6.2) coincide, and we let Bsa
p (γ) := Bsa(γ,Vp).

Since these functions are obtained as suprema over subclasses of general accretive
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operators A, ‖A‖L(H) ≤ 1, we have that both Bp(γ) ≥ Bsa
p (γ) and B∗

p(γ) ≥ Bsa
p (γ)

hold true.
We turn to the concept of the limit order for the decay rate of the functions

B(γ,V) as γ tends to zero.

Definition 5 (Limit order). Given a mapping V defined for general accretive linear
operators, we define the limit order for the worst case bias over V as

Λ(V) := sup {q ≥ 0 : B(γ,V) = O(γq) as γ → 0} ,(6.6)

and similarly we define this for the subclass of selfadjoint operators as

Λsa(V) := sup {q ≥ 0 : Bsa(γ,V) = O(γq) as γ → 0} .(6.7)

Moreover, we introduce for the adjoint and direct source sets

Λ∗
p := Λ(V∗

p ),

as well as
Λp := Λ(Vp),

and let
Λsa
p := Λsa(Vp) = Λsa(V∗

p ).

Remark 8. Limit orders are a useful concept to characterize decay rates, and this
concept proved important when studying properties of operators in several (classi-
cal) Banach spaces, we refer to the monograph [16, Chapt. 14.4], where such ap-
proach is undertaken in a much more complex context. Here we adopt the notion,
although in a different context.

To understand the concept on which the limit order is based, we provide the
following results. First we establish the following calculus for the functions Bp(γ)
and B∗

p(γ),

Lemma 3. Let A be accretive, ‖A‖L(H) ≤ 1, and let 0 < q ≤ p. Then we have
M∗

p ⊂ 2M∗
q . Consequently, we have that B∗

p(γ) ≤ 2B∗
q (γ) for all γ > 0. Moreover,

we have Bp(γ) ≤ 2Bq(γ) whenever 0 < q ≤ p.

Proof. Clearly, each u ∈ M∗
p can be written in the form u = (A∗)

p
v with v ∈

H, ‖v‖ ≤ 1. A reformulation yields u = (A∗)q w with w = (A∗)p−q v, and we

have ‖w‖ ≤ ‖ (A∗)
p−q ‖L(H)‖v‖ ≤ 2 · 1 = 2. The latter estimate follows from

‖(A∗)s ‖L(H) ≤ ‖(A∗)s−�s� ‖L(H)‖(A∗)�s� ‖L(H) ≤ 2 · 1 = 2 for s ≥ 0. This proves
the first assertion.

The second is an easy consequence, since the bias scales linearly in the norm
of the source element v. The final assertion can be seen in the same manner by
considering A instead of A∗ above. �

Furthermore, we note that we have Λ∗
p = Λ(cV∗

p ) and Λp = Λ(cVp) for each c > 0,
which is a consequence of the direct order for the functions B(γ,V) from (6.5).
These observations yield the following result.

Lemma 4. Suppose that the two mappings V1 and V2 are such that for all operators
A under consideration it holds that V1(A) ⊂ V2(A). Then

Λ(V2) ≤ Λ(V1).

Consequently, we find that

(6.8) Λ∗
p1

≤ Λ∗
p2

and Λp1
≤ Λp2

whenever 0 < p1 ≤ p2 < ∞.
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Indeed, the second assertion follows easily from the first one and from Lemma 3.
Thus, smaller classes yield larger limit orders, and for source sets as in (6.1) and
(6.2) we see that the limit order is a non-decreasing function in p. We add that lower
bounds for the decay of the bias for specific accretive operators A and elements u
yield upper bounds for the limit orders.

Finally, the limit order for the selfadjoint case yields upper bounds both for the
case with direct and adjoint source sets, i.e., Λsa

p ≥ Λ∗
p as well as Λsa

p ≥ Λp.
We provide the main results concerning the limit orders. First, known results for

Lavrentiev regularization in case of selfadjoint accretive operators A may be stated
in terms of limit orders, with proof sketched in the appendix.

Proposition 9. We have that

Λsa
p =

{
p, 0 < p ≤ 1,

1, 1 ≤ p < ∞.

The novel and main results for the general accretive case is stated as follows.
The proof will also be given in the appendix.

Theorem 3. We have that

Λ∗
p =

{
p, 0 < p ≤ 1

2 ,
1
2 ,

1
2 ≤ p < ∞,

and

Λp =

{
p, 0 < p ≤ 1,

1, 1 ≤ p < ∞.

Looking at the above limit orders we see that Λp = Λsa
p , i.e., for direct source

conditions the worst power type decay rate for the bias extends from the class of
selfadjoint accretive operators to all accretive ones. On the other hand, Theorem 3
shows the limitation of Lavrentiev regularization with adjoint source conditions
versus Lavrentiev regularization with direct source conditions when p > 1/2. In

particular, the saturation rate O(γ) for the bias and hence O(
√
δ) for the overall

regularization error cannot be achieved under adjoint source conditions, in general.
This situation is entirely different from that of the Tikhonov regularization, where
the adjoint source condition u = A∗v yields the overall error rate O(

√
δ) (cf. [7,

Corollary 3.1.3]).

7. Enhanced limit orders for restricted operator classes

Theorem 3 characterizes the worst case situation for the bias decay over all ac-
cretive and over all selfadjoint accretive bounded linear operators A. If, however,
the set of operators A is restricted to alternative subclasses, enhanced bias decay or-
ders are possible. As an example we only mention one such result in Proposition 10
below.

The class of operators under consideration here occurs if the Lavrentiev regular-
ization is applied to an operator A which is the fractional power of some accretive
operator. In certain cases the limitation p < 1/2 for the adjoint source condition
(2.5) can be broken, i.e., the range of admissible values of p can be extended to
values 1

2 ≤ p ≤ 1 such that the rate (3.1) can be improved.



798 ROBERT PLATO, PETER MATHÉ, AND BERND HOFMANN

Proposition 10. Let A : H → H and T : H → H be bounded linear accretive
operators such that A = Tμ for some 0 < μ < 1. If we suppose that the element u
obeys an adjoint source condition (2.5) with 0 < p < 1

2μ , p ≤ 1, and for a source

element v ∈ H with ‖v‖ ≤ E, then the bias is bounded by

bγ(u) ≤ cμpEγp,

where the constant cμp is taken from Proposition 8. Therefore, under noisy data

(1.2) the a priori parameter choice γ(δ) ∼ δ1/(p+1) gives (4.2).

Proof. An application of Proposition 1, with the operator A replaced by T ∗ there,
shows that for each 0 < p < 1

2μ we have ‖Apu‖ ≤ eμp‖(A∗)pu‖ for each u ∈
H, where the second law of exponents for fractional powers of operators is used;
cf. [8, Corollary 3.1.5]. For the definition of the constant eμp, see Proposition 1.
We can now proceed as in the proofs of Proposition 8 and Theorem 1. �

Example 2. The Abel type fractional integration operator A = V α : L2(0, 1) →
L2(0, 1) with 0 < α < 1 (see (2.11)) is the fractional power of the integration
operator V : L2(0, 1) → L2(0, 1) introduced in Example 1; see formula (2.10).
Proposition 10 thus applies to the present case, with μ = α.

As already mentioned these upper bounds yield lower bounds for corresponding
limit orders, which will not be formally introduced, here. In particular, if μ < 1

2 ,
then we can achieve the decay of the bias at a rate bγ(u) ≤ Cγ, u ∈ R (A∗), but
restricted to this particular class of accretive operators.

Appendix

Proof of Proposition 3. We shall make use of the Douglas range inclusion theorem
which states that for two operators S, T ∈ L(H) we have R(S) ⊂ R(T ) if and only
if ‖S∗u‖ ≤ c‖T ∗u‖ holds for each u ∈ H, where c ≥ 0 is some finite constant; see
[2, Theorem 17.1].

For 0 < p < 1
2 it follows from Proposition 1 that c1‖Apu‖ ≤ ‖(A∗)pu‖ ≤

c2‖Apu‖ holds for each u ∈ H, where c1, c2 > 0 denote some finite constants.
The identity (2.8) is now an immediate consequence of Douglas’ range inclusion
theorem.

Also, to prove (2.9) we note first that, by symmetry, it is sufficient to verify, e.g.,
the second of the two equalities considered there. It is well known that ‖Au‖ =
‖(A∗A)1/2u‖ holds for u ∈ H. For each 0 < p < 1, the Heinz–Kato inequality for
maximal accretive operators in Hilbert spaces, cf. [20, Theorem 2.3.4], then gives
c1‖Apu‖ ≤ ‖(A∗A)p/2u‖ ≤ c2‖Apu‖ for each u ∈ H, where c1, c2 > 0 are some
finite constants. The cited range inclusion theorem may now be applied to verify
the second identity of (2.9). �

Proof of Theorem 2. The proof of the theorem is similar to that of Theorem 1.
We first estimate the term ‖γ(A+ γI)−1(A∗)1/2 ‖L(H). It follows from elementary
calculus that the constant ep from Proposition 1 satisfies e1/2−ε = O(1/ε) as ε → 0.

In fact, we have e1/2−ε =
cos(πε/2)
sin(πε/2) and sinx

x ≥ c1 := 1− π/(8
√
2) for 0 < x ≤ π

4 , so

e1/2−ε ≤
1

sin(πε/2)
≤ c2

ε
for 0 < ε < 1

2 ,
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where c2 = 2/(c1π). For 0 < γ < exp(−2) we now may apply Proposition 8 with
ε = 1/| ln γ| < 1

2 and obtain the following estimates:

‖γ(A+ γI)−1(A∗)1/2 ‖L(H) ≤ 2‖γ(A+ γI)−1(A∗)1/2−ε ‖L(H)‖A‖εL(H)

≤ 4‖A‖εL(H)e1/2−εγ
1/2−ε

≤ 4c2 max{1, ‖A‖L(H)} 1
εγ

1/2−ε

= 4c2 max{1, ‖A‖L(H)} exp(1)| ln γ|γ1/2.

This gives the first statement of the theorem, with c = 4c2 max{1, ‖A‖L(H)} exp(1).
We next verify the second statement of the theorem. A combination of the error
bound (1.4) and the first part of this theorem gives, for u = (A∗)1/2 v, v ∈ H, the
following:

‖u− uδ
γ(δ) ‖ ≤ c | ln γ(δ)| γ(δ)1/2 ‖v‖+ δ

γ(δ)
.

With the given a priori parameter choice we now obtain the desired estimate for
‖u− uδ

γ(δ) ‖. �

Sketch of the proof of Proposition 9. First, for p ≥ 1 there is saturation of the bias
function, which means that the decay order of the bias cannot be faster than γ;
cf. [10, Thm. 4.1 (Ex. 4.3)]. This gives Λsa

p ≤ 1 for p ≥ 1. Next, for 0 < p < 1
we consider the following selfadjoint operator. We choose any orthonormal ba-
sis ej , j = 1, 2, . . . , in H, and consider the diagonal mapping A given by

u =

∞∑
j=1

〈u, ej〉ej −→
∞∑
j=1

1

j
〈u, ej〉ej , u ∈ H.

Clearly, its largest eigenvalue (norm) equals one. Now, given 0 < p < 1 we fix some

ε > 0, small enough, and let the constant c be given as c :=
(∑∞

j=1 j
−(1+2ε)

)−1/2
.

Then, the element v := c
∑∞

j=1 j
−(1/2+ε)ej has norm equal to one, and it gives rise

to the element u := Apv. Then we refer to the study [4, Proposition 1], which asserts
that the bias function bγ(u) at element u can be lower bounded by its distribution
function Fu(κγ) for some constant κ > 0. The square of the distribution function
is given as

F 2
u(t) =

∞∑
j=
t−1�

|〈u, ej〉|2 � t2(p+ε),

which gives bγ(u) ≥ cγp+ε, for γ > 0 small enough, and hence

Bsa(γ,Mp) ≥ cγp+ε, for γ > 0 small enough.

This shows that Λsa
p ≤ p+ ε. Since this holds true for ε > 0 small enough, we must

have Λsa
p ≤ p. On the other hand, for selfadjoint operators the direct and adjoint

cases are identical, and Proposition 4 implies Λsa
p = p in the range 0 < p < 1. �

Proof of Theorem 3. We first consider the limit order under adjoint source condi-
tions. Here, by monotonicity it is enough to establish that

(7.1) Λ∗
p = 1/2, for p ≥ 1, and Λ∗

p = p for 0 < p < 1/2.

Indeed, from Λ∗
1 = 1/2 we get by monotonicity that Λ∗

p ≤ 1/2 for 1/2 ≤ p ≤ 1. Also,
by monotonicity we find that Λ∗

p ≤ Λ∗
1/2 for all 0 < p < 1/2, and hence Λ∗

1/2 = 1/2.
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We turn to proving both assertions in (7.1). The lower bounds for Λ∗
p are a

consequence of the upper bounds in Proposition 8. The upper bounds for the limit
order are obtained from the lower bounds in Corollary 1, since by Remark 7 we can
confine consideration to the fractional integration operator V . Therefore, the lower
bounds in Corollary 1(1) (for 0 < p < 1/2) yield that Λ∗

p ≤ p+ε, and hence Λ∗
p ≤ p.

This proves the upper bounds on the right in (7.1). The upper bound on the left
in (7.1) follows from Corollary 1(2), and completes the proof in the first case.

We turn to bounding the limit order under direct source conditions. Since we
have that Λp ≤ Λ∗

p, the upper bound from Proposition 9 is an upper bound for
direct source conditions. But, the lower bounds follow from Proposition 4, which
established a rate p on the whole range 0 < p ≤ 1. The proof is complete. �
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