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A CUT FINITE ELEMENT METHOD

WITH BOUNDARY VALUE CORRECTION

ERIK BURMAN, PETER HANSBO, AND MATS G. LARSON

Abstract. In this contribution we develop a cut finite element method with
boundary value correction of the type originally proposed by Bramble, Dupont,
and Thomée in [Math. Comp. 26 (1972), 869–879]. The cut finite element
method is a fictitious domain method with Nitsche-type enforcement of Dirich-
let conditions together with stabilization of the elements at the boundary which
is stable and enjoy optimal order approximation properties. A computational
difficulty is, however, the geometric computations related to quadrature on
the cut elements which must be accurate enough to achieve higher order ap-
proximation. With boundary value correction we may use only a piecewise
linear approximation of the boundary, which is very convenient in a cut finite
element method, and still obtain optimal order convergence. The boundary
value correction is a modified Nitsche formulation involving a Taylor expansion
in the normal direction compensating for the approximation of the boundary.
Key to the analysis is a consistent stabilization term which enables us to prove
stability of the method and a priori error estimates with explicit dependence
on the meshsize and distance between the exact and approximate boundary.

1. Introduction

We consider a cut finite element method (CutFEM) for a second order elliptic
boundary value problem with Dirichlet conditions. In standard fictitious domain
CutFEM the boundary is represented on a background grid and allowed to cut
through the elements in an arbitrary fashion. The Dirichlet conditions are enforced
weakly using Nitsche’s method [22]. We refer to [4], [6], [8], [21], [19], for recent
developments of this approach. See also the recent overview paper [7], and [20] for
implementation issues.

Cut finite element methods is one way of alleviating the problem of mesh gen-
eration and allowing for more structured meshes and associated solvers. For this
reason, the interest for such methods has increased significantly during the last few
years; among recent contributions we mention the finite cell method of Parvizian,
Düster, et al. [14, 23]; the least squares stabilized Lagrange multiplier methods of
Haslinger and Renard [18], Tur et al. [25], and Baiges et al. [2]; the stabilization
of Nitsche’s method by Codina and Baiges [12]; the local projection stabilization
of multipliers of Barrenechea and Chouly [3] and of Amdouni, Moakher, and Re-
nard [1].
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In this contribution we develop a version of CutFEM based on the idea of bound-
ary value correction originally proposed for standard finite element methods on an
approximate domain in [5] and further developed in [13]. Using the closest point
mapping to the exact boundary, or an approximation thereof, the boundary con-
dition on the exact boundary may be weakly enforced using Nitsche’s method on
the boundary of the approximate domain. A Taylor expansion is used to approx-
imate the value of the solution on the exact boundary in terms of the value and
normal derivatives at the discrete approximate boundary. Key to the stability of
the method is a consistent stabilization term that, also in the case of arbitrary cut
elements at the boundary, provides control of the variation of the function in the
vicinity of the boundary. More precisely, the stabilization ensures that the inverse
inequality necessary to prove coercivity holds and that the resulting linear system
of equations has the optimal condition number O(h−2), where h is the mesh pa-
rameter, independent of the position of the boundary on the background grid. A
different approach to the approximation of curved boundaries using extensions from
subdomains was proposed by Cockburn et al. in [9–11].

We prove optimal order a priori error estimates, in the energy and L2-norms, in
terms of the error in the boundary approximation and the meshsize. Of particular
practical importance is the fact that we may use a piecewise linear approximation
of the boundary, which is very convenient from a computational point of view since
the geometric computations are simple in this case and a piecewise linear distance
function may be used to construct the discrete domain. We obtain optimal order
convergence for higher order polynomial approximation of the solution if the Tay-
lor expansion has sufficiently high order. In particular, for second and third order
polynomials we obtain optimal order error estimates in the energy and L2-norms
with only one term in the Taylor expansion. Note that without boundary correction
one typically requires O(hp+1) accuracy in the L∞-norm for the approximation of
the domain which leads to significantly more involved computations on the cut ele-
ments for higher order elements; see [19]. However, also in the case of no boundary
value correction our analysis in fact provides optimal order error estimates if the
approximation of the boundary is accurate enough and thus we obtain an analysis
for the standard cut finite element method with approximate boundary. Finally, we
also prove estimates for the error both on the discrete domain and on the exact do-
main. The discrete solution on the exact domain is directly defined by the method
since we may include all elements that intersect the union of the discrete and exact
domains in the active mesh. Even though some active elements may not intersect
the discrete domain the resulting method is stable due to the stabilization term
and no auxiliary extension of the discrete solution outside of the discrete domain
is necessary. We present numerical results illustrating our theoretical findings.

The outline of the paper is as follows: In Section 2 we formulate the model
problem and our method, in Section 3 we present our theoretical analysis, and in
Section 4 we present the numerical results.

2. Model problem and method

2.1. The domain. Let Ω be a domain in R
d with smooth boundary ∂Ω and exte-

rior unit normal n. We let ρ be the signed distance function, negative on the inside
and positive on the outside, to ∂Ω and we let Uδ(∂Ω) be the tubular neighborhood
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{x ∈ R
d : |ρ(x)| < δ} of ∂Ω. Then there is a constant δ0 > 0 such that the clos-

est point mapping p(x) : Uδ0(∂Ω) → ∂Ω is well defined and we have the identity
p(x) = x−ρ(x)n(p(x)). We assume that δ0 is chosen small enough that p(x) is well
defined. See [16], Section 14.6 for further details on distance functions.

2.2. The model problem. We consider the problem: find u : Ω → R such that

−Δu = f in Ω,(2.1)

u = g on ∂Ω,(2.2)

where f ∈ H−1(Ω) and g ∈ H1/2(∂Ω) are given data. It follows from the Lax-
Milgram Lemma that there exists a unique solution to this problem and we also
have the elliptic regularity estimate

(2.3) ‖u‖Hs+2(Ω) � ‖f‖Hs(Ω), s ≥ −1.

Here and below we use the notation � to denote less or equal up to a constant.

2.3. The mesh, discrete domains, and finite element spaces.

• Let Ω0 ⊂ R
d be a convex polygonal domain such that Uδ0(Ω) ⊂ Ω0, where

Uδ(Ω) = Uδ(∂Ω) ∪ Ω. Let K0,h, h ∈ (0, h0], be a family of quasiuniform
partitions, with mesh parameter h, of Ω0 into shape regular triangles or
tetrahedra K. We refer to K0,h as the background mesh.

• Given a subset ω of Ω0, let Kh(ω) be the submesh defined by

(2.4) Kh(ω) = {K ∈ K0,h : K ∩ ω 	= ∅},
i.e., the submesh consisting of elements that intersect ω, and let

(2.5) Nh(ω) =
⋃

K∈Kh(ω)

K

be the union of all elements in Kh(ω). Below the L2-norm of discrete func-
tions frequently should be interpreted as the broken norm. For example,
for norms over Nh we have

(2.6) ‖v‖2Nh(ω) :=
∑

K∈Kh(ω)

‖v‖2K .

• Let the active mesh Kh be defined by

(2.7) Kh := Kh(Ω ∪ Ωh),

i.e., the submesh consisting of elements that intersect Ωh ∪ Ω, and let

(2.8) Nh := Nh(Ω ∪ Ωh)

be the union of all elements in Kh.
• Let V0,h be the space of piecewise continuous polynomials of order p defined
on K0,h and let the finite element space Vh be defined by

(2.9) Vh := {vh : vh := ṽh|Nh
for ṽh ∈ V0,h}.

• Let Ωh, h ∈ (0, h0], be a family of polygonal domains approximating Ω,
possibly independent of the computational mesh. We assume neither Ωh ⊂
Ω nor Ω ⊂ Ωh, instead the accuracy with which Ωh approximates Ω will be
crucial. To each Ωh we associate the functions νh : ∂Ωh → R

d, |νh| = 1, and
�h : ∂Ωh → R, such that if ph(x, ς) := x + ςνh(x), then ph(x, �h(x)) ∈ ∂Ω
for all x ∈ ∂Ωh. We will also assume that ph(x, ς) ∈ Uδ0(Ω) for all x ∈ ∂Ωh
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and all ς between 0 and �h(x). For conciseness we will drop the second
argument of ph below whenever it takes the value �h(x). We assume that
the following assumptions are satisfied:

(2.10) δh := ‖�h‖L∞(∂Ωh) = o(h), h ∈ (0, h0],

and

(2.11) ‖νh − n ◦ p‖L∞(∂Ωh) = o(1), h ∈ (0, h0],

where o(·) denotes the little ordo. We also assume that h0 is small enough
to guarantee that

(2.12) ∂Ωh ⊂ Uδ0(∂Ω), h ∈ (0, h0],

and that there exists M > 0 such for any y ∈ Uδ0(∂Ω) the equation, find
x ∈ ∂Ωh and |ς| ≤ δh such that

(2.13) ph(x, ς) = y,

has a solution set Ph with

(2.14) card(Ph) ≤ M

uniformly in h. The rationale of this assumption is to ensure that the image
of ph cannot degenerate for vanishing h.

• We note that it follows from (2.10) that

(2.15) ‖ρ‖L∞(∂Ωh) � ‖ρh‖L∞(∂Ωh) = o(h)

since |ρh(x)| ≥ |ρ(x)|, x ∈ Uδ0(∂Ω).

The validity of assumption (2.14). Assumption (2.14) will hold in any reasonable
situation in practice. Here we give a proof in the special case where νh is chosen
constant on each element.

Lemma 2.1. Assume that for all K ∈ Nh(∂Ωh), νh|K∩∂Ωh
∈ R

d. Then there exists
M > 0 such that (2.14) holds uniformly in h.

Proof. For a triangle K ∈ Nh(∂Ωh) define the domain EK := {x : x = xK +
ςνh(xK); xK ∈ K ∩ ∂Ωh; −δh ≤ ς ≤ δh}. Then clearly for every y ∈ EK

the equation ph(x, ς) = y has a unique solution. It then suffices to show that
card({K ′ ∈ Nh(∂Ωh) : EK ∩ EK′ 	= ∅}) < M . That is EK will have nonzero inter-
section with a finite number of other domains EK′ . To see this let B2δh(xE) be
a ball with radius 2δh centered at xE ∈ EK such that EK ⊂ B2δh(xE). Then
EK ∩ EK′ = ∅ for any EK′ that has zero intersection with B2δh(xE); this will be
the case for EK′ for which K ′ ∩B3δh(xE) = ∅. Since the mesh is quasiregular and
shape optimal there exists M > 0 such that card({K : K ∩ B3δh(xE) 	= 0} ≤ M
uniformly in h. The claim then holds with this value on M . �

The choice of νh. During computation, typically the quantities that are easily ac-
cessible on ∂Ωh are nh and ρ. The two choices that are natural for νh, �h are
therefore νh := nh, �h := ς, with ς solution to ρ(ph(x, ς)) = 0 or νh := n ◦ p and
�h := ρ. Both cases requires the solution of nonlinear equations. The computation
of �h using Newton’s method in the first case is substantially less costly than that
of n ◦ p, since the first quantity is a scalar and the initial guess ρ is more accurate.

Observe that if νh := n ◦ p, then the mapping ph coincides with p(x). It is
therefore well defined and all the above assumptions hold by the properties of the
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closest point mapping. This is not true in the general case. However, we assume
that the equation ρ(ph(x, ς)) = 0 has at least one solution for every x ∈ ∂Ωh

and �h may then be identified with the solution of smallest magnitude. As an
example consider the practically important case where ∂Ωh is defined by the zero
level set of a piecewise linear nodal interpolant of the distance function and we
choose νh := nh, with nh denoting the normal of ∂Ωh. That the associated �h
exists for all x ∈ ∂Ωh follows immediately from the implicit function theorem: the
equation in ς, ρ(x+ ςn ◦ p) = 0, has a solution since p is well defined and then so
does ρ(x+ ςnh) = 0 since ∇ρ ·n ◦ p(x) > 0 for h small enough. We show this using
a fixed point argument. For x ∈ ∂Ωh let ς0 solve the equation

ρ(ς) := ρ(x+ ςn ◦ p(x)) = 0

and define

δρ :=
∂ρ

∂ς
(x+ ςn ◦ p)|ς=ς0

= ∇ρ(x+ ς0n ◦ p(x)) · n ◦ p(x) > 1− Cδ0 > 0, for δ0 small enough.

Then consider the iterates ςk generated by

ςk = ςk−1 − (δρ)−1ρ(x+ ςk−1nh), with k ≥ 1.

We will now show that this iteration converges. Let ek = ςk − ςk−1 and ς̄k =
sςk + (1− s)ςk−1 for some s ∈ [0, 1], we may then write

ek = (I − (δρ)−1∇ρ(x+ ς̄k−1nh) · nh)ek−1.

Using the mean value theorem we see that

∇ρ(x+ ς̄k−1nh) · nh = δρ+∇ρ(x+ ς̄k−1nh) · (nh − n ◦ p(x))
+ (ς̄k−1nh − ς0n)

T (∇⊗∇ρ(x̄) · n ◦ p(x)),
where x̄ = x + t(ς̄k−1)nh + (1 − t)ς0n for some t ∈ [0, 1]. Therefore there exists
Cδ > 0 such that

(2.16) (I − (δρ)−1∇ρ(x+ ς̄k−1nh) · nh) ≤ Cδ(h+ (ς̄k−1 − ς0)).

Assuming that ‖μh − n ◦ p‖L∞(∂Ωh) � h and |ς0| � h we may conclude using

induction in the following way. Assume that there exists C̃ > 0 such that

(2.17) ek ≤ h(C̃h)k

and that h is small so that C̃h < 1. Observe that since |e1| = |δρ−1ρ(x+ ς0nh)| ≤
δρ−1|ς0||n − nh| ≤ C0h

2 this is true for e1 if h is chosen small enough. It follows
that for k ≥ 2

ς̄k−1 − ς0 ≤
k−1∑
i=1

|ei| ≤ C̃h2
k−2∑
i=1

(C̃h)i−1 ≤ C̃h2.

Then considering (2.16) we obtain, with C̃ = max(C0, Cδ),

|ek+1| ≤ Cδ(h+ C̃h2)|ek| ≤ h(C̃h)k+1,

and we conclude that (2.17) holds. As a consequence the sequence {ςk}∞k=0 is
Cauchy, assume given two indices M > N there holds

|ςM − ςN | ≤
M∑

i=N+1

|ei| ≤ h(C̃h)N .
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Therefore there exists ς such that ρ(x+ ςnh) = 0. By Lemma 2.1 the assumption
(2.14) clearly holds in this case. Moreover we have the estimates

(2.18) δh � h2, ‖νh − n ◦ p‖L∞(∂Ωh) � h.

2.4. Extensions. There is an extension operator E : Hs(Ω) → Hs(Uδ0(Ω)) such
that

(2.19) ‖Ev‖Hs(Uδ(Ω)) � ‖v‖Hs(Ω), s ≥ 0;

see [15]. For brevity we shall use the notation v for the extended function as well,
i.e., v = Ev on Uδ0(Ω).

2.5. The method.

Derivation. Let f = Ef and u = Eu be the extensions of f and u from Ω to Uδ0(Ω).
For v ∈ Vh we have using Green’s formula

(f, v)Ωh
= (f +Δu, v)Ωh

− (Δu, v)Ωh
(2.20)

= (f +Δu, v)Ωh\Ω + (∇u,∇v)Ωh
− (nh · ∇u, v)∂Ωh

,(2.21)

where we used the fact f+Δu = 0 on Ω, while on Ωh\Ω we have f+Δu = Ef−ΔEu,
which is not in general equal to zero. Now the boundary condition u = g on ∂Ω
may be enforced weakly as follows:

(f, v)Ωh
= (f +Δu, v)Ωh

+ (∇u,∇v)Ωh
− (nh · ∇u, v)∂Ωh

(2.22)

− (u ◦ ph − g ◦ ph, nh · ∇v)∂Ωh
+ βh−1(u ◦ ph − g ◦ ph, v)∂Ωh

.

The positive constant β must be chosen large enough to ensure stability; cf. below.
Since we do not have access to u ◦ ph we use a Taylor approximation in the

direction νh,

(2.23) u ◦ ph(x) ≈ Tk(u)(x) :=

k∑
j=0

Dj
νh
u(x)

j!
�jh(x),

where Dj
νh

is the jth partial derivative in the direction νh. Thus it follows that the
solution to (2.1)-(2.2) satisfies

(f, v)Ωh
= (f +Δu, v)Ωh

+ (∇u,∇v)Ωh
− (nh · ∇u, v)∂Ωh

(2.24)

− (Tk(u)− g ◦ ph, nh · ∇v)∂Ωh
+ βh−1(Tk(u)− g ◦ ph, v)∂Ωh

− (u ◦ ph − Tk(u), nh · ∇v)∂Ωh
+ βh−1(u ◦ ph − Tk(u), v)∂Ωh

for all v ∈ Vh. Rearranging the terms we arrive at

(∇u,∇v)Ωh
− (nh · ∇u, v)∂Ωh

− (Tk(u), nh · ∇v)∂Ωh
+ βh−1(Tk(u), v)∂Ωh

+ (f +Δu, v)Ωh\Ω

− (u ◦ ph − Tk(u), nh · ∇v)∂Ωh
+ βh−1(u ◦ ph − Tk(u), v)∂Ωh

= (f, v)Ωh
− (g ◦ ph, nh · ∇v)∂Ωh

+ βh−1(g ◦ ph, v)∂Ωh
(2.25)

for all v ∈ Vh. The discrete method is obtained from this formulation by dropping
the consistency terms of highest order, i.e., those on lines three and four of (2.25).
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Bilinear forms. We define the forms

a0(v, w) := (∇v,∇w)Ωh
(2.26)

− (nh · ∇v, w)∂Ωh
− (Tk(v), nh · ∇w)∂Ωh

+ βh−1(Tk(v), w)∂Ωh
,

ah(v, w) := a0(v, w) + jh(v, w),(2.27)

jh(v, w) := γj
∑

F∈Fh

p∑
l=1

h2l−1([Dl
nF

v], [Dl
nF

w])F ,(2.28)

lh(w) := (f, w)Ωh
− (g ◦ ph, nh · ∇w)∂Ωh

+ βh−1(g ◦ ph, w)∂Ωh
,(2.29)

where γj and β are positive constants. Here we used the notation:

• Fh is the set of all internal faces to elements K ∈ Kh, i.e., faces that are
not included in the boundary of the active mesh Kh, that intersect the set
Ω \ Ωh ∪ ∂Ωh, and nF is a fixed unit normal to F ∈ Fh.

• Dl
nF

is the partial derivative of order l in the direction of the normal nF to
the face F ∈ Fh.

• [v]|F = v+F − v−F , with v±F = lims→0+ v(x ∓ snF ), is the jump of a discon-
tinuous function v across a face F ∈ Fh.

• The stabilizing term jh(v, w) is introduced to extend the coercivity of a0(·, ·)
to all of Nh as we shall see below. Thanks to this property one may prove
that the condition number is uniformly bounded independent of how Ωh is
oriented compared to the mesh following the ideas of [6, 21].

• Observe the presence of the penalty coefficient β in (2.26) and (2.29). In
order to guarantee coercivity β has to be chosen large enough and due
to the Taylor expansions we also have to require that h ∈ (0, h0] with h0

sufficiently small. See Section 3.3 and, in particular, Remark 3.2 for further
details.

The method. Find: uh ∈ Vh such that

(2.30) ah(uh, v) = lh(v), ∀v ∈ Vh,

where ah is defined in (2.27) and lh in (2.29).

Symmetric formulation in the case k = 1. Using one term in the Taylor expansion
gives the following forms:

ah(v, w) = (∇v,∇w)Ωh
+ jh(v, w)(2.31)

− (nh · ∇v, w)∂Ωh
− (v, nh · ∇w)∂Ωh

− (�h νh · ∇v, nh · ∇w)∂Ωh

+ βh−1(T1(v), w)∂Ωh
,

lh(w) = (f, w)Ωh
− (g ◦ ph, nh · ∇w)∂Ωh

+ βh−1(g ◦ ph, w)∂Ωh
.(2.32)

We see that only the term of the fourth line of (2.31) violate the symmetry of the
formulation. To make it symmetric we choose νh := nh, assuming that the discrete
approximation Ωh is such that this is a valid choice and also symmetrize the penalty
term in the fourth line by replacing w in the right-hand slot by T1(w). A similar
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perturbation is added to the right-hand side to keep consistency. The forms of the
resulting symmetric formulation read:

ah(v, w) = (∇v,∇w)Ωh
+ jh(v, w)(2.33)

− (nh · ∇v, w)∂Ωh
− (v, nh · ∇w)∂Ωh

− (�h nh · ∇v, nh · ∇w)∂Ωh

+ βh−1(T1(v), T1(w))∂Ωh
,

lh(w) = (f, w)Ωh
− (g ◦ ph, nh · ∇w)∂Ωh

+ βh−1(g ◦ ph, T1(w))∂Ωh
.(2.34)

The analysis presented below covers this important special case. Also observe that
if more terms are included in the Taylor series the resulting nonsymmetric part of
the matrix is expected to be small, relative to the symmetric part, and the reduced
symmetric form is likely to be a good preconditioner.

Remark 2.1. In principle it is possible to formulate a method using v ◦ ph instead
of Tk(v) in the second and third lines of equation (2.26). Such a choice, however,
may lead to nonstandard couplings in the system matrix corresponding to the form
a0(·, ·) whenever ph extends over an element boundary. Moreover the resulting
method cannot be symmetrized.

3. A priori error estimates

3.1. The energy norm. Let the energy norm be defined by

|||v|||2h := ‖∇v‖2Ωh
+ |||v|||2jh + h‖nh · ∇v‖2∂Ωh

+ h−1‖v‖2∂Ωh
,(3.1)

where

(3.2) |||v|||2jh = jh(v, v).

3.2. Consistency. In view of (2.25) we obtain the identity

ah(u− uh, v) = (u ◦ ph − Tk(u), nh · ∇v)∂Ωh
− βh−1(u ◦ ph − Tk(u), v)∂Ωh

(3.3)

+ (f +Δu, v)Ωh\Ω, ∀v ∈ Vh,

and thus we conclude that

|ah(u− uh, v)| ≤ ‖u ◦ ph − Tk(u)‖∂Ωh

(
‖nh · ∇v‖∂Ωh

+ h−1β‖v‖∂Ωh

)
(3.4)

+ ‖f +Δu‖Ωh\Ω‖v‖Ωh\Ω

≤ h−1/2‖u ◦ ph − Tk(u)‖∂Ωh
|||v|||h(3.5)

+ ‖f +Δu‖Ωh\Ω‖v‖Ωh\Ω, ∀v ∈ Vh.

Estimate of the error in the Taylor approximation. The Taylor polynomial Tk(u)(x)
provides an approximation of u ◦ ph(x) and we have the error estimate

|v ◦ ph(x)− Tk(v)(x)| �
∣∣∣∣∣
∫ �h(x)

0

Dk+1
νh

v(x(s))(�h(x)− s)kds

∣∣∣∣∣(3.6)

� ‖Dk+1
νh

v‖Ix‖(�h(x)− s)k‖Ix(3.7)

� ‖Dk+1
νh

v‖Ix |�h(x)|k+1/2,(3.8)
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where Ix is the line segment between x and ph(x). Combining (3.4) and (3.8) and
recalling the assumption (2.14) we arrive at the estimate

‖v ◦ ph − Tk(v)‖2∂Ωh
�

∫
∂Ωh

‖Dk+1
νh

v‖2Ix |�h(x)|
2k+1dx(3.9)

�
∫
∂Ωh

‖Dk+1
νh

v‖2Iδh |�h(x)|
2k+1dx(3.10)

� δ2k+1
h ‖Dk+1v‖2Uδh

(∂Ωh)
.(3.11)

Here we handled the possible overlap of the contributions from different polygonal
sides of ∂Ωh by using the fact that by assumption (2.14) such an overlap must have
a finite number of contributions uniformly in h and by dropping the directional
derivative, effectively including the derivatives of order k + 1 in all directions.

With slightly stronger control of the regularity, v ∈ Hk+ 3
2 (Ω0), we obtain the

estimate

‖v ◦ p− Tk(v)‖∂Ωh
� δk+1

h sup
0≤t≤δ0

‖Dk+1v‖∂Ωt
,(3.12)

where ∂Ωt = {x ∈ Ω : ρ(x) = t} is the levelset with distance t to the boundary ∂Ω.

Estimate of the residual on Ωh \Ω. Suppose that

(3.13) f +Δu ∈ H l+ 1
2+ε(Uδ0(Ω))

with ε > 0 for l = 0 and ε = 0 for l ≥ 1, which, in view of (2.3) and (2.19), holds

if f ∈ H l+ 1
2+ε(Ω). Using (3.13) and the fact that f +Δu = 0 in Ω, we obtain the

estimate

(3.14) ‖f +Δu‖Ωh\Ω � δlh‖Dl
n(f +Δu)‖Ωh\Ω � δ

l+1/2
h sup

0≤t≤δ0

‖Dl
n(f +Δu)‖∂Ωt

,

where we used the fact that Ωh \ Ω ⊂ Uδ(∂Ω), where δ ∼ δh.

Estimates of the consistency error. Combining (3.12), (3.14), and (3.16), we obtain
the estimate

|ah(u− uh, v)| ≤ δk+1
h sup

0≤t≤δ0

‖Dk+1u‖∂Ωt

(
‖nh · ∇v‖∂Ωh

+ h−1β‖v‖∂Ωh

)(3.15)

+ δ
l+1/2
h sup

0≤t≤δ0

‖Dl
n(f +Δu)‖∂Ωt

‖v‖Ωh\Ω, ∀v ∈ Vh.

This estimate will be used when we derive an L2 estimate of the error while for the
energy error estimate we continue the estimation using the bound (for a proof see
the Appendix)

(3.16) ‖v‖Ωh\Ω � h1/2δ
1/2
h |||v|||h, ∀v ∈ Vh.

This leads to

|ah(u− uh, v)| ≤
(
h−1/2δk+1

h sup
0≤t≤δ0

‖Dk+1u‖∂Ωt

(3.17)

+ h1/2δl+1
h sup

0≤t≤δ0

‖Dl
n(f +Δu)‖∂Ωt

)
|||v|||h, ∀v ∈ Vh.
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Remark 3.1. We may upper bound the right-hand sides further using global trace
inequalities leading to

(3.18) sup
0≤t≤δ0

‖Dk+1u‖∂Ωt
� ‖u‖Hk+2(Ω) � ‖f‖Hk(Ω)

and

(3.19) sup
0≤t≤δ0

‖Dl
n(f +Δu)‖∂Ωt

� ‖f‖Hl+1(Ω) + ‖Δu‖Hl+1(Ω) � ‖f‖Hl+1(Ω).

The constants in the above inequalities depend on the regularity of the domain.

3.3. Coercivity and continuity. A key element of the analysis is that the addi-
tion of the stabilization operator jh(·, ·) allows us to prove coercivity of the bilinear
form, independent of how the approximate domain Ωh intersects the computational
mesh. This draws on previous results from [6,21]. In particular the following results
hold:

(3.20) ‖∇v‖2Nh
� ‖∇v‖2Ωh

+ |||v|||2jh , ∀v ∈ Vh,

and

(3.21) ‖v‖2Nh
� ‖v‖2Ωh

+ h2|||v|||2jh , ∀v ∈ Vh.

Below we will use the notation

(3.22) T1,k(v) = Tk(v)− v

and some inverse estimates that we collect in the following technical lemma.

Lemma 3.1. For all v ∈ Vh there holds

(3.23) h1/2‖nh · ∇v‖∂Ωh
� ‖∇v‖Nh(∂Ωh),

(3.24) h−1/2‖T1,k(v)‖∂Ωh
� γ(h)‖∇v‖Nh(∂Ωh),

where γ(h) → 0 as h → 0.

Proof. Inequality (3.23) then follows using a standard trace inequality elementwise,
followed by an inverse inequality. To prove the inequality (3.24) observe that by
the inverse inequality ‖Djv‖K � h1−j‖∇v‖K there holds

‖T1,k(v)‖Nh(∂Ωh) ≤
k∑

j=1

�jh
j!

‖Djv‖Nh(∂Ωh) � h

⎛
⎝ k∑

j=1

�jh
j!hj

⎞
⎠ ‖∇v‖Nh(∂Ωh)

and, consequently, since �h ≤ δh,

h−1/2‖T1,k(v)‖∂Ωh
� h−1‖T1,k(v)‖Nh(∂Ωh)(3.25)

�

⎛
⎝ k∑

j=1

δjh
hj

⎞
⎠

︸ ︷︷ ︸
�γ(h)∼h−1o(h)

‖∇v‖Nh(∂Ωh)(3.26)

� γ(h)‖∇v‖Nh(∂Ωh). �(3.27)

The property δh = o(h) is necessary to guarantee that γ(h) → 0 as h → 0, which
is important for the proof of the following result.
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Proposition 3.1. Assume that h0 is small enough and β is large enough then there
holds

(3.28) |||v|||2h � ah(v, v), ∀h ∈ (0, h0] and ∀v ∈ Vh.

Proof. Taking w = v in (2.27) we obtain

ah(v, v) = (∇v,∇v)Ωh
+ jh(v, v)− 2(nh · ∇v, v)∂Ωh

+ βh−1(v, v)∂Ωh

(3.29)

+ βh−1(T1,k(v), v)∂Ωh
− (T1,k(v), nh · ∇v)∂Ωh

≥ ‖∇v‖2Ωh
+ |||v|||2jh − 2h1/2‖nh · ∇v‖∂Ωh

h−1/2‖v‖∂Ωh
+ βh−1‖v‖2∂Ωh

(3.30)

− βh−1/2‖T1,k(v)‖∂Ωh
h−1/2‖v‖∂Ωh

− h−1/2‖T1,k(v)‖∂Ωh
h1/2‖nh · ∇v‖∂Ωh

.

Using (3.20) we have

(3.31) ‖∇v‖2Nh
� ‖∇v‖2Ωh

+ |||v|||2jh .
Next we apply the inverse bounds (3.23) and (3.24) and the arithmetic-geometric
inequality to deduce

h1/2‖nh · ∇v‖∂Ωh
h−1/2‖v‖∂Ωh

� ε−1β−1‖∇v‖2Nh
+ εβh−1‖v‖2∂Ωh

,(3.32)

βh−1/2‖T1,k(v)‖∂Ωh
h−1/2‖v‖∂Ωh

� ε−1βγ2(h)‖∇v‖2Nh
+ εβh−1‖v‖2∂Ωh

,(3.33)

h−1/2‖T1,k(v)‖∂Ωh
h1/2‖nh · ∇v‖∂Ωh

� γ(h)‖∇v‖2Nh
.(3.34)

Using these relations we have, for positive constants c1 and c2,

(3.35) ah(v, v) ≥ (c1−c2(γ(h)+γ2(h)β+ε−1β−1))‖∇v‖2Nh
+β(1−c2ε)h

−1‖v‖2∂Ωh
.

To conclude, fix ε small enough so that (1 − c2ε) > 0, and then observe that
(c1 − c2(γ(h) + γ2(h)β + ε−1β−1)) > 0 if β is large enough and, since γ(h) → 0 as
h → 0, for h ∈ (0, h0], with h0 small enough. �

Remark 3.2. Considering the practically relevant case when Ωh is a piecewise linear
approximation of Ω such that δh � h2 we have γ(h) ≤ c3h ≤ c3h0 for h ∈ (0, h0].
First taking ε = 1/(2c2), we get β(1− c2ε) = β/2. Next we have

(3.36) c1 − c2(γ(h)+ γ2(h)β+ ε−1β−1) ≥ c1 − c2c3h0 − c2c3h
2
0β− 2c2β

−1 ≥ c1/2,

where we choose β and h0 such that each of the three negative factors have absolute
value less or equal to c1/6. These choices are

(3.37) β = 12c2/c1, h0 = min(c1/(6c2c3), c1/(
√
72c2c3)) = c1/(

√
72c2c3).

Define the space V on which the functional V � v �→ ah(v, w) ∈ R, for a fixed
w ∈ Vh and fixed h ∈ (0, h0] is bounded,

(3.38) V = Hk+1/2(Nh) ∩H3/2(Nh) ∩Hp+1/2(Nh).

Then we may write the continuity of ah(·, ·).

Proposition 3.2. Let v ∈ V + Vh and w ∈ Vh, then there holds

(3.39) ah(v, w) �
(
|||v|||h + h−1/2‖T1,k(v)‖∂Ωh

)
|||w|||h, ∀v ∈ V +Vh, w ∈ Vh.

Proof. The continuity estimate (3.39) follows directly from the Cauchy-Schwarz
inequality applied term by term to the definition of ah(·, ·), (2.27). �
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3.4. Interpolation estimates. Let

(3.40) πh : H1(Ω) � u �→ πSZ,hEu ∈ Vh,

where E is the extension operator introduced in Section 2.4, and πSZ,h is the Scott-
Zhang interpolation operator. The following error estimate for the Scott-Zhang
interpolant is well known [24]:
(3.41)
‖u− πSZ,hu‖Hm(K) � hs−m‖u‖Hs(Nh(K)), 0 ≤ m ≤ s ≤ p+ 1, K ∈ Kh.

Using the properties of the extension operator we then immediately deduce this
interpolation error estimate for (3.40):

(3.42) |||u− πhu|||h + h−1/2‖T1,k(u− πhu)‖∂Ωh
� hp‖u‖Hp+1(Ω).

Verification of (3.42). The first term in (3.42) has four contributions (see (3.1)).
The energy-norm contribution is bounded directly by (3.41). For the two last
contributions of (3.1) using the trace inequality

(3.43) ‖v‖2∂Ωh∩K � h−1‖v‖2K + h‖∇v‖2K , K ∈ Kh

(see [17]), followed by the interpolation estimate (3.41) and stability of the extension
operator (2.19) we get the desired result. Finally to estimate |||u−πhu|||jh observe
that on each simplex we have

‖v‖2∂K � h−1‖v‖2K + h‖∇v‖2K
and we proceed elementwise as before using (3.41) and stability of the extension
operator (2.19).

Again using the trace inequality (3.43) the second term in (3.42) can be estimated
as

h−1/2‖T1,k(u− πhu)‖∂Ωh
� h−1‖T1,k(u− πhu)‖Nh(∂Ωh)(3.44)

+ ‖∇T1,k(u− πhu)‖Nh(∂Ωh)

� hp‖u‖Hp+1(Ω),(3.45)

where finally we used the fact that δh � h and the estimate

hm−1‖∇mT1,k(u− πhu)‖K �
k∑

j=1

δjhh
m−1‖(u− πhu)‖Hj+m(K)(3.46)

�
k∑

j=1

hjhm−1hp+1−(j+m)‖u‖Hp+1(N (K))(3.47)

� hp‖u‖Hp+1(N (K))(3.48)

for m = 0, 1 and K ∈ Kh(∂Ωh).

3.5. Error estimates.

Theorem 3.1. If δh = o(h), then the following estimate holds:

|||u− uh|||h � hp‖u‖Hp+1(Ω) + h−1/2δk+1
h sup

0≤t≤δ0

‖Dk+1u‖∂Ωt
(3.49)

+ h1/2δl+1
h sup

−δ0≤t<0
‖Dl

n(f +Δu)‖∂Ωt
.
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Proof. We first note that adding and subtracting an interpolant and using the
triangle inequality and the interpolation estimate (3.42), we obtain

|||u− uh|||h � |||u− πhu|||h + |||πhu− uh|||h(3.50)

� hp‖u‖Hp+1(Ω) + |||πhu− uh|||h.(3.51)

For the second term on the right-hand side we have the estimates

|||πhu− uh|||2h � ah(πhu− uh, πhu− uh)

(3.52)

= ah(πhu− u, πhu− uh) + ah(u− uh, πhu− uh)(3.53)

�
(
|||πhu− u|||h + h−1/2‖T1,k(πhu− u)‖∂Ωh

)
|||πhu− uh|||h(3.54)

+ h−1/2‖u ◦ ph − Tk(u)‖∂Ωh
|||πhu− uh|||h

+ ‖f +Δu‖Ωh\Ωh
‖πhu− uh‖Ωh\Ω

� hp‖u‖Hp+1(Ω)|||πhu− uh|||h(3.55)

+ h−1/2δk+1
h sup

0≤t≤δ0

‖Dk+1u‖∂Ωt
|||πhu− uh|||h

+ h1/2δl+1
h sup

−δ0≤t<0
‖Dl

n(f +Δu)‖∂Ωt
|||πhu− uh|||h,

where we used coercivity (3.28), added and subtracted the exact solution u, esti-
mated the first term using continuity (3.39) followed by the interpolation estimate
(3.42) and the second using the consistency estimate (3.6). Combining estimates
(3.51) and (3.55) concludes the proof. �

Theorem 3.2. If δh � h2, then the following estimate holds:

‖u− uh‖Ωh
� hp+1‖u‖Hp+1(Ω)(3.56)

+ δk+1
h sup

0≤t≤δ0

‖Dk+1u‖∂Ωt

+ δ
l+3/2
h sup

0≤t≤δ0

‖Dl
n(f +Δu)‖∂Ωt

.

Proof. Let φ ∈ H1
0 (Ω) be the solution to the dual problem

(3.57) a(v, φ) = (v, ψ)Ω, v ∈ H1
0 (Ω),

where ψ : Ωh ∪ Ω �→ R takes the values ψ = u − uh on Ωh and ψ = 0 on Ω \ Ωh.
We may then extend φ using the extension operator to Uδ0(Ω), using the same
notation for the extended function. By standard regularity theory we have the
stability estimate

(3.58) ‖φ‖H2(Ω) � ‖ψ‖Ω∩Ωh
.

We obtain the following representation formula for the error e = u− uh:

‖e‖2Ωh
= (e, ψ +Δφ)Ωh

− (e,Δφ)Ωh
(3.59)

= (e, ψ +Δφ)Ωh\Ω + (∇e,∇φ)Ωh
− (e, nh · ∇φ)∂Ωh

(3.60)

= (e, ψ +Δφ)Ωh\Ω + a0(e, φ) + bh(e, φ)(3.61)

= I + II + III,(3.62)
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where

III = (Tk(e)− e, nh · ∇φ)∂Ωh
− βh−1(Tk(e), φ)∂Ωh

+ (nh · ∇e, φ)∂Ωh
(3.63)

= (T1,k(e), n · ∇φ)∂Ωh
− βh−1(e, φ)∂Ωh

(3.64)

− βh−1(T1,k(e), φ)∂Ωh
+ (nh · ∇e, φ)∂Ωh

.

Term I. We have

|I| = |(e, ψ +Δφ)Ωh\Ω|(3.65)

� ‖e‖Ωh\Ω‖ψ +Δφ‖Ωh\Ω(3.66)

�
(
δ2h‖n · ∇e‖2Ωh\Ω + δh‖e‖2∂Ωh

)1/2(
‖ψ‖Ωh\Ω + ‖Δφ‖Ωh\Ω

)
(3.67)

�
(
(δ2h + hδh)|||e|||2h

)1/2(
‖e‖Ωh\Ω + ‖φ‖H2(Ω)

)
(3.68)

� (h−2δh + h−1δh)
1/2︸ ︷︷ ︸

�1

h|||e|||h‖e‖Ωh
.(3.69)

Here we used the estimate

(3.70) ‖v‖2Ωh\Ω � δ2h‖n · ∇v‖2Ωh\Ω + δh‖v‖2∂Ωh
, v ∈ H1(Ωh),

with v = e, the definition of the energy norm to conclude that h−1‖e‖2∂Ωh
� |||e|||2h,

the stability (2.19) of the extension operator, the stability (3.58) of the dual problem
and the assumption that δh � h2.

Term II. Adding and subtracting an interpolant we obtain

|II| = |ah(e, φ− πhφ) + ah(e, πhφ)|(3.71)

� |||e|||h|||φ− πhφ|||h + |ah(e, πhφ)|(3.72)

� h|||e|||h‖φ‖H2(Ω) + |ah(e, πhφ)|(3.73)

� h|||e|||h‖e‖Ωh
+ |ah(e, πhφ)|.(3.74)

To estimate the second term on the right-hand side we employ (3.15), with v = πhφ,

|ah(e, πhφ)| ≤ δk+1
h sup

0≤t≤δ0

‖Dk+1u‖∂Ωt

(
‖nh · ∇πhφ‖∂Ωh

+ h−1β‖πhφ‖∂Ωh

)(3.75)

+ δ
l+1/2
h sup

0≤t≤δ0

‖Dl
n(f +Δu)‖∂Ωt

‖πhφ‖Ωh\Ω.

Here we have the estimates

‖nh · ∇πφ‖∂Ωh
+ h−1‖πφ‖∂Ωh

� ‖nh · ∇(πφ− φ)‖∂Ωh
+ h−1‖πφ− φ‖∂Ωh

(3.76)

+ ‖nh · ∇φ‖∂Ωh
+ h−1‖φ‖∂Ωh

� h−1/2|||πφ− φ|||h(3.77)

+ ‖φ‖H2(Ωh) h
−1δ

1/2
h ‖φ‖H1(Uδh(∂Ω))

� h1/2‖φ‖H2(Ω)+‖φ‖H2(Ωh)+h−1δ
1/2
h ‖φ‖H1(Uδh(∂Ω))(3.78)

� (h1/2 + 1 + h−1δ
1/2
h )‖e‖Ωh

(3.79)

� ‖e‖Ωh
(3.80)
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and

‖πhφ‖Ωh\Ω ≤ ‖πhφ− φ‖Ωh\Ω + ‖φ‖Ωh\Ω(3.81)

� h2‖φ‖H2(Ω) + δh‖∇φ‖Uδh
(∂Ω)(3.82)

� (h2 + δh)‖e‖Ωh
(3.83)

� δh‖e‖Ωh
,(3.84)

where, in both estimates, we used the assumption δh � h2, as well as the following
bounds:

‖φ‖∂Ωh
� δ

1/2
h ‖n · ∇φ‖Uδh

(∂Ω),(3.85)

‖φ‖Ωh\Ω � ‖φ‖Uδh
(∂Ω) � δh‖n · ∇φ‖Uδh

(∂Ω);(3.86)

see the Appendix for the proof of these estimates. Combining estimates (3.75),
(3.76), and (3.81), we arrive at

|ah(e, πhφ)| �
(
δk+1
h sup

0≤t≤δ0

‖Dk+1u‖∂Ωt
(3.87)

+ δ
l+3/2
h sup

0≤t≤δ0

‖Dl
n(f +Δu)‖∂Ωt

)
‖e‖Ωh

which together with (3.74) gives

|II| �
(
h|||e|||h + δk+1

h sup
0≤t≤δ0

‖Dk+1u‖∂Ωt
(3.88)

+ δ
l+3/2
h sup

0≤t≤δ0

‖Dl
n(f +Δu)‖∂Ωt

)
‖e‖Ωh

.

Term III. Using the Cauchy-Schwarz inequality we get

|III| = |bh(e, φ)|(3.89)

� ‖T1,k(e)‖∂Ωh
‖nh · ∇φ‖∂Ωh

+ βh−1‖e‖∂Ωh
‖φ‖∂Ωh

(3.90)

+ βh−1‖T1,k(e)‖∂Ωh
‖φ‖∂Ωh

+ ‖nh · ∇e‖∂Ωh
‖φ‖∂Ωh

� ‖T1,k(e)‖∂Ωh

(
h−1‖φ‖∂Ωh

+ ‖nh · ∇φ‖∂Ωh

)
(3.91)

+ |||e|||hh−1/2‖φ‖∂Ωh

�
(
‖T1,k(e)‖∂Ωh

+ h−1/2δh|||e|||h
)
‖e‖Ωh

(3.92)

�
(
hp+1‖u‖Hp+1(Ω) + (h−3/2δh)h|||e|||h

)
‖e‖Ωh

,(3.93)

where we used (3.85) and (3.86) followed by the stability estimate for the dual
problem (3.58), and at last the estimate

(3.94) ‖T1,k(e)‖∂Ωh
� hp+1‖u‖Hp+1(Ω) + (h−3/2δh)h|||e|||h.

Verification of (3.94). We have

‖T1,k(e)‖∂Ωh
�

k∑
j=1

δjh‖Dj
νh
e‖∂Ωh

(3.95)
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and for each of the terms ‖Dj
νh
e‖∂Ωh

, j = 1, . . . , k, we obtain by adding and sub-
tracting an interpolant, using the interpolation estimate (3.41) for the first term
and an inverse estimate for the second, the estimates

‖Dj
νh
e‖2∂Ωh

� h−1‖Dj
νh
e‖2Nh(∂Ωh)

+ h‖∇Dj
νh
e‖2Nh(∂Ωh)

(3.96)

� h−1‖Dj
νh
(u− πhu)‖2Nh(∂Ωh)

+ h‖∇Dj
νh
(u− πhu)‖2Nh(∂Ωh)

(3.97)

+ h−1‖Dj
νh
(πhu− uh)‖2Nh(∂Ωh)

+ h‖∇Dj
νh
(πhu− uh)‖2Nh(∂Ωh)

� h2p+1−2j‖u‖2Hp+1(Nh(Nh(∂Ωh)))
+ h1−2j‖∇(πhu− uh)‖2Nh(∂Ωh)

(3.98)

� h2p+1−2j‖u‖2Hp+1(Ω) + h1−2j‖∇e‖2Nh(∂Ωh)
(3.99)

which leads to

δ2jh ‖Dj
νh
e‖2∂Ωh

� h−1(δh/h)
2jh2(p+1)‖u‖2Hp+1(Ω) + h(δh/h)

2j‖∇e‖2Nh(∂Ωh)
(3.100)

� (h−3δ2h)h
2(p+1)‖u‖2Hp+1(Ω) + (h−3δ2h)h

2‖∇e‖2Nh(∂Ωh)
,(3.101)

where we used (2.10) and the fact δh/h
2 � 1. Thus we have

‖T1,k(e)‖∂Ωh
�

k∑
j=1

δjh‖Dj
νh
e‖∂Ωh

� (h−3/2δh)
(
hp+1‖u‖Hp+1(Ω) + h|||e|||h

)
.

(3.102)

Conclusion of the proof. Collecting the bounds (3.69), (3.88), and (3.93), of Terms
I, II, and III, we obtain

‖e‖Ωh
� h|||e|||h(3.103)

+ hp+1‖u‖Hp+1(Ω)

+ δk+1
h sup

0≤t≤δ0

‖Dk+1u‖∂Ωt

+ δ
l+3/2
h sup

0≤t≤δ0

‖Dl
n(f +Δu)‖∂Ωt

which together with the energy norm error estimate (3.49) concludes the proof. �

Theorem 3.3. The following estimates hold:

(3.104) ‖∇e‖Ω � hp‖u‖Hp+1(Ω) + |||e|||h
and

(3.105) ‖e‖Ω � hp+1‖u‖Hp+1(Ω) + ‖e‖Ωh
+ h|||e|||h.

Proof. Adding and subtracting an interpolant, using the interpolation estimate
(3.41), and the inverse inequality (3.20) or (3.21), we obtain, for m = 0, 1,

‖∇me‖Ω\Ωh
� ‖∇m(u− πhu)‖Ω\Ωh

+ ‖∇m(πhu− uh)‖Ω\Ωh

(3.106)

� hp+1−m‖u‖Hp+1(Ω) + ‖∇m(πhu− uh)‖Ωh
+ h1−m|||πhu− uh|||jh(3.107)

� hp+1−m‖u‖Hp+1(Ω) + ‖∇me‖Ωh
+ h1−m|||e|||jh(3.108)

� hp+1−m‖u‖Hp+1(Ω) + ‖∇me‖Ωh
+ h1−m|||e|||h(3.109)

which concludes the proof. �
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Remark 3.3. We conclude from Theorems 3.1 and 3.2 that the precise convergence
of the scheme depends on a balance between how well Ωh approximates Ω and
how many terms are considered in the Taylor series. A poor accuracy in Ωh can
be compensated for by increasing the number of Taylor terms. For instance if the
domain approximation is no better than δh = o(h), k = 1 is needed for optimality,
even if piecewise affine approximation is used for uh. In Tables 1 and 2 we detail
the asymptotics of the different error contribution for the important case where
δh = O(h2), corresponding to a piecewise affine approximation of the boundary.

Table 1. The order of the terms in the energy error estimate un-
der the assumption δh � h2. We conclude that we obtain optimal
order of convergence for p = 2, 3, with one term, k = 1, in the
Taylor expansion and for p = 4, 5, with two terms, k = 2.

p hp k h−1/2δk+1
h l h1/2δl+1

h

1 h1 0 h1.5 0 h2.5

2 h2 1 h3.5 1 h4.5

3 h3 2 h5.5 2 h6.5

4 h4 3 h7.5 3 h8.5

Table 2. The order of the terms in the L2-error estimate under
the assumption that δh � h2. We conclude that we obtain optimal
order of convergence for p = 2, 3, with one term, k = 1, in the
Taylor expansion and for p = 4, 5, with two terms, k = 2.

p hp+1 k δk+1
h l δ

l+3/2
h

1 h2 0 h2 0 h3

2 h3 1 h4 1 h5

3 h4 2 h6 2 h7

4 h5 3 h8 3 h9

Remark 3.4. If for a given p the lowest values of k and l are chosen so that optimal
convergence is obtained, it is straightforward to use a trace inequality (see (3.18)
and (3.19)) to show that

‖u− uh‖(Ωh) + h|||u− uh||| � hp+1(‖f‖Hp−1(Ω) + ‖u‖Hp+1(Ω)).

Therefore the regularities required for optimality of the consistency error of the
boundary approximation are always optimal compared to the polynomial approxi-
mation.

Remark 3.5. We note that we obtain, as a special case, optimal order error estimates
for the standard cut Nitsche method with approximate domains by assuming k = 0
and

(3.110) δh � hp+1/2
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for the energy norm estimate and

(3.111) δh � hp+1

for the L2-norm estimate. The latter assumption is comparable with the geometric
approximation accuracy achieved by standard isoparametric finite elements of order
p.

4. Numerical examples

In the numerical examples, we use implicitly defined boundaries by use of zero
isolines to predefined functions. Two examples have been considered, one with both
convex and concave boundaries, so that cut elements can have parts outside the
actual domain, and one example with nonzero boundary conditions where we also
compare setting the boundary condition on the exact boundary to setting them on
computational boundary. In all examples the stabilization parameters were set to
γj = 1/10, β = 100.

4.1. Convex and concave boundaries. In our first example we consider a
ring-shaped domain. In Figure 1 we show the zero isoline of the function φ =

(R − 1/4)(R − 3/4), R =
√
x2 + y2, used to implicitly define the domain, and the

resulting mesh after removing the cut part. On this ring, we used a load corre-
sponding to the exact solution being a square function in R,

(4.1) u = 20(3/4−R)(R− 1/4),

with zero boundary conditions on the outside as well as inside boundaries. The
elements on the inside of the ring are partially outside the computational domain;
outside the domain the load was extended by zero and the exact solution (in the
convergence study) by (4.1).

We show an elevation of the approximate solution on one of the meshes in a
sequence in Figure 2. In Figures 3 and 4 we show the convergence rates obtained
using the symmetric method (2.33)–(2.34) for P 2 and P 3 elements (polynomial
orders p = 2 and p = 3), respectively. We also show the suboptimal convergence
rates of the original Nitsche method. Note in particular that the optimal rate is
attained also for p = 3 even though only the first two terms in the Taylor series are
accounted for.

4.2. Nonzero boundary conditions. The domain for the second example lies
inside the ellipse defined by the zero isoline to φ = x2/(3/4)2 + y2/(1/2)2 − 1.
In Figure 5 we show the zero isoline of this function and the resulting mesh after
removing the cut part. On this domain we use the right-hand side

f = π2 cos (πx/2) cos (πy/2)

corresponding to the exact solution u = cos (πx/2) cos (πy/2). This function also
defines the boundary conditions on the cut boundary. An elevation of an approxi-
mate solution on one of the meshes in a sequence is given in Figure 6.

In Figure 7 we show the observed L2 convergence with a P 3 approximation using
four different approaches:

• The symmetric method (2.33)–(2.34).
• The unsymmetric Taylor expansion with two terms.
• The unsymmetric Taylor expansion with three terms.
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• Prescribing the boundary condition on the cut boundary (using the fact
that the exact solution is known).

In all cases the rate of convergence is 4, which is optimal. The error constant is
slightly better if we prescribe the boundary condition on the cut boundary, which
is to be expected since this does not introduce any approximations of the boundary
condition. The difference between the other three methods is negligible.

Figure 1. Background mesh with the boundary of Ω indicated,
and the corresponding computational mesh.

Figure 2. Elevation of the approximate solution on one of the
meshes in a sequence.
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Figure 3. Convergence using P 2 elements, symmetric form (log
denotes the natural logarithm)
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Figure 4. Convergence using P 3 elements, symmetric form (log
denotes the natural logarithm).
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Figure 5. Background mesh with the boundary of Ω indicated,
and the corresponding computational mesh.
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Figure 6. Elevation of the approximate solution on one of the
meshes in a sequence.
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Figure 7. Convergence in L2 for four different approaches (log
denotes the natural logarithm).
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Appendix: Verification of some estimates

Estimates (3.85) and (3.86). We first note that for each x ∈ Uδ(Γ), 0 < δ ≤ δ0,
we have the representation

(A.1) φ(x) = φ(p(x)) +

∫ 1

0

∇φ(sx+ (1− s)p(x)) · (x− p(x)) ds.

Using the Cauchy-Schwarz inequality we obtain

|φ(x)|2 � |φ(p(x))|2 + δ‖n · ∇φ‖2Ix,p(x)
(A.2)

� |φ(p(x))|2 + δ‖n · ∇φ‖2Iδ(p(x)),(A.3)

where Ix,p(x) is the line segment between x and p(x), and Iδ(p(x)) is the line segment
between the points p(x)± δn(p(x)).

(3.85). We recall that ∂Ωh ⊂ Uδh(∂Ω). Setting δ = δh in (A.3) and integrating
over ∂Ωh we obtain

‖φ‖2∂Ωh
�

∫
∂Ωh

|φ ◦ p(x)|2dx+

∫
∂Ωh

δh‖n · ∇φ‖2Iδh (p(x))dx(A.4)

�
∫
∂Ω

|φ(y)|2dy +
∫
∂Ω

δh‖n · ∇φ‖2Iδh (y)dy(A.5)

� ‖φ‖2∂Ω + δh‖n · ∇φ‖2Uδh
(∂Ω),(A.6)

where we first changed the domain of integration from ∂Ωh to ∂Ω and then from
the tubular coordinates to the Euclidian coordinates. This concludes the proof of
(3.85), observing that where it is applied φ ∈ H1

0 (Ω), so that ‖φ‖2∂Ω = 0.

(3.86). Again setting δ = δh in (A.3) and integrating over Iδh(y), with y = p(x) ∈
∂Ω, we obtain

(A.7) ‖φ‖2Iδh(y)
� δh|φ(y)|2 + δ2h‖n · ∇φ‖2Iδh(y)

.

Using appropriate changes of coordinates we obtain

‖φ‖2Uδh
(∂Ω) �

∫
∂Ω

‖φ‖2Iδh (y)dy(A.8)

�
∫
∂Ω

δh|φ(y)|2dy +

∫
∂Ω

δ2h‖n · ∇φ‖2Iδh(y)
dy(A.9)

� δh‖φ‖2∂Ω + δ2h‖n · ∇φ‖2Uδh
(∂Ω)(A.10)

which proves (3.86).

Estimate (3.16). We shall prove that

(A.11) ‖v‖Ωh\Ω � h1/2δ
1/2
h |||v|||h, ∀v ∈ Vh.

Let x ∈ ∂Ωh \ Ω, i.e., x belongs to the part of ∂Ωh that reside outside of Ω. For
y ∈ Ix,p(x) we have the representation formula

(A.12) v(y) = v(x) +

∫ 1

0

∇v(sy + (1− s)x) · (y − x) ds.
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Estimating the right-hand side using the Cauchy-Schwarz inequality we obtain

v2(y) � v2(x) +

(∫ 1

0

∇v(sy + (1− s)x) · (y − x) ds

)2

(A.13)

� v2(x) + |y − x| ‖∇v‖2Ix,y
(A.14)

� v2(x) + δh‖∇v‖2Ix,p(x)
(A.15)

which leads to

‖v‖2Ix,p(x)
=

∫
Ix,p(x)

v2(y) dy(A.16)

�
∫
Ix,p(x)

(
v2(x) + δh‖∇v‖2Ix,p(x)

)
dy(A.17)

� δhv
2(x) + δ2h‖∇v‖2Ix,p(x)

.(A.18)

Integrating over the parts of ∂Ωh that reside outside of Ω we obtain

‖v‖2Ωh\Ω �
∫
∂Ωh\Ω

∫
Ix,p(x)

v2(y) dydx(A.19)

�
∫
∂Ωh\Ω

‖v‖2Ix,p(x)
dx(A.20)

� δh‖v‖2∂Ωh
+ δ2h‖∇v‖2Ωh\Ω(A.21)

� δhh(h
−1‖v‖2∂Ωh

) + δ2h‖∇v‖2Ωh
(A.22)

� (δhh+ δ2h)|||v|||2h(A.23)

and thus (A.11) follows since we assume that δh = O(h) and therefore hδh + δ2h �
hδh.
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