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A CONVERGENT STAGGERED SCHEME FOR THE VARIABLE

DENSITY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

J. C. LATCHÉ AND K. SALEH

Abstract. In this paper, we analyze a scheme for the time-dependent vari-
able density Navier-Stokes equations. The algorithm is implicit in time, and
the space approximation is based on a low-order staggered non-conforming fi-

nite element, the so-called Rannacher-Turek element. The convection term in
the momentum balance equation is discretized by a finite volume technique,
in such a way that a solution obeys a discrete kinetic energy balance, and
the mass balance is approximated by an upwind finite volume method. We
first show that the scheme preserves the stability properties of the continuous
problem (L∞-estimate for the density, L∞(L2)- and L2(H1)-estimates for the
velocity), which yields, by a topological degree technique, the existence of a
solution. Then, invoking compactness arguments and passing to the limit in
the scheme, we prove that any sequence of solutions (obtained with a sequence
of discretizations the space and time step of which tend to zero) converges
up to the extraction of a subsequence to a weak solution of the continuous
problem.

1. Introduction

Since seminal papers published from the middle of the sixties [20–22], low-order
staggered schemes for fluid flow computations have received a considerable atten-
tion. This interest is essentially motivated by the fact that they combine a low
computational cost with the so-called inf-sup or LB stability condition (see e.g.
[17]), which prevents from the odd-even decoupling of the pressure in the incom-
pressible limit. In addition, they may be combined, still keeping basically the same
order of accuracy, with finite volume approximations for possible additional conser-
vation equations, which allows, thanks to standard techniques, to obtain discrete
convection operators satisfying maximum principles (e.g. [28]).

Two different types of space discretizations fall in the class of staggered approx-
imations. The first one, essentially able to cope with structured meshes (with cell
faces normal to the coordinate axes), is the well-known MAC scheme [20–22]; it is
characterized by the fact that the unknowns for the ith component of the velocity
are associated with the cell faces normal to the ith coordinate axis. The second type
of approximation has been developed in the finite-element framework; it is based
on general simplices (for the so-called Crouzeix-Raviart element [6]) or on general
quadrilaterals or hexahedra (for the so-called Rannacher-Turek element [33]). The
velocity unknowns are the same for each component, and are associated with all
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the faces of the mesh (so, compared to the MAC scheme, the price to pay for the
generality of the mesh is a multiplication by the space dimension d of the number
of unknowns).

Recently, for MAC, Crouzeix-Raviart and Rannacher-Turek approximations, dis-
cretizations of the convection operator in the momentum balance equation have
been developed with the aim to obtain a scheme preserving the kinetic energy bal-
ance [1,3,25]. These techniques, implemented in the open-source software ISIS [27],
have brought many outcomes, both from the theoretical and the practical points of
view. First, the kinetic energy conservation property yields stability estimates (see
[1, 3] for quasi-incompressible flow and [13, 18] for barotropic and non-barotropic
compressible Navier-Stokes equations), and has been observed in numerical exper-
iments to actually dramatically increase the reliability of the scheme. Second, the
non-dissipation of the kinetic energy is a prerequisite for numerical schemes for
Large Eddy Simulation (e.g. [3, 8, 31, 32]), and a theoretical proof of this feature
thus strongly supports this kind of application. Finally, for Euler’s equations, hav-
ing at hand a discrete kinetic energy balance has been a key point in [18, 24] to
derive a consistent staggered scheme preserving the convex set of admissible states.

The discrete form of the convection operator, which is similar in all these ap-
plications and for all the considered space discretizations, may thus be seen as a
decisive building block of a class of schemes able to cope with all regimes, i.e., from
incompressible to compressible high Mach number flows. It is a finite volume form
(see [34, 35] for a similar development for the finite element context, restricted to
constant density flows), written on dual cells, i.e., cells centered at the location of
the velocity unknowns, namely the faces. The difficulty for its construction lies in
the fact that, as in the continuous case, the derivation of the kinetic energy identity
needs that a mass balance equation be satisfied on the same (dual) cells, while
the mass balance in the scheme is naturally written on the primal cells. We thus
have developed a procedure to define the density on the dual meshes and the mass
fluxes through the dual faces from the primal cell density and the primal faces
mass fluxes, which ensures a discrete mass balance. However, especially for the
Rannacher-Turek approximation, the quantities associated with the dual mesh are
defined only through necessary conditions to obtain the desired mass conservation,
in a way which is somehow reminiscent of the techniques used for the derivation
of the mimetic schemes. As a consequence, we obtain a convection operator the
definition of which is not in closed form, at least at first glance, and the consistency
of which is far from obvious.

The aim of this paper is to prove this consistency property. More precisely
speaking, on a model problem and with a given scheme, we prove that the limit of
a converging sequence of solutions obtained with a sequence of discretizations with
vanishing space and time steps is necessarily a weak solution to the problem at
hand. For this latter, we choose the time-dependent variable density incompress-
ible Navier-Stokes equations, which (from the consistency point of view) retain the
essential mathematical difficulties of compressible flows; indeed, the partial dif-
ferential equations in which we have to pass to the limit, namely the mass and
momentum balance equations, are the same as for compressible flows. For the
scheme, we focus here on the Rannacher-Turek discretization, and on an implicit
time discretization.

In addition, we also prove estimates on the solution and, by compactness argu-
ments, the existence of converging sequences of solutions (which, of course, would
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be more difficult for compressible Navier-Stokes equations). The result presented
here is thus in fact a convergence result for the proposed scheme on time-dependent
variable density incompressible Navier-Stokes equations, which seems to be rather
new in the literature; indeed, only one similar result is known to us, for a different
(Discontinuous Galerkin) space approximation [30]. Note also that, as a by-product,
we obtain the existence of weak solutions to the continuous problem, without in-
voking arguments of the continuous theory [29] itself, except a result issued from
the analysis of renormalized solutions of the transport equation [9]. Various exten-
sions of this work are ongoing: for instance, the same convergence result may be
proven for the MAC scheme, with rather simpler arguments, and consistency may
be extended for Euler’s equations.

This paper is organized as follows. We state the continuous problem and recall
its essential properties in Section 2, then the space discretization and the scheme
are given in Sections 3 and 4, respectively. The convergence theorem is stated in
Section 5, and the next three sections are devoted to its proof: we first gather in
Section 6 some useful mathematical tools, then establish the estimates satisfied by
the discrete solution and its existence (Section 7), and, finally, prove the theorem
(Section 8).

2. The continuous problem

The continuous problem addressed in this paper reads, in its strong form:

∂tρ+ div(ρu) = 0,(1a)

∂t(ρu) + div(ρu⊗ u)−Δu+∇p = 0,(1b)

divu = 0.(1c)

This problem is posed for (x, t) in Ω×(0, T ) where T ∈ R∗
+ and Ω is an open bounded

connected subset of Rd, with d ∈ {2, 3}, which is polygonal if d = 2 and polyhedral
if d = 3. The variables ρ, u = (u1, . . . , ud)

T and p are respectively the density,
the velocity and the pressure of the flow. The three equations above respectively
express the mass conservation, the momentum balance and the incompressibility of
the fluid. This system is supplemented with initial and boundary conditions:

u|∂Ω = 0, u|t=0 = u0, ρ|t=0 = ρ0.

Let us suppose that the initial data satisfies the following properties:

ρ0 ∈ L∞(Ω), 0 < ρmin ≤ ρ0 ≤ ρmax, with
ρmin = ess minx∈Ωρ0(x), ρmax = ess supx∈Ωρ0(x),

(2a)

u0 ∈ L2(Ω)d.(2b)

A well-known consequence of equations (1a) and (1c) is the following maximum
principle:

ρmin ≤ ρ(x, t) ≤ ρmax, for a.e. (x, t) ∈ Ω× (0, T ),

which shows that the natural regularity for ρ is ρ ∈ L∞(Ω × (0, T )). For the
velocity u, a classical formal calculation allows us to derive natural estimates for
smooth solutions. Taking the scalar product of (1b) by u and using twice the mass
conservation equation (1a) yields

∂t(
1

2
ρ|u|2) + div(

1

2
ρ|u|2u)−Δu · u+∇p · u = 0.
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Integrating over Ω, one gets, since divu = 0 and u|∂Ω = 0, that, for all t ∈ (0, T ),

d

dt

∫
Ω

1

2
ρ(x, t) |u(x, t)|2 dx+

∫
Ω

∇u(x, t) : ∇u(x, t) dx = 0.

Integrating over the time yields∫
Ω

1

2
ρ(x, t̃) |u(x, t̃)|2 dx+

∫ t̃

0

∫
Ω

|∇u(x, t)|2 dx dt

=

∫
Ω

1

2
ρ0(x) |u0(x)|2 dx, ∀t̃ ∈ (0, T ).

Since the density is bounded from below by a positive constant, this shows that the
natural regularity for u is u ∈ L∞((0, T ); L2(Ω)d) ∩ L2((0, T ); H1

0(Ω)
d). This leads

to define the weak solutions to problem (1) as follows.

Definition 2.1. Let ρ0 ∈ L∞(Ω) such that ρ0 > 0 for a.e. x ∈ Ω, and let
u0 ∈ L2(Ω)d. A pair (ρ,u) is a weak solution of problem (1) if it satisfies the
following properties:

(i) ρ ∈ {ρ ∈ L∞(Ω× (0, T )), ρ > 0 a.e. in Ω× (0, T )}.
(ii) u ∈ {u ∈ L∞((0, T ); L2(Ω)d) ∩ L2((0, T ); H1

0(Ω)
d), divu = 0}.

(iii) For all φ in C∞
c (Ω× [0, T )),

−
∫ T

0

∫
Ω

ρ(x, t)
(
∂tφ(x, t) + u(x, t) ·∇φ(x, t)

)
dx dt =

∫
Ω

ρ0(x)φ(x, 0) dx.

(iv) For all v in {v ∈ C∞
c (Ω× [0, T ))d, divv = 0},∫ T

0

∫
Ω

(
− ρ(x, t)u(x, t) · ∂tv(x, t)− (ρ(x, t)u(x, t)⊗ u(x, t)) : ∇v(x, t)

+∇u(x, t) : ∇v(x, t)
)
dxdt =

∫
Ω

ρ0(x)u0(x) · v(x, 0) dx.

Remark 2.1. Thanks to a theorem due to de Rham, one can actually prove that
problem (1) is satisfied in the distributional sense, with p ∈ W−1,∞((0, T ); L2

0(Ω))
where L2

0(Ω) = L2(Ω)/R. See for instance [4].

3. Definition of the meshes

Let Ω, the computational domain, be an open bounded subset of Rd, for d ∈
{2, 3}, and let us suppose that Ω is polygonal, for d = 2 and polyhedral, for d = 3.
We denote by ∂Ω = Ω \ Ω its boundary. In the following, the notation |K| or |σ|
stands indifferently for the d-dimensional or the (d−1)-dimensional measure of the
subset K of Rd or σ of Rd−1, respectively.

Definition 3.1 (Staggered discretization). A staggered discretization of Ω, denoted
by D, is given by D = (M, E), where:

- M, the primal mesh, is a finite family of non-empty convex quadrilaterals
(d = 2) or hexahedra (d = 3) of Ω such that Ω =

⋃
K∈M K.

- For any K ∈ M, let ∂K = K \ K be the boundary of K. The surface
∂K is the union of bounded subsets of hyperplanes of Rd, which we call
faces. We denote by E the set of faces of the mesh, and we suppose that
two neighboring cells share a whole face: for all σ ∈ E , either σ ⊂ ∂Ω or
there exists (K,L) ∈ M2 with K �= L such that K ∩ L = σ; we denote in
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Dσ

Dσ′

σ′ = K|MK

L

M

N
σ
=

K
|L

ε = D
σ |D

σ ′

Figure 1. Notation for a staggered discretization

the latter case σ = K|L. We denote by Eext and Eint the set of external and
internal faces: Eext = {σ ∈ E , σ ⊂ ∂Ω} and Eint = E \ Eext. For K ∈ M,
E(K) stands for the set of faces of K.

- We define a dual mesh associated with the faces σ ∈ E as follows. When
K ∈ M is a rectangle or a cuboid, for σ ∈ E(K), we define DK,σ as the
cone with basis σ and with vertex the mass center of K (see Figure 1).
We thus obtain a partition of K in 2d subvolumes, each subvolume having
the same measure |DK,σ| = |K|/(2d). We extend this definition to general
quadrangles and hexahedra, by supposing that we have built a partition still
of equal-volume subcells, and with the same connectivities. For σ ∈ Eint,
σ = K|L, we now define the dual (or diamond) cell Dσ associated with σ
by Dσ = DK,σ ∪DL,σ . For σ ∈ E(K) ∩ Eext, we define Dσ = DK,σ.

Remark 3.1 (Dual mesh and general cells). Note that, for a general mesh, the shape
of the dual cells does not need to be specified. In addition, for a general quadrangle
K, the definition of the volumes {DK,σ, σ ∈ E(K)} is of course possible, but DK,σ

may be no longer a cone; indeed, if K is far from a parallelogram, it may not be
possible to build a cone having σ as basis, the opposite vertex lying in K and a
volume equal to |K|/(2d).

We denote by Ẽ(Dσ) the set of faces ofDσ, and by ε = Dσ|Dσ′ the face separating

two diamond cells Dσ and Dσ′ . As for the primal mesh, we denote by Ẽint the set
of dual faces included in the domain and by Ẽext the set of dual faces lying on the
boundary ∂Ω. In this latter case, there exists σ ∈ Eext such that ε = σ. The unit
vector normal to σ ∈ E(K) outward K is denoted by nK,σ.

For K ∈ M, we denote by hK the diameter of K. The size of the discretization
is defined by

(3) hD = sup
{
hK , K ∈ M

}
.



586 J. C. LATCHÉ AND K. SALEH

In addition, for the consistency of the finite-element approximation of the diffusion
term, we need a measure of the difference between the cells ofM and parallelograms
(d = 2) or parallelotopes (d = 3), as defined in [33]. For K ∈ M, we denote by ᾱK

the maximum of the angles between the normal vectors of opposite faces, choosing
the orientation which maximize the angle, and set αK = π− ᾱK (so αK = 0 if K is
a parallelogram or a parallelotope, and αK > 0 otherwise). Then we define αD as:

(4) αD = max
{
αK , K ∈ M

}
.

For K ∈ M, we denote by rK the diameter of the largest ball included in K. We
define the real number θM by:

θM = max
{hK

rK
, K ∈ M

}
.

For σ ∈ E , we denote by hDσ
the diameter of Dσ and by rDσ

the diameter of the
largest ball included in Dσ, and we define θE,1 by:

(5) θE,1 = max
{ rDσ

hDσ′

, σ, σ′ ∈ E such that ∂Dσ ∩ ∂Dσ′ �= ∅
}
.

The parameter θE,2 is defined by:

(6) θE,2 = max
{ |∂DK,σ|

|∂K| , K ∈ M, σ ∈ E(K)
}
.

Finally, we also need to introduce the following quantity:

θE,3 = max
{hD
rDσ

, σ ∈ E
}
.

The regularity of the discretization is measured through the following positive
real number:

(7) θD = max
{
θM, θE,1, θE,2, θE,3

}
.

The real number θM is a classical measure of the regularity of the primal mesh.
In 2D, an inequality of the form θM ≤ C is the classical uniform-shape condition
for Q1-elements (see [17]). Observe that, by construction of the dual mesh which
imposes to the half-diamond cells DK,σ to be of equal volume in every K, if θM is
bounded, we may suppose that a similar measure of the uniform-shape regularity
for the dual mesh is also bounded. The real number θE,1 is an additional measure of
the regularity of the dual mesh, which characterizes the difference of size between
two neighboring cells. The parameter θE,2 measures the regularity of the dual
faces. As shown in the following, the boundedness of θE,1 and θE,2 for a sequence
of discretizations is used to obtain compactness results for the numerical scheme.
Finally, still for a sequence of discretizations, imposing to θE,3 to be bounded is
a quasi-uniformity assumption of the mesh, which is necessary to justify inverse
inequalities used in the proof of Lemma 6.12.

4. The scheme

4.1. General form of the scheme. Let us consider a uniform partition 0 =
t0 < t1 < · · · < tN = T of the time interval (0, T ), and let δt = tn − tn−1

for n = 1, . . . , N be a constant time step. The discretization of problem (1) is
staggered in the following sense. The degrees of freedom for the density and the
pressure are associated with the primal mesh M while the degrees of freedom of
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the velocity are associated with the dual mesh, or equivalently with the set of faces
E . Correspondingly, the initial discrete density and velocity are defined by

(8)

ρ0K =
1

|K|

∫
K

ρ0(x) dx, K ∈ M,

u0
σ =

1

|Dσ|

∫
Dσ

u0(x) dx, σ ∈ Eint,

and the Dirichlet boundary condition is taken into account by setting un
σ = 0 for

all σ ∈ Eext and all n in {0, 1, . . . , N}.
The time advancement is defined by induction as follows.

For 1 ≤ n ≤ N , let us suppose that (ρn−1
K )K∈M ⊂ R, (un−1

σ )σ∈Eint
⊂ Rd and

(pn−1
K )K∈M ⊂ R are known families of real numbers, and find (ρnK)K∈M ⊂ R,

(un
σ)σ∈Eint

⊂ Rd and (pnK)K∈M ⊂ R such that∑
K∈M

|K| pnK = 0,

and
1

δt
(ρnK − ρn−1

K ) +
1

|K|
∑

σ∈E(K)

Fn
K,σ = 0, K ∈ M,(9a)

1

δt
(ρnDσ

un
σ − ρn−1

Dσ
un−1
σ )(9b)

+
1

|Dσ |
∑

ε∈Ẽ(Dσ)

Fn
σ,εu

n
ε − (Δu)nσ + (∇p)nσ = 0, σ ∈ Eint,

(divu)nK = 0, K ∈ M.(9c)

Equation (9a) is obtained by discretization of the mass balance over the primal
mesh, and Fn

K,σ stands for the mass flux across σ outward K, which, because of
the Dirichlet boundary condition on the velocity, vanishes on external faces and is
given on the internal faces by:

Fn
K,σ = |σ| ρnσ un

σ · nK,σ, σ = K|L ∈ Eint.
The density at the face σ = K|L is approximated by the upwind technique:

(10) ρnσ =

∣∣∣∣ ρnK if un
σ · nK,σ ≥ 0,

ρnL otherwise.

The discretization of the discrete velocity divergence is built in a similar way:

(11) (divu)nK =
1

|K|
∑

σ∈E(K)

|σ| un
σ · nK,σ, K ∈ M.

Let us now turn to the discretization (9b) of the momentum balance equation
(1b). The first two terms correspond to a finite volume approximation of the con-
vection operator, the description of which is given below (see Section 4.2). The
space discretization of the diffusion term in the momentum equation relies on the
parametric Rannacher-Turek (or rotated bilinear) element associated with the pri-

mal mesh M (see [33]). The reference element K̂ for the rotated bilinear element

is the unit d-cube and the discrete functional space on K̂ is Q̃1(K̂):

Q̃1(K̂) = span
{
1, (xi)i=1,...,d, (x

2
i − x2

i+1)i=1,...,d−1

}
.
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The mapping from the reference element to the actual discretization cell is the
standard Q1 mapping, and the space of discrete functions over a cell K, let us say

Q̃1(K), is obtained from Q̃1(K̂) by composition. The set of shape functions over

K is the set {ζσ, σ ∈ E(K)}, such that ζσ|K belongs to Q̃1(K) and

(12)

∫
σ

ζσ′ |K(x) dγ(x) = δσ
′

σ |σ|, σ, σ′ ∈ E(K),

with δσ
′

σ = 1 if σ = σ′ and δσ
′

σ = 0 otherwise. The continuity of the average value
of a discrete function ṽ across each face of the mesh is required, which is consistent
with a location of the degrees of freedom at the center of the faces:
(13)∫

σ

[ṽ]σ(x) dγ(x) = 0, [ṽ]σ(x) = lim
y→x
y∈L

ṽ(y)− lim
y→x
y∈K

ṽ(y), x ∈ σ, σ = K|L.

The discretization of the diffusion term reads:

−(Δu)nσ =
1

|Dσ|
∑

K∈M

∑
σ′∈E(K)

un
σ′

∫
K

∇ζσ′ ·∇ζσ dx.

Finally, the discretization of the discrete pressure gradient term reads as follows:

(14) (∇p)nσ =
|σ|
|Dσ|

(pnL − pnK) nK,σ, σ = K|L ∈ Eint.

4.2. The velocity convection operator. In this section, we describe the ap-
proximation of the convection operator ∂t(ρu) + div(ρu ⊗ u) which appears in
the momentum balance equation. As mentioned in the introduction, this discrete
operator has already been used as a building brick for various schemes: variable
density low Mach number flows [1] (as here), barotropic and non-barotropic [13,24]
compressible flows, drift-flux two-phase flow model [15,16,23]. It is of finite volume
type, and takes the general form given by the first two terms of (9b). The quantity
ρDσ

is an approximation of the density on the dual cell Dσ, while Fσ,ε is the mass
flux across the edge ε of the dual cell Dσ. These quantities are built so that a finite
volume discretization of the mass balance (9a) holds over the internal dual cells:

(15)
|Dσ|
δt

(ρnDσ
− ρn−1

Dσ
) +

∑
ε∈Ẽ(Dσ)

Fn
σ,ε = 0, σ ∈ Eint.

This is crucial in order to reproduce, at the discrete level, the derivation of a kinetic
energy balance equation (see Section 7 below), a consequence of which are discrete
analogues of the usual L∞(L2)- and L2(H1)- stability estimates for the velocity.

Let us first begin with the time derivative term. The values ρnDσ
and ρn−1

Dσ
are

approximations of the density on the dual cell Dσ at time tn and tn−1, respectively.
For σ in Eint such that σ = K|L, the approximate densities on the dual cell Dσ are
given by the following weighted average:

(16) |Dσ| ρkDσ
= ξσK |K| ρkK + ξσL|L| ρkL, for k = n− 1 and k = n,

where

(17) ξσK =
|DK,σ|
|K| , K ∈ M, σ ∈ E(K).

The set of dual fluxes Fn
σ,ε with ε included in the primal cell K, is computed by

solving a linear system depending on the primal fluxes (Fn
K,σ)σ∈E(K), appearing in
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the discrete mass balance (9a). More precisely, we have the following definition for
the dual fluxes, in which we omit for short the time dependence on n.

Definition 4.1 (Definition of the dual fluxes from the primal ones). The fluxes
through the faces of the dual mesh are defined so as to satisfy the following three
constraints:

(H1) The discrete mass balance over the half-diamond cells is satisfied, in the
following sense. For all primal cell K in M, the set (Fσ,ε)ε⊂K of dual fluxes
included in K solves the following linear system

(18) FK,σ +
∑

ε∈Ẽ(Dσ), ε⊂K

Fσ,ε = ξσK
∑

σ′∈E(K)

FK,σ′ , σ ∈ E(K).

(H2) The dual fluxes are conservative, i.e., for any dual face ε = Dσ|D′
σ, we have

Fσ,ε = −Fσ′,ε.
(H3) The dual fluxes are bounded with respect to the primal fluxes (FK,σ)σ∈E(K),

in the sense that there exists a universal constant real number C such that:
(19)

|Fσ,ε| ≤ C max {|FK,σ|, σ ∈ E(K)} , K ∈ M, σ ∈ E(K), ε ∈ Ẽ(Dσ), ε ⊂ K.

In fact, Definition 4.1 is not complete, since the system of equations (18) has
an infinite number of solutions, which makes necessary to impose in addition the
constraint (19); however, assumptions (H1)-(H3) are sufficient for the subsequent
developments of this paper (and thus, in particular, imply the consistency of the
discrete convection operator). Note that, since (18) is linear with respect to the

Fσ,ε, σ ∈ E(K), ε ∈ Ẽ(Dσ), ε ⊂ K, a solution of (18) may be expressed as:

Fσ,ε =
∑

σ′∈E(K)

(αK)σ
′

σ FK,σ′ , σ ∈ E(K), ε ∈ Ẽ(Dσ) and ε ⊂ K,

and the constraint (19) amounts to requiring to the coefficients ((αK)σ
′

σ )σ,σ′∈E(K)

to be bounded by a universal constant. In practice, one has |(αK)σ
′

σ | ≤ 1 for all
σ, σ′ ∈ E(K) and all K ∈ M (see [2]).

We thus would be able to cope with a quite general definition of the diamond
cells, since, up to now, even their volume is not fixed. In practice, as said in
Definition 3.1, we choose however to impose that |DK,σ| = |K|/(2d); in other
words, the real number ξσK in (17) is given by ξσK = 1/(2d) for all K ∈ M and
σ ∈ E(K). In these conditions, system (18) is now completely independent from
the cell K under consideration. We may thus consider a particular geometry for K,
let us say K = (0, 1)d, and find an expression for the coefficients ((αK)σ

′

σ )σ,σ′∈E(K)

which we will apply to all the cells, thus automatically satisfying the constraint
(19). A technique for this computation is described in [1, Section 3.2]. The idea is
to build a momentum field w with constant divergence, such that:∫

σ

w · nK,σ dγ(x) = FK,σ, ∀σ ∈ E(K).

Then an easy computation shows that the definition

Fσ,ε =

∫
ε

w · nσ,ε dγ(x),

where the unit vector normal to ε outward Dσ is denoted by nσ,ε, satisfies (18) (see

[1, Lemma 3.2]). The set of coefficients ((αK)σ
′

σ )σ,σ′∈E(K) obtained for a quadrangle
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is given in [1, Section 3.2]; extension to the three-dimensional case is straightfor-
ward.

To complete the definition of the convective flux, we now just have to give the
expression of the velocity at the dual face, i.e., of the quantity un

ε in (9b). As
already said, a dual face lying on the boundary is also a primal face, and the flux
across that face is zero. Therefore, the values un

ε are only needed at the internal
dual faces; we choose them to be centered:

un
ε =

1

2
(un

σ + un
σ′), for ε = Dσ|D′

σ.

5. The convergence theorem

We begin by associating functions with the discrete unknowns of the scheme.
To this purpose, we first define the following sets of discrete functions of the space
variable.

Definition 5.1 (Discrete spaces). Let D = (M, E) be a staggered discretization
of Ω in the sense of Definition 3.1. We denote by HM(Ω) ⊂ L∞(Ω) the space of
functions which are piecewise constant on each primal mesh cell K ∈ M. For all
w ∈ HM(Ω) and for all K ∈ M, we denote by wK the constant value of w in K, so
the function w reads:

w(x) =
∑

K∈M
wK XK(x) for a.e. x ∈ Ω,

where XK stands for the characteristic function of K.
Similarly, we denote by HE(Ω) ⊂ L∞(Ω) the space of functions which are piece-

wise constant on each diamond cell of the dual mesh Dσ, σ ∈ E . For all u ∈ HE(Ω)
and for all σ ∈ E , we denote by uσ the constant value of u in Dσ, so the function
u reads:

u(x) =
∑
σ∈E

uσ XDσ
(x) for a.e. x ∈ Ω,

where XDσ
(x) stands for the characteristic function of Dσ. Finally we denote

HE,0(Ω) =
{
u ∈ HE(Ω), uσ = 0 for all σ ∈ Eext

}
.

Then, with the discrete unknowns computed by induction through the scheme,
we associate piecewise constant functions on each time interval (tn−1, tn] as follows:

ρ(x, t) = ρn(x), p(x, t) = pn(x), u(x, t) = un(x), for a.e. t ∈ (tn−1, tn],

where ρn ∈ HM(Ω), pn ∈ HM(Ω) and u ∈ HE,0(Ω)
d are the discrete functions

defined by (ρnK)K∈M, (pnK)K∈M and (un
σ)σ∈E , respectively. Definition 5.1 thus

yields:

(20)

ρ(x, t) =

N∑
n=1

∑
K∈M

ρnK XK(x)X(n−1,n](t),

p(x, t) =
N∑

n=1

∑
K∈M

pnK XK(x)X(n−1,n](t),

u(x, t) =
N∑

n=1

∑
σ∈E

un
σ XDσ

(x)X(n−1,n](t),

where X(n−1,n] stands for the characteristic function of the time interval (tn−1, tn].
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We then define a regular sequence of discretizations as follows.

Definition 5.2 (Regular sequence of discretizations). Let (D(m), δt(m))m∈N be a
sequence of staggered discretizations (in the sense of Definition 3.1) and time steps.
For m ∈ N, let h(m) and θ(m) be the space step and the regularity parameter
associated with D(m) by equations (3) and (7), respectively, and let α(m) be the
measure of the deviation of the geometry of the cells from parallelograms, as defined
by (4). Then this sequence (D(m), δt(m))m∈N is said regular if:

(i) for all m ∈ N, θ(m) ≤ θ0 for some positive real number θ0,
(ii) the sequences of space steps (h(m))m∈N and time steps (δt(m))m∈N tend to

zero when m tends to +∞,
(iii) the sequence of parameters (α(m))m∈N tends to zero when m tends to +∞.

Remark 5.1 (A particular construction of regular sequence of discretizations). For
d = 2, a sequence of discretizations satisfying the assumption (iii) above is obtained
by successively dividing each quadrangle in four subquadrangles, splitting it along
the lines joining the mid-points of opposite faces. The extension of this construction
to the three-dimensional case (splitting now each hexahedron in 8 subvolumes) is
not as easy as it seems, the difficulty being to keep the faces plane.

The following theorem is the main result of this paper; its proof is the purpose
of the rest of the paper.

Theorem 5.1. Let (D(m), δt(m))m∈N be a regular sequence of staggered discretiza-
tions and time steps. Then, under assumptions (2a) and (2b) for the initial data,
for m ∈ N, there exists a discrete solution to the scheme (9). Let us denote by
(ρ(m),u(m), p(m))m∈N the corresponding discrete functions as defined in (20). Then,
there exists (ρ̄, ū) weak solution of problem (1) in the sense of Definition 2.1, such
that, up to a subsequence, ρ(m) strongly converges to ρ̄ in Lq((0, T ) × Ω) for all q
in [1,∞) and u(m) strongly converges to ū in Lq((0, T ); L2(Ω)d) for all q in [1,∞).

6. Preliminary lemmata

We gather in this section some preliminary mathematical results which are useful
for the analysis of the scheme.

6.1. Properties of the discrete divergence and gradient operators. We
define the discrete divergence and gradient operators in the following way:

divM :

{
HE,0(Ω)

d −→ HM(Ω)
u �−→ divMu(x) = (divu)K , ∀x ∈ K, K ∈ M,

(21)

∇E :

{
HM(Ω) −→ HE,0(Ω)

d

p �−→ ∇Ep(x) = (∇p)σ, ∀x ∈ Dσ, σ ∈ Eint,
(22)

where (divu)K and (∇p)σ are defined in (11) and (14), respectively. The following
lemma gives two first important properties of these operators.
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Lemma 6.1. Let v ∈ H1
0(Ω)

d. For a given discretization D = (M, E), for σ ∈ E ,
let

vσ =
1

|σ|

∫
σ

v(x) dγ(x),

and let PEv be the function of HE,0(Ω)
d defined by PEv(x) = vσ for every x in Dσ

and every σ ∈ E . Then for all p in HM(Ω),

(23)

∫
Ω

p(x) divM(PEv)(x) dx =

∫
Ω

p(x) divv(x) dx.

In addition, the discrete divergence and the discrete gradient are dual in the follow-
ing sense. For any v in HE,0(Ω)

d and any p in HM(Ω), one has

(24)

∫
Ω

p(x) divMv(x) dx+

∫
Ω

v(x) ·∇Ep(x) dx = 0.

Proof. The first relation is an obvious consequence of relation (11) defining the
discrete divergence operator and of the fact that p is piecewise constant on the cells
K ∈ M. For the second relation, the same observations yield that for any pair
(v, p) in HE,0(Ω)

d ×HM(Ω), one has

(25)
∑

K∈M
|K| pK (divv)K +

∑
σ∈E

|Dσ| vσ · (∇p)σ = 0.

Note that, because of the homogeneous Dirichlet boundary condition on v, the
discrete gradient does not need to be defined at the external faces and the second
sum in (25) is actually a sum over Eint. �

We also have the following convergence property for the discrete gradient defined
in (22).

Lemma 6.2 (Weak convergence of the discrete gradient). Let (D(m))m∈N be a
sequence of regular discretizations of Ω in the sense of Definition 5.2. For m ∈ N,
let p(m) ∈ HM(m)(Ω) and assume that there exists C in R+ such that, for all m ∈ N,
‖∇E(m)p(m)‖Lq(Ω)d ≤ C for some q in [1,∞]. Assume also that there exists p̄ in

W1,q(Ω) such that p(m) converges to p̄ in the distribution sense as m tends to +∞,
i.e.,

∀φ ∈ C∞
c (Ω), lim

m→+∞

∫
Ω

p(m)(x) · φ(x) dx =

∫
Ω

p̄(x) · φ(x) dx.

Then ∇E(m)p(m) converges to ∇p̄ in the distribution sense:

∀φ ∈ C∞
c (Ω)d, lim

m→+∞

∫
Ω

∇E(m)p(m)(x) · φ(x) dx =

∫
Ω

∇p̄(x) · φ(x) dx.

In addition, for q ∈ (1,∞) (resp. q = +∞), if p(m) weakly (resp. weakly-�)
converges to p̄ in Lq(Ω) (resp. in L∞(Ω)), then ∇E(m)p(m) also converges to ∇p̄
weakly (resp. weakly-�) in Lq(Ω)d (resp. in L∞(Ω)d).

Proof. Let φ ∈ C∞
c (Ω)d. For a given discretization D = (M, E), for σ ∈ E , let

φσ =
1

|σ|

∫
σ

φ(x) dγ(x),

and let PEφ be the function of HE,0(Ω)
d defined by PEφ(x) = φσ if x ∈ Dσ, for

every σ ∈ E . Let q′ = +∞ if q = 1, q′ be given by 1/q + 1/q′ = 1 if q ∈ (1,∞),
and q′ = 1 if q = +∞. With the assumptions of the lemma, an easy calculation
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shows that ‖PE(m)φ− φ‖Lq′ (Ω)d ≤ 2 |Ω|1/q′ ‖∇φ‖L∞(Ω)d×d h(m) (with |Ω|1/q′ = 1

for q′ = +∞). We may write∫
Ω

∇E(m)p(m)(x) · φ(x) dx =

∫
Ω

∇E(m)p(m)(x) · (PE(m)φ)(x) dx+R,

with |R|≤‖∇E(m)p(m)‖Lq(Ω)d‖PE(m)φ− φ‖Lq′ (Ω)d ≤2C |Ω|1/q′‖∇φ‖L∞(Ω)d×d h(m)

which tends to zero as m → +∞. Now invoking successively (24), (23) and the
convergence of p(m) to p̄ in the distribution sense, we get∫

Ω

∇E(m)p(m)(x) · (PE(m)φ)(x) dx = −
∫
Ω

p(m)(x) divφ(x) dx

→ −
∫
Ω

p̄(x) divφ(x) dx =

∫
Ω

∇p̄(x) · φ(x) dx, as m → +∞,

which shows that ∇E(m)p(m) tends to ∇p̄ in the distributional sense. The weak or
weak-� convergence of ∇E(m)p(m), for q ∈ (1,∞) or q = +∞, respectively, follows
by density. �

6.2. Properties of the Rannacher-Turek element. We gather in this section
consistency and stability results for the Rannacher-Turek element, most of them
given in [33], which are used in the analysis of the scheme.

With every function u in HE(Ω)
d (or, equivalently, with every set of degrees

of freedom (uσ)σ∈E), one classically associates, in the finite-element context, the
function ũ from Ω to Rd:

ũ(x) =
∑
σ∈E

uσζσ(x), for a.e. x ∈ Ω,

with ζσ the shape function defined by (12). This identification allows us to introduce
the broken Sobolev H1 semi-norm ‖.‖E,b, given for any u ∈ HE(Ω)

d by:

‖u‖2E,b =
∑

K∈M

∫
K

∇ũ(x) : ∇ũ(x) dx.

The semi-norm ‖u‖E,b is in fact a norm on the space HE,0(Ω)
d, thanks to the

discrete Poincaré inequality (see [33]) stated in the following lemma.

Lemma 6.3 (Discrete Poincaré inequality). Let D = (M, E) be a staggered dis-
cretization of Ω in the sense of Definition 3.1, such that θD ≤ θ0, with θD defined
by (7). Then there exists C, only depending on d, Ω and θ0 such that

‖u‖L2(Ω)d ≤ C ‖u‖E,b, ∀u ∈ HE,0(Ω)
d.

Let us now denote by rE the following natural interpolation operator from H1
0(Ω)

d

to HE,0(Ω)
d:

(26)

rE : H1
0(Ω)

d −→ HE,0(Ω)
d

ū �→ rE ū(x) =
∑
σ∈E

|σ|−1

(∫
σ

ū(x) dγ(x)

)
XDσ

(x),

where XDσ
(x) is the characteristic function of the dual cell Dσ. We have the

following stability and approximation properties of rE .
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Lemma 6.4. Let D = (M, E) be a staggered discretization of Ω in the sense of Def-
inition 3.1, such that θD ≤ θ0, with θD defined by (7). The interpolation operator
rE enjoys the following properties:

– Stability:

∀ū ∈ H1
0(Ω)

d, ‖rE ū‖E,b ≤ C ‖ū‖H1(Ω)d ,

with C only depending on Ω and θ0.
– Approximation properties:

∀ū ∈ H2(Ω)d ∩H1
0(Ω)

d, ∀K ∈ M,

‖ū− r̃E ū‖L2(K)d + hK ‖∇(ū− r̃E ū)‖L2(K)d×d ≤ C hK (hK + αK) |ū|H2(K)d ,

with C only depending on Ω and θ0.

We also have the following classical stability property, which is used when passing
to the limit in the momentum equation (see Section 8.6).

Lemma 6.5. Let D = (M, E) be a staggered discretization of Ω in the sense of
Definition 3.1, such that θD ≤ θ0, with θD defined by (7). For σ in Eint, let
[ũ]σ be the jump of ũ across σ as defined in (13), and for σ in Eext ∩ E(K), let
[ũ]σ(x) = limy→x,y∈K ũ(x).

Then there exists C, only depending on d, Ω and θ0 such that, for all u in
HE(Ω)

d,

(27)
(∑

σ∈E

1

hσ

∫
σ

[ũ]2σ(x) dγ(x)
) 1

2 ≤ C ‖u‖E,b,

where, for all σ in E , hσ = diam(σ).

Finally, the following lemma states that the pair of approximation spaces HE,0(Ω)
d

for the velocity (endowed with the finite element broken norm) and HM(Ω) for the
pressure is inf-sup stable.

Lemma 6.6. Let D = (M, E) be a staggered discretization of Ω in the sense of
Definition 3.1, such that θD ≤ θ0, with θD defined by (7). Then there exists β > 0,
depending only on Ω and θ0, such that for all p in HM(Ω), there exists u in HE,0(Ω)

d

satisfying

‖u‖E,b = 1 and

∫
Ω

p(x) divMu(x) dx ≥ β ‖p−m(p)‖L2(Ω),

where m(p) stands for the mean value of p over Ω.

6.3. Discrete functional analysis. We introduce the following finite volume dis-
crete H1-norm on the space HE,0(Ω)

d:

‖u‖2E,FV =
∑

K∈M
hd−2
K

∑
σ,σ′∈E(K)

|uσ − uσ′ |2,

which, by an easy computation, may be shown to be equivalent, over a regular
sequence of discretizations, to the usual finite volume H1-norm defined in [11].
The following lemma is obtained by using standard properties of the Q1 mapping,
and then invoking a norm equivalence argument for the finite-dimensional space of
discrete functions on the reference element. It allows us to inherit all the discrete
functional analysis results associated with the finite volume H1-norm.
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Lemma 6.7. Let D = (M, E) be a staggered discretization of Ω in the sense of
Definition 3.1, such that θD ≤ θ0, with θD defined by (7). Then:

‖u‖E,FV ≤ C ‖u‖E,b, ∀u ∈ HE,0(Ω)
d,

where C only depends on Ω, d and θ0.

We begin by giving a crucial discrete Sobolev embedding property, which is a
consequence of Lemma 6.7 and of the results stated in [12, “Discrete functional
analysis” appendix].

Lemma 6.8 (Discrete Sobolev embedding). Let D = (M, E) be a staggered dis-
cretization of Ω in the sense of Definition 3.1, such that θD ≤ θ0, with θD defined
by (7). Then there exists C(q, d, θ0) > 0 such that

‖u‖Lq(Ω)d ≤ C(q, d, θ0) ‖u‖E,FV, ∀u ∈ HE,0(Ω)
d,

for all q ∈ [1, 2∗] (with 2∗ = 6) if d = 3 and for all q ∈ [1,∞) if d = 2.

Remark 6.1. Actually, the important regularity assumption for proving Lemma 6.8
is the boundedness of the parameters θE,1 and θE,2 defined in (5)-(6). Note that for
d = 2, one has C(q, d, θ0) → ∞ as q → ∞.

The following lemma is a consequence of Lemma 6.7 and an adaptation of the
proof of [11, Lemma 3.3].

Lemma 6.9. Let D = (M, E) be a staggered discretization of Ω in the sense of
Definition 3.1, such that θD ≤ θ0, with θD defined by (7). For any u ∈ HE,0(Ω)

d,
we define its extension u� to the whole space Rd by setting u� = 0 on Rd \Ω. Then
there exists C, only depending on Ω, d and θ0 such that

(28) ‖u�(.+ η)− u�‖2L2(Rd)d ≤ C‖u‖2E,b |η| (|η|+ hD), ∀η ∈ R
d, ∀u ∈ HE,0(Ω)

d.

Finally, an important consequence of Lemma 6.9 is the following compactness
result, whose proof is similar to that of [11, Theorem 3.10].

Lemma 6.10 (Discrete Rellich theorem). Let (D(m))m∈N be a regular sequence of
discretizations in the sense of Definition 5.2. For m ∈ N, let u(m) ∈ HE(m),0(Ω)

d

and assume that there exists C ∈ R such that, for all m ∈ N, ‖u(m)‖E(m),b ≤ C.

Then, there exists ū in H1
0(Ω)

d and a subsequence of (u(m))m∈N (not relabeled) such
that u(m) converges strongly in L2(Ω)d towards ū as m → ∞.

6.4. Estimates on the dual mass convection term. In the following, when
confusion is possible, if the dual fluxes Fσ,ε are computed from the fields ρ ∈ HM(Ω)
and u ∈ HE,0(Ω)

d through FK,σ, we denote Fσ,ε(ρ,u) and FK,σ(ρ,u) for the sake
of clarity. Let us define the mapping:
(29)

Qmass
E :

⎧⎪⎨⎪⎩
HM(Ω)× (HE,0(Ω)

d)3 −→ R

(ρ,u,v,w) �−→ Qmass
E (ρ,u,v,w) =

∑
σ∈Eint

(vσ ·wσ)
∑

ε∈Ẽ(Dσ)

Fσ,ε(ρ,u).

The mapping Qmass
E is a discrete counterpart of the variational formulation of the

convection term in the mass conservation equation
∫
Ω
div(ρu)φ, for test functions

φ of the form φ = v ·w where v, w ∈ H1
0(Ω)

d. This discrete variational formulation
is obtained from the dual mass conservation equation (15) by multiplying the local
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mass flux by the test function φσ = (vσ ·wσ) and summing over σ ∈ E (we recall
that Fσ,ε(ρ,u) vanishes at external faces).

The next lemma provides an estimate on the function Qmass
E , which is a discrete

counterpart of a similar estimate satisfied in the continuous setting.

Lemma 6.11 (Estimate on Qmass
E ). Let D = (M, E) be a staggered discretization

of Ω in the sense of Definition 3.1, such that θD ≤ θ0. Then, there exists a constant
C, only depending on Ω, d and θ0, such that
(30)

|Qmass
E (ρ,u,v,w)| ≤ C‖ρ‖L∞(Ω)‖u‖L6(Ω)d

(
‖v‖L3(Ω)d‖w‖E,b + ‖w‖L3(Ω)d‖v‖E,b

)
for all ρ in HM(Ω) and u, v, w in HE,0(Ω)

d.

Proof. By definition of Qmass
E (ρ,u,v,w), we have, recalling that (Fσ,ε)ε⊂K solve

(18) with ξσK = 1/(2d):

Qmass
E (ρ,u,v,w)

=
1

2d

∑
σ∈Eint

σ=K|L

(vσ ·wσ)
( ∑

σ′∈E(L)

FL,σ′(ρ,u) +
∑

σ′∈E(K)

FK,σ′(ρ,u)
)

=
1

2d

∑
σ∈Eint
σ=K|L

(vσ ·wσ)
( ∑

σ′∈E(L)

|σ′|ρσ′uσ′ · nL,σ′ +
∑

σ′∈E(K)

|σ′|ρσ′uσ′ · nK,σ′

)
.

Reordering the sum, one gets:

Qmass
E (ρ,u,v,w)

= − 1

2d

∑
σ∈Eint

σ=K|L

|σ|ρσuσ · nK,σ

( ∑
σ′∈E(L)

(vσ′ ·wσ′)−
∑

σ′∈E(K)

(vσ′ ·wσ′)
)

= − 1

2d

∑
σ∈Eint
σ=K|L

|σ|ρσuσ · nK,σ

( ∑
σ′∈E(L)

(vσ′ ·wσ′ − vσ ·wσ)

+
∑

σ′∈E(K)

(vσ ·wσ − vσ′ ·wσ′)
)
.

Hence,

|Qmass
E (ρ,u,v,w)| ≤ 1

2d

∑
σ∈Eint
σ=K|L

|σ| |ρσ| |uσ|
∑

σ′∈E(K)∪E(L)

|vσ′ ·wσ′ − vσ ·wσ|

≤ 1

2d
‖ρ‖L∞(Ω)

∑
σ∈Eint

σ=K|L

|σ| |uσ|
∑

σ′∈E(K)∪E(L)

|vσ′ ·wσ′ − vσ ·wσ|.
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Now, observing that vσ′ ·wσ′ − vσ ·wσ = vσ′ · (wσ′ −wσ) +wσ · (vσ′ − vσ), one
obtains: |Qmass

E (ρ,u,v,w)| ≤ 1
2d‖ρ‖L∞(Ω)(T1 + T2) with:

T1 =
∑

σ∈Eint

σ=K|L

|σ| |uσ|
∑

σ′∈E(K)∪E(L)

|vσ′ | |wσ′ −wσ|,

T2 =
∑

σ∈Eint
σ=K|L

|σ| |uσ|
∑

σ′∈E(K)∪E(L)

|wσ| |vσ′ − vσ|.

Let us estimate T1, a similar calculation yields the estimate on T2. Using twice the
Cauchy-Schwarz inequality yields:

T1 ≤
∑

σ∈Eint

σ=K|L

|σ| |uσ|
( ∑

σ′∈E(K)∪E(L)

|vσ′ |2
) 1

2
( ∑

σ′∈E(K)∪E(L)

|wσ′ −wσ|2
) 1

2

=
∑

σ∈Eint

σ=K|L

|Dσ|
1
2 |uσ|

( ∑
σ′∈E(K)∪E(L)

|vσ′ |2
) 1

2
( |σ|2
|Dσ|

∑
σ′∈E(K)∪E(L)

|wσ′ −wσ|2
) 1

2

≤
( ∑

σ∈Eint
σ=K|L

|Dσ| |uσ|2
∑

σ′∈E(K)∪E(L)

|vσ′ |2
) 1

2

︸ ︷︷ ︸
T1,1

×
( ∑

σ∈Eint
σ=K|L

|σ|2
|Dσ|

∑
σ′∈E(K)∪E(L)

|wσ′ −wσ|2
) 1

2

︸ ︷︷ ︸
T1,2

.

In T1,1, Hölder’s inequality with powers 3 and 3/2 gives:

T1,1 =

( ∑
σ∈Eint

σ=K|L

|Dσ|
1
3 |uσ|2 |Dσ|

2
3

∑
σ′∈E(K)∪E(L)

|vσ′ |2
) 1

2

≤
( ∑

σ∈Eint

σ=K|L

|Dσ| |uσ|6
) 1

6
( ∑

σ∈Eint

σ=K|L

|Dσ|
( ∑

σ′∈E(K)∪E(L)

|vσ′ |2
) 3

2

) 1
3

≤ C(θ0) ‖u‖L6(Ω)d

( ∑
σ∈Eint

σ=K|L

( ∑
σ′∈E(K)∪E(L)

|Dσ′ | 23 |vσ′ |2
) 3

2

) 1
3

.

Again using Hölder’s inequality with powers 3 and 3/2 in the sum over σ′ and
recalling that card{E(K)∪E(L)} = 4d−1 yields T1,1 ≤ C(d, θ0)‖u‖L6(Ω)d‖v‖L3(Ω)d .
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It remains to estimate T1,2, which is done as follows:

T 2
1,2 =

∑
σ∈Eint
σ=K|L

|σ|2
|Dσ|

∑
σ′∈E(K)∪E(L)

|wσ′ −wσ|2

=
∑

σ∈Eint

σ=K|L

|σ|2
|Dσ|

( ∑
σ′∈E(K)

|wσ′ −wσ|2 +
∑

σ′∈E(L)

|wσ′ −wσ|2
)

≤
∑

σ∈Eint

σ=K|L

|σ|2
|Dσ|

( ∑
σ′,σ′′∈E(K)

|wσ′ −wσ′′ |2 +
∑

σ′,σ′′∈E(L)

|wσ′ −wσ′′ |2
)
.

Reordering the sum and using the regularity of the discretization yields:

T 2
1,2 ≤ C(θ0)

∑
K∈M

∑
σ∈E(K)

hd−2
K

∑
σ′,σ′′∈E(K)

|wσ′ −wσ′′ |2

= C(θ0)‖w‖2E,FV ≤ C(d,Ω, θ0)‖w‖2E,b,

by Lemma 6.7. Hence T1 ≤ C(d,Ω, θ0)‖u‖L6(Ω)d‖v‖L3(Ω)d‖w‖E,b, and a similar

calculation gives T2 ≤ C(d,Ω, θ0)‖u‖L6(Ω)d‖w‖L3(Ω)d‖v‖E,b, which concludes the

proof. �

6.5. Estimates on the momentum convection term. We define a discrete
counterpart of

∫
Ω
div(ρu ⊗ v) · w, the variational formulation of the convection

term in the momentum balance equation as follows:
(31)

Qmom
E :

⎧⎪⎨⎪⎩
HM(Ω)× (HE,0(Ω)

d)3 −→ R

(ρ,u,v,w) �−→ Qmom
E (ρ,u,v,w) =

∑
σ∈Eint

wσ ·
∑

ε∈Ẽ(Dσ)

Fσ,ε(ρ,u) vε,

where vε =
1
2 (vσ + vσ′) for ε = Dσ|Dσ′ (and Fσ,ε(ρ,u) vanishes at external faces).

This section is devoted to derive some estimates on Qmom
E (ρ,u,v,w). First,

the analysis of the scheme actually requires an equivalent (or nearly equivalent)
reformulation of this form on the primal mesh M, that makes use of the primal
fluxes FK,σ(ρ,u). Indeed, contrary to the dual fluxes Fσ,ε(ρ,u), the expression of
FK,σ(ρ,u) with respect to the unknowns ρ ∈ HM(Ω) and u ∈ HE,0(Ω)

d is simple.
This motivates the introduction of the following auxiliary mapping:

Qmom
M :

⎧⎪⎨⎪⎩
HM(Ω)× (HE,0(Ω)

d)3 −→ R

(ρ,u,v,w) �−→ Qmom
M (ρ,u,v,w) =

∑
K∈M

wK ·
∑

σ∈E(K)

FK,σ(ρ,u) vσ,

where wK =
∑

σ∈E(K) ξ
σ
K wσ is a convex combination of (wσ)σ∈E(K), whose co-

efficients are defined in (17) (thus, as said before, we have in practice ξσK =
1/card E(K) = 1/(2d)). The following lemma provides a bound of the error made
when replacing Qmom

E by Qmom
M in the weak formulation of the scheme.
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Lemma 6.12. Let D = (M, E) be a staggered discretization of Ω in the sense of
Definition 3.1, such that θD ≤ θ0. Let ρ ∈ HM(Ω), and u and v be two elements
of HE,0(Ω)

d. Then, for any ε ∈ (0, 1] if d = 2 and ε ∈ [1/2, 1] if d = 3, there exists
C depending only on Ω, d, θ0 and ε such that:

(32) |Qmom
E (ρ,u,u,v)−Qmom

M (ρ,u,u,v)| ≤ C ‖ρ‖L∞(Ω) ‖u‖
2
E,b ‖v‖E,b h

1−ε
D .

Proof. Let us denote R(ρ,u,u,v) = Qmom
E (ρ,u,u,v) − Qmom

M (ρ,u,u,v). In the
expression (31), for σ = K|L, let us split the sum over the fluxes through the faces
of Dσ in the sum over the dual faces, on one side, included in K and, on the other
side, included in L. We get by conservativity (i.e., using FK,σ = −FL,σ):

Qmom
E (ρ,u,u,v) =

∑
K∈M

∑
σ∈E(K)

vσ ·
(
FK,σ(ρ,u) uσ

+
∑

ε∈Ẽ(Dσ),

ε⊂K, ε=Dσ|D′
σ

Fσ,ε(ρ,u)
uσ + uσ′

2

)
.

Let us write Qmom
E (ρ,u,u,v) = T1(ρ,u,u,v) + T2(ρ,u,u,v) with:

T1(ρ,u,u,v)=
∑

K∈M
vK ·

∑
σ∈E(K)

(
FK,σ(ρ,u) uσ +

∑
ε∈Ẽ(Dσ),

ε⊂K, ε=Dσ|D′
σ

Fσ,ε(ρ,u)
uσ + uσ′

2

)
,

T2(ρ,u,u,v)=
∑

K∈M

∑
σ∈E(K)

(vσ − vK)·
(
FK,σ(ρ,u) uσ

+
∑

ε∈Ẽ(Dσ),

ε⊂K, ε=Dσ|D′
σ

Fσ,ε(ρ,u)
uσ + uσ′

2

)
.

By assumption (H2) in Definition 4.1, we remark that T1(ρ,u,u,v) =
Qmom

M (ρ,u,u,v) so that R(ρ,u,u,v) = T2(ρ,u,u,v). Now using (H1), we write
R(ρ,u,u,v) = R1(ρ,u,u,v) +R2(ρ,u,u,v) with:

R1(ρ,u,u,v) =
∑

K∈M

∑
σ∈E(K)

(vσ − vK) ·
( ∑

ε∈Ẽ(Dσ),

ε⊂K, ε=Dσ|D′
σ

Fσ,ε(ρ,u)
uσ′ − uσ

2

)
,

R2(ρ,u,u,v) =
∑

K∈M

∑
σ∈E(K)

(vσ − vK) · uσ ξσK

( ∑
σ′∈E(K)

FK,σ′(ρ,u)
)
.

The assumption (H3) yields |Fσ,ε(ρ,u)| ≤ C‖ρ‖L∞(Ω)‖u‖L∞(Ω)d hd−1
K . As a con-

sequence, since vK is a convex combination of the (vσ)σ∈E(K), we have for any
K ∈ M:∣∣∣ ∑

σ∈E(K)

(vσ − vK) ·
( ∑

ε∈Ẽ(Dσ),

ε⊂K, ε=Dσ|D′
σ

Fσ,ε(ρ,u)
uσ′ − uσ

2

)∣∣∣
≤ C ‖ρ‖L∞(Ω) ‖u‖L∞(Ω)d hD

∑
σ, σ′, σ′′, σ′′′∈E(K)

hd−2
K |vσ − vσ′ | |uσ′′ − uσ′′′ |,
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and, for σ, σ′ ∈ E(K), the quantity |uσ − uσ′ | (or |vσ − vσ′ |) appears in the
sum a finite number of times which depends of the dimension d. Hence, by the
Cauchy-Schwarz inequality:

(33)
|R1(ρ,u,u,v)| ≤ C ‖ρ‖L∞(Ω) ‖u‖L∞(Ω)d ‖u‖E,FV ‖v‖E,FV hD

≤ C ′ ‖ρ‖L∞(Ω) ‖u‖L∞(Ω)d ‖u‖E,b ‖v‖E,b hD,

by Lemma 6.7. Let us now turn to R2(ρ,u,u,v). By definition of vK , we have∑
σ∈E(K) ξ

σ
K (vσ − vK) = 0, and we obtain that:

R2(ρ,u,u,v) =
∑

K∈M

∑
σ∈E(K)

(vσ − vK) · ξσK (uσ − uK)
( ∑
σ′∈E(K)

FK,σ′(ρ,u)
)
,

so, once again:
(34)

|R2(ρ,u,u,v)| ≤ C‖ρ‖L∞(Ω)‖u‖L∞(Ω)d hD
∑

K∈M
hd−2
K

∑
σ∈E(K)

|vσ − vK | |uσ − uK |

≤ C ‖ρ‖L∞(Ω) ‖u‖L∞(Ω)d ‖u‖E,FV ‖v‖E,FV hD

≤ C ′ ‖ρ‖L∞(Ω) ‖u‖L∞(Ω)d ‖u‖E,b ‖v‖E,b hD.

We conclude thanks to an inverse inequality. Let q and q′ in [1,+∞] such that
1/q + 1/q′ = 1. We may write ‖u‖L∞(Ω)d = |uΣ| for some Σ ∈ Eint. Hence,

‖u‖L∞(Ω)d = |DΣ|−1

∫
DΣ

|u(x)| dx ≤ C(d) |DΣ|1/q
′−1 ‖u‖Lq(DΣ)d

by Hölder’s inequality, and therefore ‖u‖L∞(Ω)d ≤ C(d, θ0)h
d(1/q′−1)
D ‖u‖Lq(Ω)d .

Now by Lemma 6.8, we obtain (in particular) that ‖u‖Lq(Ω)d ≤ C(q) ‖u‖E,b for

q ∈ [2,+∞) in 2D and for q ∈ [3, 6] in 3D, thus for d(1/q′ − 1) ∈ [−1, 0) in 2D and
d(1/q′ − 1) ∈ [−1,−1/2] in 3D. Combining these bounds with (33) and (34) yields
the inequality that we are seeking. �

Let us now give some estimates on the auxiliary form Qmom
M (ρ,u,u,v), which

are discrete counterparts to classical continuous estimates.

Lemma 6.13 (Estimates on Qmom
M ). Let D = (M, E) be a staggered discretization

of Ω in the sense of Definition 3.1, such that θD ≤ θ0. Then, there exists two
constants C1 and C2, only depending on Ω, d and θ0, such that

|Qmom
M (ρ,u,v,w)| ≤ C1‖ρ‖L∞(Ω)‖u‖L4(Ω)d‖v‖L4(Ω)d‖w‖E,b

≤ C2‖ρ‖L∞(Ω)‖u‖E,b‖v‖E,b ‖w‖E,b,
(35)

for all ρ in HM(Ω) and u, v, w in HE,0(Ω)
d.

Proof. By definition of Qmom
M (ρ,u,v,w), we have

Qmom
M (ρ,u,v,w) =

∑
K∈M

wK ·
∑

σ∈E(K)

FK,σ(ρ,u) vσ

=
∑

K∈M
wK ·

∑
σ∈E(K)

|σ|(ρσuσ · nK,σ) vσ.
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Reordering the sum and applying the Cauchy-Schwarz inequality twice, we get

|Qmom
M (ρ,u,u,v)| =

∣∣∣ ∑
σ∈Eint

σ=K|L

√
|Dσ|(ρσuσ · nK,σ) vσ · |σ|√

|Dσ|
(wL −wK)

∣∣∣
≤ ‖ρ‖L∞(Ω)

( ∑
σ∈Eint

σ=K|L

|Dσ||uσ|2|vσ|2
) 1

2
( ∑

σ∈Eint

σ=K|L

|σ|2
|Dσ|

|wL −wK |2
) 1

2

≤ ‖ρ‖L∞(Ω) ‖u‖L4(Ω)d ‖v‖L4(Ω)d

( ∑
σ∈Eint
σ=K|L

|σ|2
|Dσ|

|wL −wK |2
) 1

2

.

Now, as wL and wK are convex combinations of (wσ)σ∈E(L) and (wσ)σ∈E(K) re-
spectively, we get, using the fact that the number of faces of an element is equal to
2d:

|wL −wK |2 ≤ (2d)2
∑

σ′∈E(L)
σ′′∈E(K)

|wσ′ −wσ′′ |2

≤ (2d)3
( ∑
σ′,σ′′∈E(L)

|wσ′ −wσ′′ |2 +
∑

σ′,σ′′∈E(K)

|wσ′ −wσ′′ |2
)
.

Hence,∑
σ∈Eint

σ=K|L

|σ|2
|Dσ|

|wL −wK |2

≤ C(d)
∑

σ∈Eint

σ=K|L

|σ|2
|Dσ|

( ∑
σ′,σ′′∈E(L)

|wσ′ −wσ′′ |2 +
∑

σ′,σ′′∈E(K)

|wσ′ −wσ′′ |2
)

≤ 2C(d)
∑

K∈M

∑
σ∈E(K)

|σ|2
|Dσ|

∑
σ′,σ′′∈E(K)

|wσ′ −wσ′′ |2

≤ C(d, θ0)
∑

K∈M

∑
σ∈E(K)

hd−2
K

∑
σ′,σ′′∈E(K)

|wσ′ −wσ′′ |2

≤ C(d,Ω, θ0) ‖w‖2E,b,

by Lemma 6.7. This proves the first inequality in (35). The second inequality fol-
lows from the fact that, by a discrete Hölder inequality, ‖u‖L4(Ω)d ≤|Ω|1/12‖u‖L6(Ω)d

and from the discrete Sobolev inequality ‖u‖L6(Ω)d ≤ C(d, θ0) ‖u‖E,b stated in

Lemma 6.8. �

7. Main properties of the scheme

We first establish stability properties enjoyed by the scheme (Section 7.1), which
are the discrete analogues of estimates satisfied by the exact solutions of problem
(1): maximum principle for the density, and L∞(L2)- and L2(H1)-estimates for the
velocity. This latter estimate is an easy consequence of a discrete kinetic energy
balance, which is stated in Lemma 7.2. In a second step (Section 7.2), we show
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that these estimates yield the existence of a solution to the scheme, by an argument
issued from the topological degree theory.

7.1. Estimates on the discrete solution. Let us start by stating a discrete
equivalent of the following transport equation satisfied by ρ2/2, if (ρ,u) is a solution
to problem (1):

∂t(
ρ2

2
) + div(

ρ2

2
u) = 0.

This discrete identity is rather classical (see e.g. [11]) and we only sketch its proof.

Lemma 7.1. Any solution to the scheme (9) satisfies the following equality, for
all K ∈ M and 1 ≤ n ≤ N :

(36)
|K|
2δt

(
(ρnK)2 − (ρn−1

K )2
)
+

1

2

∑
σ∈E(K)

|σ| (ρnσ)2 (un
σ · nK,σ) +Rn

K = 0,

where

(37) Rn
K =

|K|
2δt

(ρnK − ρn−1
K )2 − 1

2

∑
σ∈E(K)

|σ| (ρnσ − ρnK)2 (un
σ · nK,σ) ≥ 0.

Proof. Multiply (9a) by |K| ρnK . In the discrete time derivative term, use the iden-

tity 2 (a2 − ab) = (a2 − b2) + (a − b)2 with a = ρnK and b = ρn−1
K . In the discrete

convection term, use the identity 2 ab = a2 + b2 − (a− b)2 with a = ρnK and b = ρnσ.
The quantity

∑
σ∈E(K) |σ|(ρnK)2(un

σ · nK,σ) vanishes because (divu)nK = 0. �

Remark 7.1. A similar result may be obtained for the partial differential equation
satisfied by ψ(ρ), where ψ is any convex real function, and generalized to the case
where the velocity field is not divergence-free (see the appendices of [24]).

We now prove a discrete equivalent of the kinetic energy balance. Recall that
in the continuous setting, this relation is formally obtained by taking the scalar
product between u and the momentum balance equation (1b); this yields, using
the mass balance equation (1a) twice:

∂t(ρ
|u|2
2

) + div
(
ρ
|u|2
2

u
)
−Δu · u+∇p · u = 0.

In the discrete setting, this computation must be mimicked on the mesh used for
the discretization of the momentum balance equation, namely the dual mesh. This
is the reason why we chose the density on the diamond cells and the mass fluxes on
the faces of the dual mesh in such a way that the discrete mass balance equation
(15) holds on the dual cells. Thanks to this choice, we obtain the following identity.

Lemma 7.2 (Discrete kinetic energy balance). Any solution to the scheme (9)
satisfies the following equality, for all σ ∈ Eint and 1 ≤ n ≤ N :

(38)
1

2δt

(
ρnDσ

|un
σ|2 − ρn−1

Dσ
|un−1

σ |2
)
+

1

2|Dσ|
∑

ε∈Ẽ(Dσ)
ε=Dσ|Dσ′

Fn
σ,ε un

σ · un
σ′

− (Δu)nσ · un
σ + (∇p)nσ · un

σ +Rn
σ = 0,

where

Rn
σ =

1

2δt
ρn−1
Dσ

|un
σ − un−1

σ |2.
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Proof. Let us take the scalar product of the discrete momentum balance equation
(9b) by the corresponding velocity unknown un

σ , which gives the relation T1 −
(Δu)nσ · un

σ + (∇p)nσ · un
σ = 0, with:

T1 =
( 1

δt

(
ρnDσ

un
σ − ρn−1

Dσ
un−1
σ

)
+

1

2|Dσ|
∑

ε∈Ẽ(Dσ)
ε=Dσ|Dσ′

Fn
σ,ε (un

σ + un
σ′)
)
· un

σ.

Now, using the identity 2 (ρ|a|2−ρ∗a ·b) = ρ|a|2−ρ∗|b|2+ρ∗|a−b|2+(ρ−ρ∗)|a|2
with ρ = ρnDσ

, ρ∗ = ρn−1
Dσ

, a = un
σ and b = un−1

σ , we obtain

T1 =
1

2δt

(
ρnDσ

|un
σ|2 − ρn−1

Dσ
|un−1

σ |2
)
+

1

2δt
ρn−1
Dσ

|un
σ − un−1

σ |2

+
1

2|Dσ|
∑

ε=Dσ|Dσ′

Fn
σ,ε un

σ · un
σ′

+
( 1

δt
(ρnDσ

− ρn−1
Dσ

) + |Dσ|−1
∑

ε∈E(Dσ)

Fn
σ,ε

) |un
σ|2
2

.

The last term is equal to zero since the dual densities ρDσ
and the dual fluxes Fσ,ε

are chosen so as to satisfy the discrete mass conservation equation (15) on the cells
of the dual mesh. This concludes the proof. �

Lemmas 7.1 and 7.2 allow us to prove the following proposition, which gathers
the “local in time” estimates satisfied by the discrete solutions. The first three
inequalities readily provide by induction uniform (i.e., independent from the time
and space steps) bounds for the solution. On the opposite, the right-hand side of
inequality (42) blows up when the time step tends to zero, which is consistent with
the fact that no estimate is known for the pressure in the continuous case; this
bound is thus useful only for the proof of the existence of a solution to the scheme.

Proposition 7.3 (Estimates on the discrete solutions). Let D be a staggered dis-
cretization of Ω in the sense of Definition 3.1, such that θD ≤ θ0 where θD is
defined in (7). For n ∈ {1, . . . , N}, assume that the density ρn−1 is such that
0 < ρmin ≤ ρn−1

K ≤ ρmax for all K in M. Then, any solution (ρn,un, pn) to the
scheme (9) satisfies the following relations:

ρmin ≤ ρnK ≤ ρmax, ∀K ∈ M,(39)

1

2

∑
K∈M

|K| (ρnK)2 +
δt

2

∑
σ∈Eint

σ=K|L

|σ| (ρnL − ρnK)2|un
σ · nK,σ|+Rn

ρ(40)

=
1

2

∑
K∈M

|K| (ρn−1
K )2,

1

2

∑
σ∈Eint

|Dσ| ρnDσ
|un

σ|2 + δt‖un‖2E,b +Rn
u =

1

2

∑
σ∈Eint

|Dσ| ρn−1
Dσ

|un−1
σ |2,(41)

‖pn‖L2(Ω) ≤ Cn−1
p ,(42)

where Cn−1
p only depends on ρn−1, un−1, θ0, d, Ω, δt and hD. The terms Rn

ρ and
Rn

u are the following non-negative remainders which depend on differences of time
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translates of the density and the velocity respectively:

Rn
ρ =

1

2

∑
K∈M

|K| (ρnK − ρn−1
K )2, Rn

u =
1

2

∑
σ∈Eint

|Dσ| ρn−1
Dσ

|un
σ − un−1

σ |2.

Proof. The maximum principle for the density (39) is a classical consequence of the
upwind choice (9a) and the discrete divergence-free constraint (9c). Relation (40)
is obtained by summing (36) over the cells of the mesh. As usual, the convective
terms (i.e., the second term in (36)) vanishes by conservativity; the second term
in (40) is obtained by summing over the cells the second term of the remainder
(37), and using the definition of the upwind approximation of the density at the
face. Similarly, summing equation (38) over the faces σ ∈ Eint yields (41), since the
discrete gradient and divergence operators are dual with respect to the L2-inner
product (see (25)) and the convection term vanishes in the summation once again
by conservativity (assumption (H2) of Definition 4.1).

Finally, we prove the estimate on the pressure. The Rannacher-Turek finite ele-
ment discretization satisfies an inf-sup condition, which implies that for pn solution
of (9) (observing that

∫
Ω
pn(x) dx = 0), there exists v in HE,0(Ω), with ‖v‖E,b = 1

and a positive real number β, depending only on Ω and θ0, such that∫
Ω

pn(x) divMv(x) dx ≥ β ‖pn‖L2(Ω).

Hence, taking the scalar product of (9b) by |Dσ|vσ and summing over σ in Eint,
we get β ‖pn‖L2(Ω) ≤ T1 + T2 + T3 with

T1 =
1

δt

∑
σ∈Eint

|Dσ|(ρnDσ
un
σ − ρn−1

Dσ
un−1
σ ) · vσ,

T2 =
∑

σ∈Eint

vσ ·
∑

ε∈Ẽ(Dσ)

Fn
σ,εu

n
ε ,

T3 = −
∑

σ∈Eint

|Dσ|(Δu)nσ · vσ.

We prove that each one of these terms is controlled by a constant depending only on
ρn−1, un−1, θ0, d, Ω, δt and hD. For the first term we have, by the Cauchy-Schwarz
inequality:

|T1| ≤
1

δt

∑
σ∈Eint

|Dσ|(ρnDσ
|un

σ · vσ|+ ρn−1
Dσ

|un−1
σ · vσ|)

≤ ρ
1/2
max

δt

( ∑
σ∈Eint

|Dσ| (ρnDσ
)1/2 |un

σ · vσ|+
∑

σ∈Eint

|Dσ| (ρn−1
Dσ

)1/2 |un−1
σ · vσ|

)
≤ ρ

1/2
max

δt
‖v‖L2(Ω)

(( ∑
σ∈Eint

|Dσ| ρnDσ
|un

σ |2
)1/2

+
( ∑
σ∈Eint

|Dσ| ρn−1
Dσ

|un−1
σ |2

)1/2)
.

We thus obtain the expected control on T1 by invoking (41) and the Poincaré
inequality of Lemma 6.3, which yields ‖v‖L2(Ω) ≤ C ‖v‖E,b = C, with C only

depending on d, Ω and θ0. For the second term, we have T2 = Qmom
M (ρn,un,un,v)+

Qmom
E (ρn,un,un,v)−Qmom

M (ρn,un,un,v) which by Lemma 6.12 (with ε = 1) and
Lemma 6.13 yields:

|T2| ≤ C ρmax‖un‖2E,b‖v‖E,b + C ′ρmax‖un‖2E,b‖v‖E,b ≤ C ′′,
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where C ′′ depends on Ω, d, δt, ρn−1, un−1, θ0 and hD. Finally, to control the last
term T3, we observe that:

T3 =
∑

K∈M

∫
K

∇ũn(x) : ∇ṽ(x) dx.

Using first the Cauchy-Schwarz inequality for the integration on the cell K and
then the discrete Cauchy-Schwarz inequality for the summation over K in M, we
easily obtain |T3| ≤ ‖un‖E,b‖v‖E,b, and we conclude once again by (41). �
7.2. Existence of a solution to the scheme. The existence of a solution to
the scheme (9), which consists in an algebraic non-linear system, is obtained by a
topological degree argument. Its proof is based on an abstract theorem stated in
Appendix A.1.

Theorem 7.4 (Existence of a solution). For n ∈ {1, . . . , N}, assume that the
density ρn−1 is such that 0 < ρmin ≤ ρn−1

K ≤ ρmax for all K in M. Then the non-
linear system (9) admits at least one solution (ρn,un, pn) in HM(Ω)×HE,0(Ω)

d ×
HM(Ω), and any possible solution satisfies the estimates of Proposition 7.3.

Proof. This proof makes use of Theorem A.1. Let NM = card(M) and NE =
d card(Eint); we identify HM(Ω) with RNM and HE,0(Ω)

d with RNE . Let V =
RNM × RNE × RNM . We consider the function F : V × [0, 1] → V given by:

F (ρ,u, p, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

δt
(ρK − ρn−1

K ) + λ
1

|K|
∑

σ∈E(K)

FK,σ, K ∈ M,

1

δt
(ρDσ

uσ − ρn−1
Dσ

un−1
σ ) + λ

1

|Dσ|
∑

ε∈Ẽ(Dσ)

Fσ,εuε

−(Δu)σ + (∇p)σ, σ ∈ Eint,

−(divu)K +
1

|K|
∑
L∈M

|L| pL, K ∈ M.

The function F is continuous from V ×[0, 1] to V and the problem F (ρ,u, p, 1) = 0 is
equivalent to system (9). Indeed, multiplying the third line in the above formula by
|K|, summing and using the fact that uσ = 0 for σ ∈ Eext yields

∑
L∈M |L| pL = 0

and therefore (divu)K = 0 for all K ∈ M. Moreover, an easy verification shows
that the problem F (ρ, u, p, λ) = 0 for λ in [0, 1], satisfies the same estimates as
stated in Proposition 7.3 uniformly in λ. Hence, defining

O =
{
(ρ,u, p) ∈ V s.t.

ρmin

2
< ρ < 2 ρmax, ‖u‖E,b < C and ‖p‖L2(Ω) < C

}
,

with C (strictly) larger than the right-hand sides of (41) and (42), the second hy-
pothesis of Theorem A.1 is also satisfied. Therefore, in order to prove the existence
of at least one solution to the scheme (9), it remains to show that the topolog-
ical degree of F (ρ,u, p, 0) with respect to 0V and O is non-zero. The function
G : (ρ,u, p) �→ F (ρ,u, p, 0) is clearly differentiable on O, and its Jacobian matrix
is given by

Jac G(ρ,u, p) =

⎡⎢⎢⎣
1

δt
IdRNM×NM 0

A
S(u, p)

0

⎤⎥⎥⎦ ,
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where A is some matrix in RNE×NM and S(u, p) ∈ R(NE+NM)×(NE+NM) is the
jacobian matrix associated with the inf-sup stable Rannacher-Turek finite element
discretization of the following Stokes problem:

find (u, p) such that

∫
Ω

p(x) dx = 0 and

(43)

1

δt
ρ(x)u−Δu+∇p = 0, in Ω,

divu = 0, in Ω,

u = 0, on ∂Ω.

With λ = 0, the density unknowns (ρK)K∈M are set to (ρn−1
K )K∈M by the first

block of equations, so the values of the density at the faces (which is computed
over each dual cell Dσ as a linear combination of the density in the neighbor cells)
are also known, and positive. The generalized Stokes problem (43) thus also has
one solution and only one, and there exists one and only one point of O such that
F (ρ,u, p, 0) = 0V . Since the Jacobian matrix at this point is invertible (since
IdRNM×NM and S(u, p) are invertible), this implies that the topological degree of
F (ρ,u, p, 0) with respect to O and 0V is non-zero. Therefore, by Theorem A.1,
there exists at least one solution (ρ,u, p) to the equation F (ρ,u, p, 1) = 0, i.e., to
the scheme (9). �

8. Proof of the convergence result

We begin by proving discrete analogues to the classical estimates satisfied by the
exact solutions of problem (1) (Section 8.1). These are uniform estimates in the
sense that they only depend on the parameters of the problem and on the upper
bound θ0 on the discretization regularity. Then, in Sections 8.2 and 8.3, we prove
strong compactness for the discrete velocity and weak compactness for the discrete
density. We then conclude the proof by passing successively to the limit in the mass
and momentum balance equations (Sections 8.4 and 8.6, respectively). In this last
step, we actually need strong convergence for the sequence of discrete densities,
which is proved in Section 8.5.

8.1. Uniform estimates. We define ED(Ω) = {u ∈ HE,0(Ω)
d, divMu = 0} and

we endow ED(Ω) with the norm ‖.‖E,b. For q in [1,∞), we define on the space

of discrete velocity functions (see expression (20)) the following Lq((0, T );ED(Ω))
norm:

‖u‖qLq((0,T );ED(Ω)) =
N∑

n=1

δt ‖un‖qE,b.

Proposition 8.1 (Uniform estimates for discrete solutions). Let D be a given
staggered discretization such that θD ≤ θ0 for some positive real number θ0 and let
δt be a given time step. Let (ρ,u, p) be the corresponding discrete solution given by
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the scheme (9), as defined in (20). Then the following estimates hold:

ρmin ≤ ρ(x, t) ≤ ρmax, for all t ≥ 0 and for a.e. x in Ω,(44)
N∑

n=1

δt
∑

σ∈Eint

σ=K|L

|σ|(ρnL − ρnK)2|un
σ · nK,σ| ≤ C0,(45)

‖u‖L∞((0,T );L2(Ω)) + ‖u‖L2((0,T );ED(Ω)) ≤ C1,(46)

where ρmin and ρmax stand for the minimum and maximum values of the initial
density ρ0, as defined in assumption (2a) of Section 2, and C0, and C1 are positive
real numbers depending only on T , Ω, d, ρ0, u0 and θ0.

Proof. Estimate (44) is a direct consequence of equation (39) in Proposition 7.3.
Inequality (45) is obtained from (40) after summing over n. In the same way, the
estimates on ‖u‖L∞((0,T );L2(Ω)) and ‖u‖L2((0,T );ED(Ω)) are obtained through (41)

after summing over n and using the fact that ρ is positive and bounded from below
by ρmin > 0. �

8.2. Compactness of the sequence of discrete velocities. In this section and
in the following one, (ρ(m),u(m))m∈N are the discrete densities and velocities so-
lutions of the scheme (8)-(9) associated with (D(m), δt(m))m∈N a regular sequence
of staggered discretizations and time steps. In this section, we prove the following
compactness result on the sequence of velocities (u(m))m∈N.

Proposition 8.2. Under the assumptions of Theorem 5.1, there exists

ū ∈ L∞((0, T ); L2(Ω)d) ∩ L2((0, T ); H1
0(Ω)

d), with div(ū) = 0,

and a subsequence of (u(m))m∈N, still denoted (u(m))m∈N, which converges to ū
strongly in Lq((0, T ); L2(Ω)d) for all q ∈ [1,∞).

The proof of Proposition 8.2 relies on estimates of the time translations of the
velocity. The following lemma provides an estimate on the L2(L2)-norm of the
time translations of the discrete velocity u for a given discretization D, which leads
to strong compactness in L2((0, T ); L2(Ω)d) through Kolomogorov’s compactness
Theorem stated in Appendix B.

Lemma 8.3 (Time translations of the discrete velocity). Let D be a given staggered
discretization such that θD ≤ θ0 for some positive real number θ0 and let δt be a
given time step satisfying δt ≤ 1. Let (ρ,u, p) be the corresponding discrete solution
given by the scheme (9), as defined in (20). The discrete velocity u satisfies:∫ T

τ

‖u(., t)− u(., t− τ )‖2L2(Ω)d dt

≤ C2

(
τ

1
4 + δt

1
4 + h

1
2

D

)
, for all τ ∈ (0,min(T, 1)),

(47)

where C2 is a positive constant, depending only on T , Ω, d, ρ0, u0 and θ0.

Proof. Let τ be a given real number in (0,min(T, 1)). For every t ∈ (τ, T ), let n, k
be the two integers defined by n = � t

δt� and n − k = � t−τ
δt �. It is easily seen that
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0 ≤ n− k ≤ n ≤ N and kδt ≤ τ + δt. We have for all σ in Eint:

ρn−k
Dσ

(un
σ − un−k

σ ) = (ρnDσ
un
σ − ρn−k

Dσ
un−k
σ )− un

σ(ρ
n
Dσ

− ρn−k
Dσ

)

=

n∑
p=n−k+1

(ρpDσ
up
σ − ρp−1

Dσ
up−1
σ )− un

σ

n∑
p=n−k+1

(ρpDσ
− ρp−1

Dσ
)

=

n∑
p=n−k+1

δt
[
− |Dσ|−1

∑
ε∈Ẽ(Dσ)

F p
σ,εu

p
ε + (Δu)pσ − (∇p)pσ

]

+ un
σ

n∑
p=n−k+1

δt|Dσ|−1
∑

ε∈Ẽ(Dσ)

F p
σ,ε,

by the discrete momentum balance equations (9b) and the discrete mass balance
over the dual cells (15). Let v(., t) be a time-dependent element of ED(Ω) which

we denote v(x, t) =
∑

σ∈E vσ(t)χDσ
(x) and denote ρ̃(x, t− τ ) =

∑
σ∈E ρ

n−k
Dσ

χDσ
(x).

Taking the scalar product of the above equation with |Dσ|vσ(t) and summing over
σ ∈ E (recall that vσ(t) = 0 for σ ∈ Eext), we obtain:∫

Ω

ρ̃(., t− τ )(u(., t)− u(., t− τ )) · v(., t) =
∑

σ∈Eint

|Dσ| ρn−k
Dσ

(un
σ − un−k

σ ) · vσ(t)

= T1(t) + T2(t) + T3(t) + T4(t),

where:

T1(t) = −
n∑

p=n−k+1

δt
∑

σ∈Eint

|Dσ| (∇p)pσ · vσ(t),

T2(t) =

n∑
p=n−k+1

δt
∑

σ∈Eint

|Dσ| (Δu)pσ · vσ(t),

T3(t) = −
n∑

p=n−k+1

δt
∑

σ∈Eint

vσ(t) ·
∑

ε∈Ẽ(Dσ)

F p
σ,εu

p
ε ,

T4(t) =
n∑

p=n−k+1

δt
∑

σ∈Eint

(un
σ · vσ(t))

∑
ε∈Ẽ(Dσ)

F p
σ,ε.

Since divMv(., t) = 0, by the discrete gradient-divergence duality (see Lemma
6.1), one has T1(t) = 0.

The second term is controlled as follows:

|T2(t)| =
∣∣∣ n∑
p=n−k+1

δt
∑

K∈M

∫
K

∇ũp(x) : ∇ṽ(t)(x) dx
∣∣∣

≤
n∑

p=n−k+1

δt‖up‖E,b‖v(., t)‖E,b

≤
( n∑

p=n−k+1

δt‖up‖2E,b
) 1

2

(kδt)
1
2 ‖v(., t)‖E,b,
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by the Cauchy-Schwarz inequality. Hence |T2(t)| ≤ C1(τ + δt)
1
2 ‖v(., t)‖E,b by esti-

mate (46), which gives |T2(t)| ≤ C1(τ
1
4 + δt

1
4 )‖v(., t)‖E,b since τ, δt < 1.

For the third term, we remark that

T3(t) = −
n∑

p=n−k+1

δtQmom
E (ρp,up,up,v(., t)) = T3,1(t) + T3,2(t)

with:

T3,1(t) = −
n∑

p=n−k+1

δt
(
Qmom

E (ρp,up,up,v(., t))−Qmom
M (ρp,up,up,v(., t))

)
,

T3,2(t) = −
n∑

p=n−k+1

δtQmom
M (ρp,up,up,v(., t)).

By Lemma 6.12, and estimates (44) and (46), the first term is controlled as follows:

|T3,1(t)| ≤ C
n∑

p=n−k+1

δt ‖ρp‖L∞(Ω) ‖up‖2E,b ‖v(., t)‖E,bh
1−ε
D

≤ C‖ρ0‖L∞(Ω)C
2
1‖v(., t)‖E,bh

1−ε
D ,

where C is a positive constant depending only on Ω, d and θ0. One may choose
ε = 1

2 for both dimensions d = 2 and d = 3. By Lemma 6.13, the second term
T3,2(t) is controlled as follows:

|T3,2(t)| ≤
n∑

p=n−k+1

δt‖ρp‖L∞(Ω)d ‖up‖2L4(Ω) ‖v(., t)‖E,b

≤ ‖ρ0‖L∞(Ω)‖v(., t)‖E,b(kδt)
1
4

( n∑
p=n−k+1

δt‖up‖
8
3

L4(Ω)

) 3
4

,

thanks to Hölder’s inequality with powers 4 and 4/3. We then remark that

‖up‖L4(Ω) ≤ ‖up‖
1
4

L2(Ω)‖u
p‖

3
4

L6(Ω) ≤ C
1
4
1 ‖up‖

3
4

L6(Ω) ≤ C
1
4
1 C(d,Ω, θ0)‖up‖

3
4

E,b

by the Cauchy-Schwarz inequality, estimate (46) and the discrete Sobolev embed-
ding given in Lemmas 6.8 and 6.7. Injecting this in the above inequality on |T3,2(t)|,
and invoking once again estimate (46) one gets:

|T3,2(t)| ≤ C
1
2
1 C(d,Ω, θ0)

2‖ρ0‖L∞(Ω)‖v(., t)‖E,b(kδt)
1
4

( n∑
p=n−k+1

δt‖up‖2E,b
) 3

4

≤ C2
1C(d,Ω, θ0)

2‖ρ0‖L∞(Ω)(τ + δt)
1
4 ‖v(., t)‖E,b.

Hence, |T3(t)| ≤ C
(
τ

1
4 + δt

1
4 + h

1
2

D
)
‖v(., t)‖E,b for some constant C depending only

on the initial data and on Ω, T , d and θ0.
The fourth term can be estimated as follows. We first remark that

T4(t) =

n∑
p=n−k+1

δtQmass
E (ρp,up,un,v(., t)),
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where, by Lemma 6.11, one has

|Qmass
E (ρp,up,un,v(., t))|

≤ C‖ρp‖L∞(Ω)‖up‖L6(Ω)d

(
‖un‖L3(Ω)d‖v(., t)‖E,b + ‖v(., t)‖L3(Ω)d‖un‖E,b

)
.

Using estimate (44) on the density, the fact that un = u(., t), and the now familiar
continuous embeddings HE,0(Ω)

d ⊂ L6(Ω)d ⊂ L3(Ω)d, one gets:

|T4(t)| ≤ C ′
n∑

p=n−k+1

δt‖up‖E,b‖u(., t)‖E,b‖v(., t)‖E,b

≤ C ′(kδt)
1
2

( n∑
p=n−k+1

δt‖up‖2E,b
) 1

2 ‖u(., t)‖E,b‖v(., t)‖E,b.

Using once again estimate (46), and the fact that τ, δt < 1 yields |T4(t)| ≤
C(τ

1
4 +δt

1
4 )‖u(., t)‖E,b‖v(., t)‖E,b for some constant C depending only on the initial

data and on Ω, T , d and θ0.
Collecting the estimates on T1(t), T2(t), T3(t) and T4(t), one gets:∫

Ω

ρ̃(., t− τ )(u(., t)− u(., t− τ )) · v(., t)

≤ C
(
τ

1
4 + δt

1
4 + h

1
2

D
)(
1 + ‖v(., t)‖2E,b + ‖u(., t)‖2E,b

)
.

Finally, selecting v(., t) := u(., t)− u(., t − τ ) and recalling that ρ̃(., t) ≥ ρmin > 0
almost everywhere for all t ∈ (0, T ) yields:

‖u(., t)− u(., t− τ )‖2L2(Ω)d ≤ C
(
τ

1
4 +δt

1
4 +h

1
2

D
)(
1+2‖u(., t− τ )‖2E,b+3‖u(., t)‖2E,b

)
.

Integrating for t in (τ, T ) and invoking once again estimate (46) yields the expected
result (47). �

We may now give the proof of Proposition 8.2.

Proof of Proposition 8.2. We proceed in four steps.

- Step 1: compactness in L2(L2). The first step consists in extracting a
strongly converging subsequence from (u(m))m∈N thanks to Kolmogorov’s com-
pactness Theorem. This result is recalled in appendix B (Theorem B.1). In our
setting, the Banach space B of Theorem B.1 is L2(Ω)d, p = 2, and the subset A
is defined by A =

⋃
m∈N

{u(m)}. Any u(m) ∈ A satisfies ‖u(m)‖L2((0,T );L2(Ω)d) ≤
C‖u(m)‖L2((0,T );ED(m) )

≤ CC1 by the Poincaré inequality of Lemma (6.3) and

estimate (46) so that A ⊂ L2((0, T ); L2(Ω)d). We now check the three assump-
tions (h1)-(h3) of the Theorem.

- (h1) – The operator P is defined by extending any function u ∈ A by
zero outside the interval (0, T ). Clearly, one has ‖Pu‖L2(R;L2(Ω)d) =

‖u‖L2((0,T );L2(Ω)d) ≤ C1 for all u ∈ A.

- (h2) – For all φ ∈ C∞
c (R,R), and u(m) ∈ A, the quantity

∫
R
(Pu(m))φ dt

is an element of HE(m),0(Ω)
d with:

‖
∫
R

(Pu(m))φ dt‖
E(m),b

≤
∫ T

0

‖u(m)(., t)‖E(m),b|φ(t)| dt ≤ C1‖φ‖L2((0,T );R),
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by the Cauchy-Scharz inequality and estimate (46). Hence, by the dis-
crete Rellich Theorem 6.10, the family {

∫
R
(Pu)φ dt, u ∈ A} is relatively

compact in L2(Ω)d.

- (h3) – It remains to prove that ‖ Pu − Pu(� − τ ) ‖L2(R,L2(Ω))d→ 0 as

τ → 0+ uniformly with respect to u ∈ A, where the square stands for the
time variable t. For all u ∈ A and τ ∈ (0, T ) we have:

‖ Pu− Pu(�− τ ) ‖2L2(R,L2(Ω)d)

=

∫ τ

0

‖u(., t)‖2L2(Ω)d dt+

∫ T

τ

‖u(., t)− u(., t− τ )‖2L2(Ω)d dt

+

∫ T

T−τ

‖u(., t)‖2L2(Ω)d dt.

Thanks to the L∞(L2)-estimate (46), the first and third terms are each
controlled by C2

1 τ , and the second term is controlled thanks to Lemma
8.3 on the time translations of the velocity. Let ε > 0 be a small real
number (smaller than 1). There exists M ∈ N such that, (δt(m))

1
4 ≤ ε

and (h(m))
1
2 ≤ ε for all m ≥ M . Let τ̄ be a real number in (0,min(T, 1))

such that τ̄
1
4 ≤ ε. Thanks to Lemma 8.3, we have, for all m ≥ M :

‖ Pu(m) − Pu(m)(�− τ ) ‖2L2(R,L2(Ω)d)≤ (3C2 + 2C2
1 ) ε, ∀τ ∈ (0, τ̄).

Now, by a classical result, ‖ Pu(m)−Pu(m)(�− τ ) ‖2L2(R,L2(Ω)d) tends to

zero as τ → 0+ for a fixed m < M . Hence, for all m < M , there exists
τ (m) > 0 such that

‖ Pu(m) − Pu(m)(�− τ ) ‖2L2(R,L2(Ω)d)≤ ε, ∀τ ∈ (0, τ (m)).

Defining

τ̃ = min(τ̄ ,min{τ (m), 0 ≤ m < M}) and C = max(1, 3C2 + 2C2
1 ),

two numbers which are independent of u ∈ A, we have proven that:

0 < τ ≤ τ̃ =⇒ ‖ Pu− Pu(�− τ ) ‖2L2(R,L2(Ω)d)≤ Cε, ∀u ∈ A,

which expresses that ‖ Pu − Pu(� − τ ) ‖L2(R,L2(Ω))d→ 0 as τ → 0+

uniformly for u ∈ A.

Hence, Kolmogorov’s Theorem B.1 applies and there exists ū∈L2((0, T ); L2(Ω)d)
and a subsequence of (u(m))m∈N, still denoted (u(m))m∈N, which converges to-
wards ū in L2((0, T ); L2(Ω)d) as m tends to infinity.

- Step 2: convergence in Lq(L2). As u(m) → ū in L2((0, T ); L2(Ω)d) we
clearly have convergence in Lq((0, T ); L2(Ω)d) for 1 ≤ q ≤ 2. Thanks to (46),
we have ‖u(m)‖L∞((0,T );L2(Ω)d) ≤ C, for all m ∈ N. Hence, there exists û ∈
L∞((0, T ); L2(Ω)d) and a subsequence (uφ(m))m∈N such that uφ(m) ⇀∗ û in
L∞((0, T ); L2(Ω)d). As uφ(m) → ū in L1((0, T ); L2(Ω)d), the uniqueness of
the limit in the sense of distributions implies that ū = û, which means that
ū ∈ L∞((0, T ); L2(Ω)d). Now, using a classical interpolation result on Lp(0, T )
spaces, we have for all q ∈ [1,∞)

‖ū− u(m)‖Lq((0,T );L2(Ω)d) ≤ ‖ū− u(m)‖
1
q

L1((0,T );L2(Ω)d)
‖ū− u(m)‖1−

1
q

L∞((0,T );L2(Ω)d)
,
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which implies that u(m) converges towards ū in Lq((0, T );L2(Ω)d) for all q ∈
[1,∞) as m tends to infinity.

- Step 3: regularity of the limit. According to (46), ‖u(m)‖L2((0,T );ED(m) (Ω)) ≤
C1, for all m ∈ N. Integrating equation (28) of Lemma 6.9 along the time
variable, we get

‖u�(m)
(.+ η,�)− u�(m)

(.,�)‖
2

L2(Rd×R)d ≤C C2
1 |η| (|η|+ h(m)), ∀η∈R

d, ∀m∈N,

where the dot stands for the space variable x, the square stands for the time

variable t, C is independent of m, and u�(m)
is the extension of u(m) to Rd ×R

by setting u�(m)
= 0 on (Rd × R) \ (Ω × (0, T )). Let ū� be the extension by

zero of ū outside Ω× (0, T ). Since u�(m) → ū� in L2(Rd ×R)d and h(m) → 0 as
m → ∞, passing to the limit in the above inequality yields

‖ū�(.+ η,�)− ū�(.,�)‖2L2(Rd×R)d ≤ C ′|η|2, ∀η ∈ R
d.

This implies that ∇ū ∈ L2(Ω × (0, T )) and that ū = 0 on ∂Ω since ū� = 0
outside Ω× (0, T ). Hence, ū ∈ L2((0, T );H1

0 (Ω)
d).

- Step 4: the limit is solenoidal. It remains to prove that div ū(x, t) = 0 for
a.e. (x, t) in Ω × (0, T ). We have u(m) → ū in L2(Ω× (0, T ))d. By the partial
reciprocal of the dominated convergence theorem, there exists a subsequence still
denoted (u(m))m∈N such that for a.e. t > 0, u(m)(., t) → ū(., t) in L2(Ω)d. Now
let φ ∈ C∞

c (Ω× (0, T )) and for t > 0, let φK(t) = |K|−1
∫
K
φ(x, t) dx for every

K in M(m). For a fixed m ∈ N, denote by φ(m)(t) the function of HM(m)(Ω)
defined by φ(m)(t)(x) = φK(t) for all x in K, K in M(m). Since φ is smooth,
we easily prove that for a.e. t > 0, φ(m)(t) → φ(., t) strongly in L2(Ω)d as
m → +∞ and ‖∇E(m)φ(m)(t)‖L2(Ω)d ≤ C‖∇φ(., t)‖L∞(Ω)d for all m in N, where

C depends only on d, Ω and θ0. By Lemma 6.2, for a.e. t > 0, ∇E(m)φ(m)(t)
converges weakly in L2(Ω)d towards ∇φ(., t) as m tends to infinity. Finally, we
may write for a.e. t > 0:

0 =

∫
Ω

φ(m)(t)(x)divM(m)u(m)(x, t) dx

= −
∫
Ω

u(m)(x, t) ·∇E(m)φ(m)(t)(x) dx

→ −
∫
Ω

ū(x, t) ·∇φ(x, t) dx as m → +∞.

Since φ is arbitrarily chosen, this proves that, for a.e. t > 0, div ū(., t) = 0 as a
function of L2(Ω)d and therefore divū = 0 a.e. in Ω× (0, T ). �

8.3. Compactness of the sequence of discrete densities.

Proposition 8.4. Under the assumptions of Theorem 5.1, there exists ρ̄ in
L∞(Ω × (0, T )) with ρmin ≤ ρ̄ ≤ ρmax a.e. in Ω × (0, T ), and a subsequence of
(ρ(m))m∈N, still denoted (ρ(m))m∈N, which converges towards ρ̄ in L∞(Ω × (0, T ))
weak-�.

Proof. By (44), we have ‖ρ(m)‖L∞(Ω×(0,T )) ≤ ρmax for all m in N, which implies

the weak-star convergence of a subsequence of (ρ(m))m∈N, still denoted (ρ(m))m∈N,
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towards some function ρ̄ in L∞(Ω× (0, T )), i.e., for all φ in L1(Ω× (0, T )):

(48) lim
m→∞

∫ T

0

∫
Ω

ρ(m)(x, t)φ(x, t) dxdt =

∫ T

0

∫
Ω

ρ̄(x, t)φ(x, t) dxdt.

Furthermore, an easy consequence of (44) and (48) is the non-negativity of the
integrals∫ T

0

∫
Ω

(ρ̄(x, t)− ρmin)XA(x, t) dxdt and

∫ T

0

∫
Ω

(ρmax − ρ̄(x, t))XA(x, t) dxdt

for any Borelian set A of Ω × (0, T ), which is equivalent to ρmin ≤ ρ̄(x, t) ≤ ρmax

a.e. in Ω× (0, T ). �

8.4. Passing to the limit in the mass balance equation.

Proposition 8.5. Under the assumptions of Theorem 5.1, the weak-star limit in
L∞(Ω×(0, T )) of (ρ(m))m∈N, ρ̄, and the strong limit of (u(m))m∈N in L2(Ω×(0, T ))d,
ū, satisfy:

−
∫ T

0

∫
Ω

ρ̄(x, t)
(
∂tφ(x, t) + ū(x, t) ·∇φ(x, t)

)
dx dt =

∫
Ω

ρ0(x)φ(x, 0) dx

for all φ in C∞
c (Ω× [0, T )).

Before proving this proposition, we first state the following lemma, the proof
of which is easy and relies on Taylor’s inequalities for functions with at least C2-
regularity.

Lemma 8.6. Let D be a given staggered discretization such that θD ≤ θ0 for some
positive real number θ0 and let δt be a given time step. Let φ ∈ C∞

c (Ω× [0, T )) and,
for n in {0, . . . , N}, let us define:

- φn
K = φ(xK , tn) for all K in M, with xK the mass center of K.

- φn
σ = |σ|−1

∫
σ

φ(x, tn) dγ(x) for all σ ∈ E .

We denote by φ0
M the function φ0

M(x) =
∑

K∈M φ0
K XK(x), and we define the

discrete time derivative and gradient of φ by:

ðtφM(x, t) =

N∑
n=1

∑
K∈M

1

δt

(
φn
K − φn−1

K

)
XK(x)X(n−1,n](t),

∇φM(x, t) =

N∑
n=1

∑
K∈M

(∇φ)nK XK(x)X(n−1,n](t),

with (∇φ)nK =
1

|K|
∑

σ∈E(K)

|σ|φn−1
σ nK,σ.

Then for all q in [1,∞],

‖ðtφM − ∂tφ‖Lq(Ω×(0,T )) + ‖∇φM −∇φ‖Lq(Ω×(0,T ))d ≤ C1(δt+ hD),(49)

‖φ0
M − φ(., 0)‖Lq(Ω) ≤ C2hD,(50)

where C1 and C2 are two positive constants only depending on T , Ω, θ0, q and φ.
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We now prove Proposition 8.5.

Proof. Let m ∈ N and let φn−1
K =φ(xK , tn−1), for K∈M(m) and n∈{1, . . . , N (m)}.

Multiplying the discrete mass balance equation (9a) by δt |K|φn−1
K and summing

over K ∈ M and n ∈ {1, . . . , N (m)}, we get T
(m)
1 + T

(m)
2 = 0 with

T
(m)
1 =

N∑
n=1

∑
K∈M

|K| (ρnK − ρn−1
K )φn−1

K , T
(m)
2 =

N∑
n=1

δt
∑

K∈M
φn−1
K

∑
σ∈E(K)

Fn
K,σ,

where we have dropped for short the superscript (m) for the number of time steps
and the mesh. We observe that, for m large enough, φN−1

K = 0 for all K ∈ M since
φ has a compact support in Ω × [0, T ); we suppose throughout this proof that we

are in this case. Performing a discrete integration by parts in T
(m)
1 , we get:

T
(m)
1 = −

N∑
n=1

∑
K∈M

|K| ρnK(φn
K − φn−1

K )−
∑

K∈M
|K| ρ0Kφ0

K

= −
∫ T

0

∫
Ω

ρ(m)(x, t) ðtφM(m)(x, t) dxdt−
∫
Ω

ρ0(x)φ
0
M(m)(x) dx.

By (49), since δt(m) → 0 and h(m) → 0 as m → ∞, we obtain that ðtφM(m) strongly
converges towards ∂tφ in L1(Ω × (0, T )) as m → ∞; in addition, by (50), φ0

M(m)

strongly converges to φ(·, 0) in L1(Ω). Thus:

lim
m→∞

T
(m)
1 = −

∫ T

0

∫
Ω

ρ̄(x, t) ∂tφ(x, t) dxdt−
∫
Ω

ρ0(x)φ(x, 0) dx.

Let us now turn to the second term T
(m)
2 . Rearranging the terms, we get:

(51)

T
(m)
2 = −

N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ| ρnσ (φn−1
L − φn−1

K )un
σ · nK,σ

= −
N∑

n=1

δt
∑

σ∈Eint

σ=K|L

|σ| ρ
n
K + ρnL

2
(φn−1

L − φn−1
K )un

σ · nK,σ +R
(m)
2,1 ,

where

R
(m)
2,1 =

N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ|
(ρnK + ρnL

2
− ρnσ

)
(φn−1

L − φn−1
K ) un

σ · nK,σ.

Reordering the sum in the first term of (51), we get:

T
(m)
2 = −1

2

N∑
n=1

δt
∑

K∈M
ρnK

∑
σ∈E(K)
σ=K|L

|σ| (φn−1
L − φn−1

K )un
σ · nK,σ +R

(m)
2,1 .



A CONVERGENT STAGGERED SCHEME 615

Since (divu)nK=0 for K ∈ M and 1≤n≤N , the quantity
∑

σ∈E(K) |σ| ρnK φn−1
K un

σ ·
nK,σ vanishes. Let us introduce the notation φ̂n−1

σ = (φn−1
K +φn−1

L )/2, for σ ∈ Eint,
σ = K|L, and for 1 ≤ n ≤ N . We thus get:

T
(m)
2 = −

N∑
n=1

δt
∑

K∈M
ρnK

∑
σ∈E(K)
σ=K|L

|σ| φ̂n−1
σ un

σ · nK,σ +R
(m)
2,1

and the term T
(m)
2 can be written as follows:

T
(m)
2 = −

N∑
n=1

δt
∑

K∈M
ρnKun

K ·
∑

σ∈E(K)

|σ|φn−1
σ nK,σ +R

(m)
2,1 +R

(m)
2,2 +R

(m)
2,3 ,

where un
K =

∑
σ∈E(K)

ξσKun
σ with ξσK defined in (17), and R

(m)
2,2 and R

(m)
2,3 are defined

by

R
(m)
2,2 =

N∑
n=1

δt
∑

K∈M
ρnK

∑
σ∈E(K)

|σ| (φn−1
σ − φ̂n−1

σ )un
σ · nK,σ,

R
(m)
2,3 =

N∑
n=1

δt
∑

K∈M
ρnK

∑
σ∈E(K)

|σ|φn−1
σ (un

K − un
σ) · nK,σ.

Let us assume for now that R
(m)
2,1 + R

(m)
2,2 + R

(m)
2,3 = O((h(m))1/2) as m tends to

infinity. We may then write

(52)

T
(m)
2 = −

N∑
n=1

δt
∑

K∈M
|K| ρnK un

K · 1

|K|
∑

σ∈E(K)

|σ|φn−1
σ nK,σ +O((h(m))1/2)

= −
∫ T

0

∫
Ω

ρ(m)(x, t) ũ(m)(x, t) ·∇φM(m)(x, t) dxdt+O((h(m))1/2),

where ũ(m)(x, t) =
∑N

n=1

∑
K∈M un

K XK(x) X(n−1,n](t). The function ũ(m) con-

verges towards ū strongly in L2(Ω× (0, T ))d as m tends to infinity. Indeed,

‖ũ(m) − u(m)‖2L2(Ω×(0,T ))d =

N∑
n=1

δt
∑

K∈M

∑
σ∈E(K)

|DK,σ||un
K − un

σ|2

≤ h(m)2
N∑

n=1

δt
∑

K∈M
hd−2
K

∑
σ∈E(K)

|un
K − un

σ|2

≤ h(m)2
N∑

n=1

δt ‖u(., tn)‖2E,FV,

since un
K is a convex combination of (un

σ)σ∈E(K). Hence, by Lemma 6.7 and the

uniform estimate (46), we have that the difference ũ(m) − u(m) converges to zero

in L2(Ω × (0, T ))d. Since u(m) → ū in L2(Ω × (0, T ))d, so does ũ(m). Moreover,
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ρ(m) ⇀∗ ρ̄ in L∞(Ω×(0, T )) and, by (49), ∇φM(m) → ∇φ strongly in Lq(Ω×(0, T ))
for all q in [1,∞]. Hence, (52) implies that

lim
m→∞

T
(m)
2 = −

∫ T

0

∫
Ω

ρ̄(x, t) ū(x, t) ·∇φ(x, t) dxdt.

Let us now prove that R
(m)
2,1 + R

(m)
2,2 + R

(m)
2,3 = O((h(m))1/2) as m tends to infinity.

For the first term R
(m)
2,1 , we have

(53) |R(m)
2,1 | ≤ 1

2

N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ| |ρnL − ρnK | |φn−1
L − φn−1

K | |un
σ · nK,σ|,

by the upwind definition (10) of ρnσ . Hence, applying the Cauchy-Schwarz inequality,
we get

|R(m)
2,1 | ≤ 1

2

( N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ| (ρnL − ρnK)2|un
σ · nK,σ|

)1/2

×
( N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ| (φn−1
L − φn−1

K )2|un
σ · nK,σ|

)1/2

≤ 1

2
C

1/2
0

( N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ| (φn−1
L − φn−1

K )2|un
σ · nK,σ|

)1/2
,

by the estimate (45). By Taylor’s inequality applied to φn−1
L − φn−1

K , there exists
C4 only depending on T , Ω, d, θ0 and φ such that

|R(m)
2,1 | ≤ C4 (h(m))1/2

( N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|Dσ| |un
σ |
)1/2

≤ C4 (h(m))1/2
( N∑
n=1

δt ‖u(., tn)‖L1(Ω)

)1/2
.

In addition, by the Lp-Lq inequalities and the discrete Sobolev inequality of Lemma
6.8, we have for all n in {1, . . . , N}, ‖u(., tn)‖L1(Ω)d ≤ C5‖u(., tn)‖E,b where C5 only

depends on Ω, d and θ0. Hence,

|R(m)
2,1 | ≤ C6 (h

(m))1/2 T 1/4
( N∑
n=1

δt‖u(., tn)‖2E,b
)1/4

≤ C7 T
1/4 (h(m))1/2,
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by the estimate (46), where C6 and C7 are independent of m. The second term

R
(m)
2,2 can be rearranged as follows:

|R(m)
2,2 | =

∣∣∣ N∑
n=1

δt
∑

σ∈Eint
σ=K|L

|σ| (ρnK − ρnL) (φ
n−1
σ − φ̂n−1

σ )un
σ · nK,σ

∣∣∣
≤

N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ| |ρnK − ρnL| |φn−1
σ − φ̂n−1

σ | |un
σ · nK,σ|.

This last expression is now similar to the left-hand side of (53), with φn−1
σ − φ̂n−1

σ

instead of φn−1
L − φn−1

K , but these terms both vary as h(m) by Taylor’s inequality;
following the same lines, we thus conclude that R2,2 behaves as R2,1, i.e., R2,2 ≤
C8 (h

(m))1/2 for some C8 independent of m. The third term R
(m)
2,3 may be recast as

follows:

R
(m)
2,3 =

N∑
n=1

δt
∑

K∈M
ρnK

∑
σ∈E(K)

|σ| (φn−1
σ − φn−1

K ) (un
K − un

σ) · nK,σ,

since (divu)nK = 0 and
∑

σ∈E(K) |σ|nK,σ = 0. Hence,

|R(m)
2,3 | ≤

N∑
n=1

δt
∑

K∈M
ρnK

∑
σ∈E(K)

|σ| |φn−1
σ − φn−1

K | |un
K − un

σ|

≤ ‖ρn‖L∞(Ω)

( N∑
n=1

δt
∑

K∈M

∑
σ∈E(K)

|σ| |φn−1
σ − φn−1

K |2
)1/2

×
( N∑
n=1

δt
∑

K∈M

∑
σ∈E(K)

|σ| |un
K − un

σ|2
)1/2

.

There exists C9(θ0) such that |σ| |φn−1
σ −φn−1

K |2≤C9(θ0)|Dσ| ‖∇φ‖2L∞(Ω×[0,T ))dh
(m)

and |σ| ≤ h(m)hd−2
K . Moreover, since ‖ρn‖L∞(Ω) ≤ ‖ρ0‖L∞(Ω), we obtain that there

exists C10 independent of m such that:

|R(m)
2,3 | ≤ C10 h(m)

( N∑
n=1

δt
∑

K∈M
hd−2
K

∑
σ∈E(K)

|un
K − un

σ|2
)1/2

≤ C10 h(m)
( N∑
n=1

δt ‖u(., tn)‖2E,FV
)1/2

,

since un
K is a convex combination of (un

σ)σ∈E(K). Hence, by Lemma 6.7 and the uni-

form estimate (46), there exists C11 independent of m such that |R(m)
2,3 | ≤ C11 h

(m),
which concludes the proof of Proposition 8.5. �

8.5. Strong convergence of the approximate densities.

Proposition 8.7. Under the assumptions of Theorem 5.1, the sequence (ρ(m))m∈N

strongly converges in Lq(Ω× (0, T )), for all q in [1,∞), towards its weak-star limit
in L∞(Ω× (0, T )), ρ̄.
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Proof. As (ρ(m))m∈N is bounded L∞(Ω × (0, T )), it is sufficient, by interpolation,
to prove the strong convergence of ρ(m) towards ρ̄ in L2(Ω× (0, T )). As ρ(m) ⇀∗ ρ̄
in L∞(Ω × (0, T )), we also have ρ(m) ⇀ ρ̄ in L2(Ω × (0, T )), which implies that
‖ρ̄‖L2(Ω×(0,T )) ≤ lim infm→∞ ‖ρ(m)‖L2(Ω×(0,T )). By estimate (40) of Proposition

7.3, we have for all n in {1, . . . , N}:∑
K∈M

|K|(ρnK)2 ≤
∑

K∈M
|K|(ρ0K)2 ≤ ‖ρ0‖2L2(Ω),

which yields ‖ρ(m)(., t)‖2L2(Ω) ≤ ‖ρ0‖2L2(Ω) for all t ∈ (0, T ) and allm in N. Moreover,

ρ̄ is a weak solution of the transport equation:

∂tρ̄+ ū ·∇ρ̄ = 0,

where ū is a divergence-free function in L2((0, T ),H1
0(Ω)

d). Thanks to the theory
of renormalized solutions [9], it is possible to prove that ρ̄ is unique (once ū and
ρ0 are given), and belongs to the space C0((0, T ); L2(Ω)). In addition, for any
scalar function β : R → R in C∞(R), the function β(ρ̄) is also a weak solution of
the transport equation, which yields (taking β(x) = x2, and using the boundary
conditions on ū) that ‖ρ̄(., t)‖L2(Ω) = ‖ρ0‖L2(Ω) for all t ∈ (0, T ). Therefore, we

have ‖ρ(m)(., t)‖2L2(Ω) ≤ ‖ρ̄(., t)‖2L2(Ω) for all t ∈ [0, T ) and all m in N. Integrating

this last inequality for t ∈ [0, T ), we obtain ‖ρ(m)‖2L2(Ω×(0,T )) ≤ ‖ρ̄‖2L2(Ω×(0,T )) for

all m in N, and passing to the limit as m goes to infinity yields:

lim sup
m→∞

‖ρ(m)‖L2(Ω×(0,T )) ≤ ‖ρ̄‖L2(Ω×(0,T )).

This proves that limm→∞ ‖ρ(m)‖L2(Ω×(0,T )) = ‖ρ̄‖L2(Ω×(0,T )) and so that ρ(m) con-

verges strongly to ρ̄ in L2(Ω× (0, T )) as m tends to infinity. �

Remark 8.1. In the pioneering work by Di Perna and Lions [9], the authors deal with
more general convection fields satisfying only div ū in L1((0, T ); L∞), with some
restriction on the class of functions β. In the present case of the transport equation
with divergence-free velocity, the result holds for any smooth scalar function β. We
refer to [4, Theorem VI.1.6] for a detailed proof.

8.6. Passing to the limit in the momentum balance equation.

Proposition 8.8. Under the assumptions of Theorem 5.1, the limit in
Lq(Ω × (0, T ))d, q in [1,∞), of the sequence (ρ(m))m∈N, ρ̄, and the limit in
L2(Ω× (0, T ))d of the sequence (u(m))m∈N, ū, satisfy∫ T

0

∫
Ω

(
−ρ̄(x, t)ū(x, t) · ∂tv(x, t)− (ρ̄(x, t)ū(x, t)⊗ ū(x, t)) : ∇v(x, t)

+∇ū(x, t) : ∇v(x, t)
)
dxdt =

∫
Ω

ρ0(x)u0(x) · v(x, 0) dx,

for all v in C∞
c (Ω× [0, T ))d such that divv = 0.
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Before proving this proposition, we first state the following preliminary lemma.

Lemma 8.9. Let D be a given staggered discretization such that θD ≤ θ0 for some
positive real number θ0 and let δt be a given time step. Let v ∈ C∞

c (Ω × [0, T ))d

with divv = 0 and let us define, for all σ in E , K ∈ M and n in {0, . . . , N}:

vn
σ =

1

|σ|

∫
σ

v(x, tn) dγ(x), vn
K =

∑
σ∈E(K)

ξσKvn
σ,

with ξσK defined in (17). We denote v0
E the piecewise constant function defined by

v0
E(x) =

∑
σ∈E

v0
σ XDσ

(x),

and we define the following discrete (or time partially discrete) interpolates of ∂tv,
∇v and Δv:

ðtvE(x, t) =
N∑

n=1

∑
σ∈E

1

δt

(
vn
σ − vn−1

σ

)
XDσ

(x)X(n−1,n](t),

∇vE(x, t) =
N∑

n=1

∑
σ∈Eint

σ=K|L

|σ|
|Dσ|

(vn−1
L − vn−1

K )⊗ nK,σ XDσ
(x)X(n−1,n](t),

Δvδt(x, t) =

N∑
n=1

Δv(x, tn−1)X(n−1,n](t).

Then for all q in [1,∞], there exists three positive real numbers C1, C2 and C3 only
depending on T , Ω, θ0, q and v, such that

‖ðtvE − ∂tv‖Lq(Ω×(0,T ))d ≤ C1(δt+ hD),(54)

‖v0
E − v(., 0)‖Lq(Ω)d ≤ C2hD,(55)

‖Δvδt −Δv‖Lq(Ω×(0,T ))d ≤ C3δt.(56)

Moreover, if (D(m), δt(m))m∈N is a regular sequence of staggered discretizations, for
q ∈ (1,∞) ( resp. q = ∞) ∇vE(m) converges weakly ( resp. weak-�) towards ∇v in
Lq(Ω× (0, T ))d×d.

Remark 8.2. The proof of the weak (or weak-star) convergence of the discrete
gradient ∇vE(m) towards ∇v follows similar steps as the proof of Lemma 6.2.

We are now in position to prove Proposition 8.8.

Proof. Let m ∈ N and let vn−1
σ be the mean value of v(·, tn−1) over σ, for σ ∈ E(m)

and n ∈ {1, . . . , N (m)}. Taking the scalar product of the discrete momentum
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balance equation (9b) by δt |Dσ|vn−1
σ and summing over σ ∈ E(m)

int and n ∈
{1, . . . , N (m)} we get T

(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 = 0 with

T
(m)
1 =

N∑
n=1

∑
σ∈Eint

|Dσ|(ρnDσ
un
σ − ρn−1

Dσ
un−1
σ ) · vn−1

σ ,

T
(m)
2 =

N∑
n=1

δt
∑

σ∈Eint

∑
ε∈Ẽ(Dσ)

Fn
σ,εu

n
ε · vn−1

σ ,

T
(m)
3 = −

N∑
n=1

δt
∑

σ∈Eint

|Dσ|(Δu)nσ · vn−1
σ ,

T
(m)
4 =

N∑
n=1

δt
∑

σ∈Eint

|Dσ|(∇p)nσ · vn−1
σ ,

where we have dropped for short the superscript (m) on the number of time steps
and the set of internal faces. Since divv = 0 and by relations (23) and (24) in

Lemma 6.1, we get that T
(m)
4 = 0. The three other terms, T

(m)
1 , T

(m)
2 and T

(m)
3 ,

stand, respectively, for the time derivative, the convection and the diffusion term.

The time derivative term. Since the support of v is compact in Ω × [0, T ),
vN−1
σ = 0 for all σ ∈ Eint, at least for m large enough; we suppose that we are in

this case. Performing a discrete integration by parts in T
(m)
1 , we get:

T
(m)
1 =−

N∑
n=1

∑
σ∈Eint

|Dσ| ρnDσ
un
σ · (vn

σ − vn−1
σ )−

∑
σ∈Eint

|Dσ| ρ0Dσ
u0
σ · v0

σ

=−
N∑

n=1

∑
σ∈Eint
σ=K|L

(|DK,σ| ρnK + |DL,σ| ρnL) un
σ · (vn

σ − vn−1
σ )

−
∑

σ∈Eint

σ=K|L

(|DK,σ| ρ0K + |DL,σ | ρ0L) u0
σ · v0

σ,

by the definition (16) of ρDσ
. Hence,

T
(m)
1 = −

∫ T

0

∫
Ω

ρ(m)(x, t)u(m)(x, t) · ðtvE(m)(x, t) dxdt

−
∫
Ω

(ρ(m))0(x) (u(m))0(x) · v0
E(m)(x) dx.

We have u(m) → ū in L2(Ω× (0, T ))d and, by (54), since δt(m) → 0 and h(m) → 0
as m → ∞, ðtvE(m) converges to ∂tv strongly in L2(Ω× (0, T ))d. By the Cauchy-
Schwarz inequality, u(m) ·ðtvE(m) thus converges towards ū ·∂tv strongly in L1(Ω×
(0, T )). Since ρ(m) ⇀ ρ̄ in L∞(Ω× (0, T )) weak-�, we obtain the convergence of the
first term. In addition, from the initialization (8) of the scheme and the assumed
regularity of the initial data (i.e., ρ0 ∈ L∞(Ω) and u0 ∈ L2(Ω)d), (ρ(m))0 converges
to ρ0 in Lq(Ω) for all q in [1,∞) and (u(m))0 converges to u0 in Lq(Ω)d for all q
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in [1, 2]. Finally, from inequality (55), v0
E(m) converges to v0 in Lq(Ω)d for all q in

[1,∞]. Hence,

lim
m→∞

T
(m)
1 = −

∫ T

0

∫
Ω

ρ̄(x, t) ū(x, t)·∂tv(x, t) dxdt−
∫
Ω

ρ0(x) u0(x)·v(x, 0) dxdt.

The convection term. Denoting vn−1
K =

∑
σ∈E(K) ξ

σ
Kvn−1

σ where ξσK is defined

in (17), thanks to Lemma 6.12, the second term T
(m)
2 may be written as

(57) T
(m)
2 =

N∑
n=1

δt
∑

K∈M
vn−1
K ·

∑
σ∈E(K)

|σ| ρnσ (un
σ · nK,σ)u

n
σ +R

(m)
2,1 ,

where the remainder term R
(m)
2,1 reads:

R
(m)
2,1 =

N∑
n=1

δt
(
QM(ρn,un,un,vn−1)−QE(ρ

n,un,un,vn−1)
)
,

with the notation for fixed-time discrete functions introduced in Definition 5.1.
Rearranging the sum in (57), we get:

T
(m)
2 =−

N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ| ρnσ (un
σ · nK,σ) u

n
σ · (vn−1

L − vn−1
K ) + R

(m)
2,1

=−
N∑

n=1

δt
∑

σ∈Eint

σ=K|L

|σ|
( |DK,σ|

|Dσ|
ρnK +

|DL,σ |
|Dσ|

ρnL

)
(un

σ · nK,σ) u
n
σ · (vn−1

L − vn−1
K )

+R
(m)
2,2 +R

(m)
2,1 ,

where

R
(m)
2,2 =

N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ|
( |DK,σ|

|Dσ|
ρnK+

|DL,σ|
|Dσ|

ρnL−ρnσ

)
(un

σ ·nK,σ) u
n
σ ·(vn−1

L −vn−1
K ).

Assuming that R
(m)
2,1 +R

(m)
2,2 = O

(
(h(m))1/2

)
as m tends to infinity, we obtain

T
(m)
2 =−

N∑
n=1

δt
∑

σ∈Eint

σ=K|L

(|DK,σ|ρnK + |DL,σ|ρnL) (un
σ ⊗ un

σ) :

|σ|
|Dσ|

(vn−1
L − vn−1

K )⊗ nK,σ +O
(
(h(m))1/2

)
=−

∫ T

0

∫
Ω

ρ(m)(x, t)u(m)(x, t)⊗ u(m)(x, t) :

∇vE(m)(x, t) dxdt+O
(
(h(m))1/2

)
.

We have, by Lemma 8.9 that ∇vE(m) converges towards ∇v in L∞(Ω× (0, T ))d×d

weak-�. Hence, if we prove that ρ(m)u(m)⊗u(m) strongly converges towards ρ̄ū⊗ ū
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in L1((0, T )× Ω)d×d, then we obtain that

lim
m→∞

T
(m)
2 = −

∫ T

0

∫
Ω

ρ̄(x, t)ū(x, t)⊗ ū(x, t) : ∇v(x, t) dxdt.

Since u(m) → ū in L1(0, T ); L2(Ω)d), we have for all 1 ≤ i, j ≤ d, u
(m)
i u

(m)
j →

ūiūj in L1(0, T ); L1(Ω)) where ui is the ith component of u. Moreover, since
ū ∈ L∞((0, T ); L2(Ω)d) ∩ L2((0, T ); H1

0(Ω)
d), we have for all 1 ≤ i, j ≤ d, ūiūj ∈

L∞((0, T ); L1(Ω)) ∩ L1((0, T ); L3(Ω)) by the Sobolev injection H1
0(Ω) ⊂ L6(Ω).

Thanks to the following interpolation inequality (see [4, Theorem II.5.5]):

‖ūiūj‖L5/3((0,T );L5/3(Ω)) ≤ ‖ūiūj‖2/5L∞((0,T );L1(Ω))‖ūiūj‖3/5L1((0,T );L3(Ω)),

we get ūiūj ∈ L5/3((0, T ) × Ω). We may now prove that ρ(m)u
(m)
i u

(m)
j strongly

converges towards ρ̄ūiūj in L1((0, T )× Ω). Indeed:

‖ρ(m)u
(m)
i u

(m)
j − ρ̄ūiūj‖L1((0,T )×Ω)

≤ ‖ρ(m)(u
(m)
i u

(m)
j − ūiūj)‖L1((0,T )×Ω)

+ ‖ūiūj(ρ
(m) − ρ̄)‖L1((0,T )×Ω)

≤ ‖ρ(m)‖L∞((0,T )×Ω)‖u
(m)
i u

(m)
j − ūiūj‖L1((0,T )×Ω)

+ ‖ūiūj‖L5/3((0,T )×Ω)‖ρ
(m) − ρ̄‖L5/2((0,T )×Ω).

By the maximum principle on ρ(m) and the strong convergence of ρ(m) towards
ρ̄ in Lq((0, T ) × Ω) for all q ∈ [1,∞), we obtain the expected convergence of

ρ(m)u
(m)
i u

(m)
j . Note that the strong convergence of the sequence (ρ(m))m∈N is

needed here; this is why Proposition 8.7 must be proved before Proposition 8.8.

Let us now prove that R
(m)
2,1 + R

(m)
2,2 = O

(
(h(m))1/2

)
as m tends to infinity. For

the term R
(m)
2,1 , we have

|R(m)
2,1 | ≤

N∑
n=1

δt |QM(ρn,un,un,vn−1)−QE(ρ
n,un,un,vn−1)|

≤ C (h(m))1/2
N∑

n=1

δt‖ρn‖L∞(Ω) ‖un‖2E,b ‖vn−1‖E,b,

by the estimate (32) in Lemma 6.12. By (44), ‖ρn‖L∞(Ω) ≤ ‖ρ0‖L∞(Ω) for all n

in {1, . . . , N}; in addition, ‖vn‖E,b ≤ C(Ω, d, θ0)‖∇v‖L∞(Ω×(0,T ))d×d for all n in

{1, . . . , N}, so by estimate (46) we obtain that there exists C independent of m

such that |R(m)
2,1 | ≤ C(h(m))1/2. For the second remainder term, R

(m)
2,2 , we may

write, by the definition of ρnσ,

|R(m)
2,2 | =

∣∣∣ N∑
n=1

δt
∑

σ∈Eint
σ=K|L

|σ| (ρnL − ρnK)

×
( |DL,σ |

|Dσ|
(un

σ · nK,σ)
+ − |DK,σ|

|Dσ|
(un

σ · nK,σ)
−
)
un
σ · (vn−1

L − vn−1
K )

∣∣∣
≤

N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ| |ρnL − ρnK | |un
σ · nK,σ| |un

σ | |vn−1
L − vn−1

K |.
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Applying the Cauchy-Schwarz inequality, we therefore obtain:

|R(m)
2,2 | ≤

( N∑
n=1

δt
∑

σ∈Eint
σ=K|L

|σ|(ρnL − ρnK)2|un
σ · nK,σ|

)1/2

×
( N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|σ||un
σ · nK,σ| |un

σ|2|vn−1
L − vn−1

K |2
)1/2

.

The first term of the product at the right-hand side is controlled by the uniform
estimate (45). Since, for any cell M ∈ M, vn−1

M is a convex combination of vn−1
σ

for σ in E(M), we obtain that |σ| |vn
L − vn

K |2 ≤ C |Dσ| ‖∇v‖2L∞(Ω×[0,T ))d×d h(m),

where C only depends on θ0. Hence, there exists C independent of m such that

|R(m)
2,2 | ≤ C

(
h(m)

N∑
n=1

δt
∑

σ∈Eint

σ=K|L

|Dσ||un
σ|3
)1/2

= C(h(m))1/2
(
‖u(m)‖L3((0,T );L3(Ω)d)

)3/2
.

Now, as a consequence of Hölder’s inequality, we have

‖u(m)‖L3((0,T );L3(Ω)d) ≤ |Ω|1/6 ‖u(m)‖L∞((0,T );L2(Ω)d) ‖u(m)‖L2((0,T );L6(Ω)d).

Since ‖u(m)‖L2((0,T );L6(Ω)d) ≤ ‖u(m)‖L2((0,T );ED(m) (Ω)) ≤ C1 by the discrete Sobolev

inequality of Lemma 6.8 and the uniform estimate (46), we obtain that |R2,2| ≤
C(h(m))1/2.

The diffusion term. Denoting ũn(x)=
∑

σ∈Eint
un
σ ζσ(x) and similarly ṽn−1(x) =∑

σ∈Eint
vn−1
σ ζσ(x) (so the function ṽn−1 is defined by ṽn−1(x) = r̃Ev(x, tn−1),

where rE is the projection operator defined in (26)), we have:

(58)

T
(m)
3 =

N∑
n=1

δt
∑

K∈M

∫
K

∇ũn(x) : ∇ṽn−1(x) dx

=

N∑
n=1

δt
∑

K∈M

∫
K

∇ũn(x) : ∇v(x, tn−1) dx+R
(m)
3,1 ,

where

R
(m)
3,1 =

N∑
n=1

δt
∑

K∈M

∫
K

∇ũn(x) :
(
∇ṽn−1(x)−∇v(x, tn−1)

)
dx.

Performing an integration by parts over each element K in (58), we obtain

T
(m)
3 = −

N∑
n=1

δt
∑

K∈M

∫
K

ũn(x) ·Δv(x, tn−1) dx+R
(m)
3,2 +R

(m)
3,1 ,

where

R
(m)
3,2 =

N∑
n=1

δt
∑

K∈M

∑
σ∈E(K)

∫
σ

[ũn]σ(x) ·∇v(x, tn−1) · nK,σ dγ(x).
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Let us now replace ũn by the piecewise constant function un over each diamond
cell, which yields:

T
(m)
3 = −

N∑
n=1

δt
∑

K∈M

∑
σ∈E(K)

∫
DK,σ

ũn(x) ·Δv(x, tn−1) dx+R
(m)
3,2 +R

(m)
3,1

= −
N∑

n=1

δt
∑

K∈M

∑
σ∈E(K)

∫
DK,σ

un
σ ·Δv(x, tn−1) dx+R

(m)
3,3 +R

(m)
3,2 +R

(m)
3,1 ,

where

R
(m)
3,3 =

N∑
n=1

δt
∑

K∈M

∑
σ∈E(K)

∫
DK,σ

(un
σ − ũn(x)) ·Δv(x, tn−1) dx.

Assuming that R
(m)
3,3 +R

(m)
3,2 = O(h(m)) and R

(m)
3,1 = O(h(m) + α(m)) as m tends to

infinity, we may write

T
(m)
3 = −

N∑
n=1

δt
∑

K∈M

∑
σ∈E(K)

∫
DK,σ

un
σ ·Δv(x, tn−1) dx+O(h(m) + α(m))

= −
∫ T

0

∫
Ω

u(m)(x, t) ·Δvδt(m)(x, t) dxdt+O(h(m) + α(m)).

As u(m) strongly converges towards ū in L2(Ω × (0, T ))d and, by inequality (56),
Δvδt(m) strongly converges towards Δv in Lq(Ω × (0, T ))d for all q in [1,∞], we
obtain

lim
m→∞

T
(m)
3 = −

∫ T

0

∫
Ω

ū(x, t) ·Δv(x, t) dxdt =

∫ T

0

∫
Ω

∇ū(x, t) : ∇v(x, t) dxdt,

since ū ∈ L2((0, T ); H1
0(Ω)

d). Let us now prove that R
(m)
3,1 = O(h(m) + α(m)) as m

tends to infinity. Applying the Cauchy-Schwarz inequality for every primal cell K,

R
(m)
3,1 can be controlled as follows:

|R(m)
3,1 | ≤

N∑
n=1

δt
∑

K∈M
‖∇ũn‖L2(K)d×d‖∇ṽn−1 −∇v(., tn−1)‖L2(K)d×d

≤ (h(m) + α(m))

N∑
n=1

δt
∑

K∈M
‖∇ũn‖L2(K)d×d |v(., tn−1)|H2(K)d ,

by the approximation properties of the Rannacher-Turek finite-element space stated
in Lemma 6.4. Using the Cauchy-Schwarz inequality again, we obtain, by definition
of the broken Sobolev norm,

|R(m)
3,1 | ≤ (h(m) + α(m)) ‖u(m)‖L2((0,T );ED(m) (Ω))

( N∑
n=1

δt |v(., tn−1)|H2(Ω)d

)1/2
≤ C(T,Ω,v) C1 (h

(m) + α(m)),

where C1 is given by the uniform estimate (46). Let us now consider the second

term R
(m)
3,2 . By the weak continuity requirement for the discrete finite element
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velocity fields, we may write

R
(m)
3,2 =

N∑
n=1

δt
∑

K∈M

∑
σ∈E(K)

∫
σ

[ũn]σ(x) · (∇v(x, tn−1)−∇v(xσ, tn−1)) ·nK,σ dγ(x),

since ∇v(xσ, tn)).nK,σ is independent of the integration variable x in σ. Using first
the Cauchy-Schwarz inequality in L2(σ)d and then the discrete Cauchy-Schwarz
inequality, we get, denoting hσ = diam(σ):

|R(m)
3,2 | ≤

N∑
n=1

δt
∑
σ∈E

( 1

hσ

∫
σ

[ũn]2σ(x) dγ(x)
)1/2

×
(
hσ

∫
σ

|∇v(x, tn−1)−∇v(xσ, tn−1)|2 dγ(x)
)1/2

≤
( N∑
n=1

δt
∑
σ∈E

1

hσ

∫
σ

[ũn]2σ(x) dγ(x)
)1/2

×
( N∑
n=1

δt
∑
σ∈E

hσ

∫
σ

|∇v(x, tn−1)−∇v(xσ, tn−1)|2 dγ(x)
)1/2

.

By the regularity of v, we have

|∇v(x, tn−1)−∇v(xσ, tn−1)| ≤ hσ |v|W2,∞(Ω×(0,T ))d ,

for all x ∈ σ, σ ∈ E and n ∈ {1, . . . , N}, which yields

|R(m)
3,2 | ≤ C(θ0, T,Ω,v)

( N∑
n=1

δt
∑
σ∈E

1

hσ

∫
σ

[ũn]2σ(x) dγ(x)
)1/2

h(m).

Invoking (27) in Lemma 6.5 and the uniform estimate (46), we obtain that |R(m)
3,2 | ≤

Ch(m) where C does not depend on m. We finally turn to the last term R
(m)
3,3 . First,

we have

|R(m)
3,3 | ≤ ‖Δv‖L∞(Ω×(0,T ))d

N∑
n=1

δt
∑

K∈M

∑
σ∈E(K)

∫
DK,σ

|un
σ − ũn(x)| dx.

Moreover, observing that for each primal cellK in M, ∀x ∈ K,
∑

σ∈E(K) ζσ(x) = 1,

and that the Rannacher-Turek shape functions are uniformly bounded by a real
number only depending on θ0, we may write:

∑
σ∈E(K)

∫
DK,σ

|un
σ − ũn(x)| dx =

∑
σ∈E(K)

∫
DK,σ

∣∣∣ ∑
σ′∈E(K)

(un
σ − un

σ′) ζσ′(x)
∣∣∣ dx

≤ C(d) |K|
∑

σ,σ′∈E(K)

|un
σ − un

σ′ |.
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By the Cauchy-Schwarz inequality, we thus get:

|R(m)
3,3 | ≤ C(d) ‖Δv‖L∞(Ω×(0,T ))d

×
( N∑
n=1

δt
∑

K∈M
hd−2
K

∑
σ,σ′∈E(K)

|un
σ − un

σ′ |2
)1/2( N∑

n=1

δt
∑

K∈M
h2
K |K|

)1/2
≤ C(d) ‖Δv‖L∞(Ω×(0,T ))d |Ω|1/2 T 1

2h(m)

×
( N∑
n=1

δt
∑

K∈M
hd−2
K

∑
σ,σ′∈E(K)

|un
σ − un

σ′ |2
)1/2

.

Since the finite volume H1-norm is controlled by the finite element H1-norm (see
Lemma 6.7), we conclude by the uniform estimates (46) that there exists C in-

dependent of m such that |R(m)
3,3 | ≤ Ch(m), which ends the proof of Proposition

8.8. �

9. Extension to other discretizations and models

9.1. Other space discretizations. A straightforward extension may be obtained
by considering more general meshes composed of both simplices and quadrilaterals
(d = 2) or hexahedra (d = 3). We refer to [23] for the precise definition of the dual
mesh in this case. The discretization of the time derivatives, the mass and momen-
tum convection fluxes, the free-divergence constraint as well as the pressure gradient
remains unchanged. The only difference lies in the treatment of the diffusion term.
Now, a local shape function associated with an edge of a simplex identifies with a
Crouzeix-Raviart shape function. The Crouzeix-Raviart element [6] enjoys similar
stability and approximation properties to those of the Rannacher-Turek element
stated in Lemmata 6.4 and 6.5. Moreover, the pair of approximation spaces also
satisfies a discrete inf-sup condition as in Lemma 6.6. Finally, it is also possible to
prove the control of the finite element H1-norm over the finite volume H1-norm as
stated in Lemma 6.7. For these reasons, the main result of the paper, namely the
convergence theorem, readily extends for this mixed space discretization.

Another extension of the present result is possible for the MAC (Marker-And-
Cell) space discretization. A forthcoming paper proves a similar convergence re-
sult of the implicit staggered MAC scheme for the incompressible variable density
Navier-Stokes equations.

9.2. Other time discretizations. The scheme (9) is fully implicit, and thus the
implementation of the algorithm implies to find the solution of a fully non-linear
coupled system. Consequently, using this scheme appears to be difficult in a real
computational context, mainly due to the computational cost and lack of robust-
ness. In the following, we describe three other possible time discretizations which
yield efficient schemes, obtained thanks to a partial decoupling of the discrete equa-
tions. We also discuss the conditions under which these schemes satisfy stability
estimates similar to those satisfied by the implicit scheme, which eventually en-
ables to extend the convergence result. We give the corresponding time algorithms,
keeping the same staggered space discretization as previously.
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9.2.1. Mass and momentum transport with an explicit convection field. The first
alternate time discretization is obtained through an explicit treatment of the con-
vective velocity in the mass transport equation:

1

δt
(ρn − ρn−1) + div(ρnun−1) = 0,(59a)

1

δt
(ρnun − ρn−1un−1) + div(ρnun−1 ⊗ un)−Δun +∇pn = 0,(59b)

divun = 0.(59c)

This scheme satisfies similar estimates for the density and the velocity as the fully
implicit scheme, with no restriction on the time step. Indeed, the density is con-
trolled in L∞ provided an upwind discretization of the mass convection term, and
the velocity is controlled through a discrete kinetic energy equation, obtained when
taking the scalar product of (59b) with un. Easy computations, similar to those
performed in the proof of Lemma 7.2 in the implicit case, yield the desired kinetic
energy equation, given here in a semi-discrete form:

1

2δt

(
ρn|un|2 − ρn−1|un−1|2

)
+

1

2
div

(
ρn|un|2un−1

)
−Δun · un +∇pn · un

+
1

2δt
ρn−1|un − un−1|2 +

( 1

δt
(ρn − ρn−1) + div(ρnun−1)

)
︸ ︷︷ ︸

= 0 by (59a)

|un|2
2

= 0.

Hence, the convergence analysis still holds in this case. The benefit from such a
discretization comes from the decoupling of the mass balance and hydrodynam-
ics; from a computational point of view, the difficulty is now reduced to compute
the solution of the linear system associated with (linearized) Navier-Stokes equa-
tions, for which some techniques are available (SIMPLE-like methods, Augmented
Lagrangian algorithms, . . . ).

9.2.2. An (as much as possible) explicit scheme. An interesting scheme for low
viscosity flows (typically a viscosity μ less than the space step h) is the following
scheme, where only the pressure is treated in an implicit way (which is mandatory
for stability reasons):

1

δt
(ρn − ρn−1) + div(ρnun−1) = 0,(60a)

1

δt
(ρnun − ρn−1un−1) + div(ρnun−1 ⊗ un−1

upw )− μΔun−1 +∇pn = 0,(60b)

divun = 0.(60c)

Here, the mass equation can still be solved independently of the momentum equa-
tion, and the solution of the latter is obtained by solving an elliptic problem on
the pressure pn, which is not difficult from a computational point of view. Indeed,
computing the (discrete) divergence of (the non-conservative form of) (60b) and
using (60c), yields a relation of the form −Δpn = Fn−1. The L2-stability of this
scheme (i.e., a discrete kinetic energy balance equation) is ensured under a CFL
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restriction on the time step of the form δt ≤ c(h/|un−1| + h2/μ) (see [26]), pro-
vided that an upwind space discretization be used in the convection term of the
momentum balance equation (contrary to what is done in the present paper). Here
again, the convergence analysis is the same as for the implicit scheme, with a slight
difference due to the upwind choice in the momentum equation. The assessment of
the computational efficiency of this scheme, with applications to the Large Eddy
Simulation of turbulent flows, is planned in the near future.

9.2.3. Projection method. Finally, an interesting scheme from the computational
point of view is the following pressure-correction scheme. Here again, it is possible
to solve the correction step (61c)-(61d) thanks to an elliptic problem on the pressure.

1

δt
(ρn − ρn−1) + div(ρnun−1) = 0.(61a)

Velocity prediction step:

1

δt
(ρnũn − ρn−1un−1)(61b)

+ div(ρnun−1 ⊗ ũn)−Δũn +

(
ρn

ρn−1

)1/2

∇pn−1 = 0.

Velocity and pressure correction step:

1

δt
ρn (un − ũn) +∇pn −

(
ρn

ρn−1

)1/2

∇pn−1 = 0,(61c)

divun = 0.(61d)

In addition, this scheme is unconditionally L2-stable, i.e., without any restriction
on the time step. More precisely, thanks to the scaling factor (ρn/ρn−1)1/2 applied
to the pressure gradient in (61b), it is possible to prove that the beginning and
end-of-step velocities (un)0≤n≤N are controlled in a discrete L∞(L2)-norm, while
the intermediate velocities (ũn)0≤n≤N are controlled in a discrete L2(H1

0)-norm
thanks to the diffusion term (see [24] for a similar computation in the case of the
compressible Euler’s equations). A consequence of these different estimates for ũn

and un is that the velocity convergence obtained in the fully implicit case does not
hold anymore, and the scheme convergence is still an open issue. We are currently
investigating this for the (simpler) constant density case. Note that still in the
constant density case, error estimates, obtained when assuming that the solution
to the continuous problem is smooth, have been the topic of a wide literature (see
e.g. [19, 36, 37]).

9.3. Extension to a density-dependent viscosity. The model with density-
dependent viscosity, for which a convergence analysis is carried out in [30] for a
discontinuous Galerkin method, reads as follows:

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(μ(ρ)D(u)) +∇p = 0,

divu = 0,
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where D(u) is the symmetric part of ∇u, and the viscosity μ is a continuous
positive function of the density (typically μ(ρ) = ρ1/2 for an ideal gas). The
convergence analysis performed here for the staggered implicit scheme is still valid,
provided some stabilization term is added in the discretization of the diffusion term:

−(div μD(u))σ =
1

|Dσ|
∑

K∈M

∫
K

μ(ρK)
∑

σ′∈E(K)

uσ′
(
D(ζσ′) ·∇ζσ

)
dx+ Stab.

The discrete kinetic energy, which is derived as in the constant viscosity case, yields
a control on the L2((0, T ); L2)-norm of D(u) (actually of D(ũ) where ũ is the finite
element approximation of u). In order to infer from this an L2((0, T ); H1

0) control
of the velocity, one needs a discrete Korn’s inequality. In [5], the author proves
discrete Korn’s inequalities, which in our context may be written as follows:

‖u‖2E,b ≤ C

(
‖D(ũ)‖2L2(Ω) + ‖ũ‖2L2(Ω) +

∑
σ∈E

1

hσ
‖πσ[ũ]σ‖2L2(σ)

)
,

where πσ is the orthogonal projection operator from L2(σ) onto the space of vector
polynomial functions on σ of degree less than one. Hence, the desired control on the
velocity may be obtained, provided a stabilization term in the discrete diffusion that
allows a control on the edge velocity jumps in the above discrete Korn’s inequality.

Appendix A. A topological degree result

The following theorem follows from standard arguments of the topological degree
theory (see [7] for an overview of the theory and e.g. [10, 13] for other uses in the
same objective as here, namely the proof of existence of a solution to a numerical
scheme).

Theorem A.1. Let N and M be two positive integers and V = RN × RM × RN .
Let b ∈ V and f(·) and F (·, ·) be two continuous functions respectively from V and
V × [0, 1] to V satisfying:

(i) F (·, 1) = f(·);
(ii) ∀α ∈ [0, 1], if an element v of Ō (the closure of O) is such that F (v, α) = b,

then v ∈ O, where O is defined as follows:

O = {(x, y, z) ∈ V s.t. C0 < x < C1 and ‖y‖M < C2 and ‖z‖N < C3}

where, for any real number c and vector x, the notation x > c means
that each component of x is larger than c; C0, C1, C2 and C3 are positive
constants and ‖y‖M and ‖z‖N are two norms defined on RM and RN ,
respectively;

(iii) the topological degree of F (·, 0) with respect to b and O is equal to d0 �= 0.

Then the topological degree of F (·, 1) with respect to b and O is also equal to d0 �= 0;
consequently, there exists at least one solution v ∈ O to the equation f(v) = b.
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Appendix B. Kolmogorov’s theorem

The proof of the following theorem can be found in [14].

Theorem B.1 (Kolmogorov’s theorem). Let B be a Banach space, p a real number
such that 1 ≤ p < +∞ and T > 0. Let A ⊂ Lp((0, T );B). The subset A is relatively
compact in Lp((0, T );B) if A satisfies the three following conditions:

(h1) For all u ∈ A, there exists Pu ∈ Lp(R;B) such that Pu = u almost every-
where in (0, T ) and ‖Pu‖Lp(R;B) ≤ C, where C depends only on A.

(h2) For all φ ∈ C∞
c (R,R), the family {

∫
R
(Pu)φ dt, u ∈ A} is relatively compact

in B.
(h3) ‖Pu− Pu(.− τ )‖Lp(R;B) → 0, as τ → 0+, uniformly with respect to u ∈ A.
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