
MATHEMATICS OF COMPUTATION
Volume 87, Number 310, March 2018, Pages 855–877
http://dx.doi.org/10.1090/mcom/3247

Article electronically published on May 5, 2017

AN ANALOG OF THE PRIME NUMBER THEOREM

FOR FINITE FIELDS VIA TRUNCATED

POLYLOGARITHM EXPANSIONS

NIKO REBENICH, T. AARON GULLIVER, STEPHEN NEVILLE, AND ULRICH SPEIDEL

Abstract. An exponentially accurate asymptotic expansion of the truncated
polylogarithm function is derived that leads to an asymptotic formula for enu-

merating monic irreducible polynomials over finite fields. This formula is anal-
ogous to the asymptotic expansion formula of the classical prime counting
function. Results are presented which show that it is more accurate than pre-
vious results in the literature while requiring very little computational effort.
Asymptotic expansions of the Lerch transcendent, Eulerian polynomials, and
polylogarithms of negative integer order are also given. The accuracy of the
proposed approach is verified via numerical results.

1. Introduction

In this paper, a precise asymptotic expansion for the finite field analog of the
classical prime counting function from number theory is derived. The prime count-
ing function enumerates the prime numbers less than or equal to x and is given
by

(1.1) π(x) =
∑
p�x

p prime

1 .

A generalization of (1.1) is the prime ideal counting function πK(x) that counts the
nonzero prime ideals of OK , a Dedekind ring whose field of fractions K is a global
field. Every nonzero prime ideal p of OK is maximal and its absolute norm N (p) is
defined as the (finite) number of elements in the residue class field OK/p. Hence,
πK(x) = |{p ⊂ OK | N (p) � x}| [26, p. 413]. Here K is either a number field, i.e.,
a finite extension of Q, or a global function field with full constant field Fq, i.e.,
a finite extension of the field of rational functions Fq(T ) in one variable over the
finite field Fq, such that Fq is algebraically closed in K.

While a rigorous direct connection between number fields and global function
fields has not yet been established, there are many fundamental analogies (see
Rosen [32], Stichtenoth [35], and Iwaniec et al. [18] for a detailed discussion). If
K is a number field, OK is the integral closure of the ring Z in K, and every
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nonzero prime ideal in OK is generated by a positive prime number. Similarly, if
K is a global function field as defined above, OK is the integral closure of the ring
of polynomials Fq[T ] in K, and every nonzero prime ideal p = (f) is generated
by a monic irreducible polynomial over Fq also known as a prime polynomial and
denoted by f . Each prime polynomial gives rise to a residue class field Fq[T ]/(f)
of cardinality N (p) = qm, where m = deg(f) [5, p. 198]. Hence, counting prime
polynomials in Fq[T ] of degree less than m is analogous to counting positive prime
numbers in the integers less than x, with the finite field analog to (1.1) given as

(1.2) πq(m) =
∑

deg f�m
f monic, irreducible

1,

wherem � 1. Multiplying (1.2) by q−1 yields the number of irreducible polynomials
(not necessarily monic). This is due to the fact that multiplying a monic irreducible
polynomial by any element of the multiplicative group F∗

q does not change its degree
and results in an irreducible polynomial.

Conditional on the still unproven Riemann hypothesis, an approximation and
error bound for the prime counting function in (1.1) was given by von Koch in [20]
as

π(x) =

∫ x

2

dt

log t
+O(

√
x log x)(1.3)

= li(x)− li(2) +O(
√
x log x)(1.4)

= Li(x) +O(
√
x log x),(1.5)

where li(x) and Li(x) denote the logarithmic integral and the offset logarithmic
integral, respectively. The latter notation is an historic artifact and should not
be confused with Lis(x) which denotes the polylogarithm function and is used
subsequently in this paper.

The logarithmic and exponential integral are related via li(x) = Ei(log x). An-
alytic continuation of the exponential integral and repeated integration by parts
yields the well-known Poincaré-type expansion formula for π(x) (see Lebedev [23,
pp. 32–38]),

πN (x) ∼
x

log x

⎡⎣N−1∑
n=0

n!

(log x)n
+RN (x)

⎤⎦,(1.6)

where

(1.7) RN (x) � CN
N !

(log x)N
,

x ∈ R with x � 2, N ∈ N+ is the truncation order (subsequently also referred
to as order) of the expansion, and CN is a constant. For N → ∞, the expansion
in (1.6) eventually diverges for any finite value of x because RN (x) is unbounded.
Therefore, this expansion can provide a reasonable estimate only if the series is
truncated at a finite number of terms since RN (x) is then of order O(x−N ) and
approaches zero as x → ∞ .
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In what follows we provide a Poincaré-type expansion formula analogous to (1.6)
for the prime polynomial counting function in (1.2). This expansion is obtained via
an exponentially accurate asymptotic expansion of the truncated polylogarithm
function which requires very little computational effort. The expansion formulas
developed are general and have applications in numerous areas other than the
enumeration of irreducible polynomials.

A well-known result from combinatorics (see for example Rosen [32, p. 13] and
Berlekamp [3, p. 84]), gives the number of monic irreducible polynomials over the
finite field Fq of degree n as

(1.8) Nq(n) =
1

n

∑
d|n

μ(d)q
n
d ,

where the sum is over all divisors of n, and μ(n) is the Möbius function (see Graham
et al. [17, p. 136]), defined as

μ(n) =

⎧⎪⎨⎪⎩
1 if n = 1,
(−1)k if n is the product of k distinct primes,
0 if n has one or more repeated prime factors .

Equation (1.8) also counts the number of aperiodic cyclic equivalence classes of
q-ary strings of length m [16], [27]. An aperiodic string of length m returns to its
original configuration after exactly m cyclic shifts, and fewer than m cyclic shifts
results in a different string. The lexicographically smallest of these cyclic shifts is
referred to as a Lyndon word and by convention is chosen as the string representing
the equivalence class [25].

From (1.8), we establish the prime polynomial (Lyndon word) counting function
as

(1.9) πq(m) =
m∑

n=1

Nq(n) .

When enumerating Lyndon words such that the zero-length word is allowed, the
sum (1.9) must be increased by one. Sharp upper and lower bounds on Nq(n) are
provided in [24, pp. 123–124]. These bounds imply the simple estimate derived in
[32, Theorem 2.2]

(1.10) Nq(n) =
qn

n
+O

(
q

n
2

n

)
.

Substituting (1.10) into (1.9) yields

πq(m) =

m∑
n=1

qn

n
+O

(
q

m
2

m

)
,(1.11)

with the error term following from [31, Lemma 3].
Several approximations to (1.9) have been developed. To the best of our knowl-

edge, the first correct result is due to Kruse et al., who provided a first order
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approximation in 1990 [21]. More recently, Wang et al. extended this result to a
second order approximation in [39]. Pollack was the first to explore a finite field
analog similar to the series expansion (1.6) in 2010 [31]. His approach is slightly
different in that he considers the number of irreducible polynomials less than inte-
gers that encode univariate polynomials over a finite field in a bijective mapping.
However, as in [21], [39], the asymptotic expansion provided in [31, Theorem 2]
rests on the approximation of the sum in (1.11). An estimate is given in the form
of a series [31, Lemma 6] that depends on coefficients that involve the evaluation of
infinite series. An asymptotic result for these coefficients is provided in [31, Lemma
7]. However, while the resulting asymptotic expansion resembles that of (1.6), it
yields inferior numerical results when compared with those of [21], [39].

Theorem 1.1 provides a Poincaré-type expansion for (1.9) that is based on (1.11)
and analogous to (1.6). It is one of the main results of this paper and is a significant
improvement on the results in [21], [39], [31].

Theorem 1.1. Let Fq[T ] denote the ring of polynomials over the finite field with q
elements. Then for m ∈ N+, m → ∞, the number of monic irreducible polynomials
in Fq[T ] of degree less than or equal to m is given by

(1.12) πq,N (m) ∼
q

q − 1

X

logq X

[
N−1∑
n=0

(q − 1)−nAn(q)

(logq X)n
+Rq,N (X)

]
,

where X = qm with

(1.13) Rq,N (X) � CN
q − 1

q (log q)N+1

N !

(logq X)N
,

where N ∈ N+ is the truncation order of the expansion, CN is a constant indepen-
dent of X, and An(z) denotes the nth Eulerian polynomial as in Definition 2.3. The
remainder term becomes exponentially small when the series is optimally truncated
as per Definition 2.2.

The proof of Theorem 1.1 relies on asymptotic expansions of the Eulerian poly-
nomials and the truncated polylogarithm function, which are discussed in detail in
the next section.

2. Asymptotic expansion of the truncated polylogarithm function

In this section, an accurate asymptotic expansion of the truncated polylogarithm
function is presented. While the results given here are required for the proof of
Theorem 1.1 in Section 3, they find applications in many areas of combinatorics
other than the enumeration of irreducible polynomials.

Definition 2.1. The truncated polylogarithm function is given by the finite series

(2.1)
L(z, s,m) =

m∑
n=1

zn

ns

(z ∈ C; s ∈ C; m ∈ N+) .
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Definition 2.1 is the mth partial sum resulting from truncating the infinite series
representation of the polylogarithm. The polylogarithm, also known as Jonquière’s
function (see Jonquière [19] and Truesdell [37]), is defined as

(2.2)
Lis(z) =

∞∑
n=1

zn

ns
= zΦ(z, s, 1)

(z ∈ C; s ∈ C when |z| < 1; R(s) > 1 when |z| = 1),

where Φ(z, s, 1) denotes the Lerch transcendent (see Srivastava et al. [33, p. 121],
which is given by the power series

(2.3)
Φ(z, s, a) =

∞∑
n=0

zn

(a+ n)s

(z ∈ C; s ∈ C when |z| < 1; R(s) > 1 when |z| = 1; a ∈ C \Z−
0 ) .

The Lerch transcendent is analytically continued via the following integral repre-
sentation valid for the cut z-plane with z ∈ C \ [1,∞) (see Erdélyi et al. [11, p. 27])

(2.4)
Φ(z, s, a) =

1

Γ(s)

∫ ∞

0

ts−1 e−(a−1)t

et − z
dt

(R(s) > 0 when |z| � 1, z �= 1; R(s) > 1 when z = 1; R(a) > 0),

where Γ(s) denotes the gamma function, and the integrant has simple poles located
at

(2.5) tk = log z + 2kπi (k = 0, ±1, ±2, . . . ) .

The Lerch transcendent plays an important role in many applications in applied and
pure mathematics. A thorough discussion of its properties is provided in Chaudhry
et al. [9, pp. 316–318], Ferreira et al. [12], and more recently Lagarias et al. [22].
These results predominately focus on the analytic continuation and approximation
of the Lerch transcendent for the domain z ∈ C \ [1,∞), as then the above inte-
grant (or an expansion of this integrant), can be integrated along a suitable Hankel
contour that avoids the poles tk.

The truncated polylogarithm function can be expressed in terms of the Lerch
transcendent as

(2.6) L(z, s,m) = zΦ(z, s, 1)− zm+1Φ(z, s,m+ 1) .

However, excluding z ∈ [1,∞) from the domain precludes the use of the truncated
polylogarithm function for many practical applications, among them the enumera-
tion of irreducible polynomials over finite fields. Hence, in the subsequent discussion
we develop a Poincaré-type expansion that allows us to evaluate (2.6) for |z| > 1
with remarkable accuracy. For this we consider a combination of two divergent
series expansions of the Lerch transcendent. Despite divergence, these series ex-
pansions are extremely accurate when “optimally truncated” as per the following
definition due to Bender and Orszag [2, Ch. 3].
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Definition 2.2 (The optimal truncation rule). Consider a function f(t) and let
{fn(t)} be an asymptotic sequence for t → t0 such that

f(t) ∼

N−1∑
n=0

an fn(t),

is an asymptotic series expansion of f(t) as t → t0. For a divergent series expansion,
assume the magnitude of successive series terms initially decreases until a minimum
is reached and thereafter increases without bound due to the divergent nature of
the series. Optimal truncation is then defined as the partial sum up to but not
including the least series term [2, Ch. 3]. The truncation order of such an expansion
is denoted by N�, with the least term being an estimate for the approximation error∣∣∣f(t)− N�−1∑

n=0

an fn(t)
∣∣∣ = O( fN�

(t) ),

that thereby is minimized.

The optimal truncation rule given by Definition 2.2 is by no means strictly valid
for all divergent series and is justified more often by empirical evidence rather
than by rigorous proof. The resulting asymptotic expansion is also referred to as
superasymptotic and typically exhibits an exponentially small error term [4].

The proof of Theorem 1.1 requires Lemma 2.4 and Theorem 2.7. Lemma 2.4
provides an approximation for Eulerian polynomials not previously found in the
literature. Eulerian polynomials (not to be confused with the Euler polynomials
[11, pp. 40–43]), were introduced by Euler in the 18th century and have since found
numerous applications in enumerative, algebraic, and geometric combinatorics. A
general introduction to these polynomials can be found in [8], [10], [30]. The defini-
tions associated with Eulerian polynomials in the literature are not consistent and
we largely draw on [13] for our definitions and notation.

Definition 2.3. The nth Eulerian polynomial is given by

(2.7) An(z) =
n∑

k=0

A(n, k) zk, z ∈ C; n ∈ N0 .

The coefficients A(n, k) are positive integers, commonly referred to as Eulerian
numbers, and are generated by the recurrence relation

(2.8) A(n, k) = (k + 1)A(n− 1, k) + (n− k)A(n− 1, k − 1), 1 � k � n− 1,

subject to the boundary conditions

A(n, 0) = 1, n � 0, and

A(n, k) = 0, k � n .

Eulerian numbers are perhaps best known for their combinatorial interpretation
as the number of permutations in the symmetric group Sn having exactly k ascents
(see Graham et al. [17, pp. 253–255] and Carlitz et al. [7]). While the asymptotic
properties of Eulerian numbers have been well studied (see for example [6], [15],
[36]), those of the Eulerian polynomials have not received an equally rigorous treat-
ment. In what follows we take a generating function approach to derive a simple
yet accurate approximation formula for these polynomials.
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Lemma 2.4. For fixed z ∈ C\{0, 1}, with | arg(z)| < π, | log z| < 2Kπ, and
n ∈ N+, the nth Eulerian polynomial An(z) is given by

(2.9) An,K(z) =
(z − 1)n+1

z

[
1

(log z)n+1
+ TK(z, n+ 1)

]
n!,

where K ∈ N+ is the truncation order of the expansion and

TK(z, n) = 2

K−1∑
k=1

�n
2 	∑

j=0

(
n

2j

)
(−1)j (2πk)2j(log z)n−2j

(4π2k2 + (log z)2)n
+RK(z, n),

with

|RK(z, n)| � CK |z|
| log z + 2Kπ |n−1

,

and CK is a finite quantity independent of z.

Proof. Euler’s bivariate exponential generating function enumerating the Eulerian
polynomials is provided in Foata [13, (3.1)] as

(2.10) f(z, u) =
z − 1

z − e(z−1)u
=

∞∑
n=0

An(z)
un

n!
.

Substituting u = t/(z − 1) and multiplying by 1/(1− z) yields

(2.11) g(z, t) =
1

et − z
= −

∞∑
n=0

an(z) t
n, an(z) =

An(z)

(z − 1)n+1 n!
.

The generating function g(z, t) is meromorphic on C and has simple poles located
at

tk = log z + 2kπi, k = 0, ±1, ±2, . . . .

Hence, the power series of g(z, t) is convergent in the disk about the origin of radius
R0 < | log z|. Consider now the Laurent series of g(z, t) about each of the poles tk.
Their principal part is given by

(2.12) PP(g, tk) =
Res(g, tk)

t− tk
= −

∞∑
n=0

bn,k(z) t
n, bn,k(z) =

Res(g, tk)

tn+1
k

,

where Res(g, tk) denotes the residue of g(z, t) at tk which is easily obtained using
L’Hôpital’s rule as

(2.13) Res(g, tk) = lim
t→tk

t− tk
et − z

H
=

1

z
.

Following Wilf [41, pp. 142–146], we find that for any fixed integer K the function

hK(z, t) = g(z, t)−
∑

−K<k<K

PP(g, tk)(2.14)

= −
∞∑

n=0

an(z) t
n +

∞∑
n=0

[ ∑
−K<k<K

bn,k(z)

]
tn =

∞∑
n=0

cn(z) t
n,(2.15)
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is analytic at tk, k = 0, ±1, . . . , ±[K−1], and its power series expansion about
the origin converges in the disk of radius RK < |tK |. By the Cauchy–Hadamard
Theorem [14, p. 142], we may bound the growth of the coefficients cn(z) as n → ∞.
In particular, by Theorem 2.4.3 in [41, p. 49], for any given ε > 0 there exists an
integer N such that for all n > N ,

(2.16) |cn(z)| <
(

1

RK
+ ε

)n

= rK(z)n .

Comparing the absolute value of the coefficients in (2.15) as n approaches infinity,
we see that |an(z)| is much larger than |cn(z)| when n > N . More generally, by
Theorem 5.2.1 in [41, p. 174] the coefficients an(z) can be approximated by

(2.17) an,K(z) =
∑

−K<k<K

bn,k(z) +O(rK(z)n),

which yields

(2.18) an,K(z) =
An,K(z)

(z − 1)n+1 n!
=

∑
−K<k<K

Res(g, tk)/(log z + 2πki)n+1 +O(rK(z)n) .

The partial sum in (2.18) is a special case of the series studied by Lindelöf and
Wirtinger [42]. Expanding the terms of the sum in binomial series and extracting
the term due to the pole closest to the origin, we obtain the Kth order asymptotic
formula

(2.19)
An,K(z) =

(z − 1)n+1

z

[
1

(log z)n+1
+ TK(z, n+ 1)

]
n!

(z ∈ C\{0, 1}, | arg(z)| < π, | log z| < 2Kπ; n ∈ N+; K ∈ N+),

where TK(z, n) is given by

TK(z, n) = 2

K−1∑
k=1

�n
2 	∑

j=0

(
n

2j

)
(−1)j (2πk)2j(log z)n−2j

(4π2k2 + (log z)2)n
+ z O(rK(z)n−1) .(2.20)

For fixed n and | log z| < 2Kπ, rK(z) is of order O(| log z + 2Kπ|−1) so that (2.19)
is accurate up to an arbitrary small error that depends only on K. �
Remark 2.5. T1(z, n) can be expressed in an alternative form involving Bernoulli
polynomials as follows. The generating function for Bernoulli polynomials (see
Apostol [1, p. 264]), is given by

(2.21) b(t, x) =
t ext

et − 1
=

∞∑
j=0

Bj(x)
tn

j!
(|t| < 2π) ,

from which g(t, z) in (2.11) is obtained in terms of b(t, x) as

g(t, z) =
Res(g, t0)

t− t0
b(t− t0, 0) =

1

et − z
(2.22)

=
1

z(t− log z)
+

1

z

∞∑
j=0

Bj+1

(j + 1)!
(t− log z)j ,(2.23)
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where Bn(0) = Bn denotes the nth Bernoulli number with B0 = 1. Substituting
the power series expansion from (2.11) for g(z, t) and expanding the right-hand side
of (2.23) as a binomial series gives after simplification

(2.24)
An,1(z) =

(z − 1)n+1

z

[
1

(log z)n+1
−

∞∑
j=0

(−1)j Bn+j+1

(n+ j + 1)n! j!
(log z)j

]
n!

(z ∈ C\{0, 1}, | arg(z)| < π, | log z| < 2π; n ∈ N+),

from which it can be deduced that

T1(z, n) =

∞∑
j=0

(−1)j+1Bn+j

(n+ j) (n− 1)! j!
(log z)j .(2.25)

Remark 2.6. An asymptotic expression for the polylogarithm of negative integer
order follows directly from Lemma 2.4. From the Dirichlet series for the polyloga-
rithm provided by (2.2), for negative integer orders we obtain

(2.26)
Li−s(z) =

∞∑
n=1

nszn = zΦ(z,−s, 1)

(z ∈ C, |z| < 1; s ∈ N0) .

We further have that Li−s(z) is related to the Eulerian polynomials [13, (3.2)]) by

(2.27) Li−s(z) =
zAs(z)

(1− z)s+1
(s � 0) .

From (2.27), it is observed that Li−s(z) extends to a meromorphic function on C

with a pole of multiplicity s+ 1 located at z0 = 1. Thus, we may analytically con-
tinue (2.27), and after applying Lemma 2.4 we obtain the following approximation
for the polylogarithms of negative integer order which is valid beyond the unit disk
in which its power series converges

(2.28)
Li−s,K(z) = (−1)s+1

[
1

(log z)s+1
+ TK(z, s+ 1)

]
s!

(z ∈ C\{1}, | arg(z)| < π, | log z| < 2Kπ; n ∈ N+; K ∈ N+) .

Using the definition for T1(z, n) in (2.25), an expression for Li−s,1(z) valid for
| log z| < 2π in terms of Bernoulli polynomials can be obtained which is a well-
known result in special functions theory (see for example Erdélyi et al. [11, p. 30]
and Srivastava et al. [34, p. 198]).

The following theorem provides the asymptotic expansion of the truncated poly-
logarithm function for |z| > 1 which is a key result of this paper.

Theorem 2.7. For fixed z ∈ C, |z| > 1, | arg(z)| < π, fixed s ∈ N+, and m ∈ N+

with m → ∞, the truncated polylogarithm function is given by the asymptotic ex-
pansion

(2.29) LN (z, s,m) =
z

z − 1

zm

m

⎡⎣N−1∑
n=0

(
n+s−1

n

) An(z)

(z − 1)n mn+s−1
+RN (z, s,m)

⎤⎦.
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The error term is asymptotically bounded by

(2.30) |RN (z, s,m)| � CN
|z − 1| (N + s− 1)!

|z (log z)N+1|mN+s−1
,

where CN is a finite quantity independent of m, and An(z) denotes the nth Eulerian
polynomial. The error term becomes exponentially small when the series is optimally
truncated.

Proof. Consider the definition of the truncated polylogarithm function in terms of
the Lerch transcendent given in (2.6) with the integral representation of the Lerch
transcendent given in (2.4). We may rewrite (2.4) as a Laplace type integral as

(2.31) Φ(z, s, a) =
1

Γ(s)

∫ ∞

0

[
ts−1g(z, t)

]
e−(a−1)t dt, g(z, t) =

1

et − z
.

In the following we restrict z such that |z| > 1 and further limit s and a to positive
integers to simplify the notation; however, the results are readily extended to |z| < 1
and suitable sets of complex values for s and a (see [12] for a discussion).

We continue by noting that the Maclaurin series of g(z, t) is convergent for
0 < t < | log z|, so we have

(2.32) g(z, t) = −
N−1∑
n=0

an(z) t
n + rN (z), an(z) =

An(z)

(z − 1)n+1 n!
,

which is a series we are already familiar with from Lemma 2.4. However, the interval
of convergence for this series is only a small portion of the entire integration region
of the integral (2.31). Nevertheless, with the integral being of Laplace type, we
obtain an approximation for Φ(z, s, a) using Watson’s Lemma [40] (see also Olver
[28, pp. 71–72] for a contemporary version of the proof). As required by Watson’s
Lemma, we have that for fixed s and z and positive c,

|ts−1g(z, t)| = O(ect),

as t → ∞ . This allows for the use of a truncated Maclaurin series in the integrant
of (2.31) in place of g(z, t). A reversal of summation and integration yields the
asymptotic series expansion

ΦN (z, s, a) =
−1

(s− 1)!

N−1∑
n=0

[
an(z)

∫ ∞

0

tn+s−1 e−(a−1) t dt

]
+RN (z, s, a),(2.33)

where

(2.34) RN (z, s, a) =
−1

(s− 1)!

∫ ∞

0

[
ts−1 rN (z)

]
e−(a−1) t dt,

and the integral in (2.33) is a special case of the gamma function that using [9,
(7.47), p. 294] evaluates to

(2.35)

∫ ∞

0

tn+s−1 e−(a−1)t dt =
(n+ s− 1)!

(a− 1)n+s
.
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After simplification and reordering of terms, (2.33) can be written as

(2.36) ΦN (z, s, a) = −
N−1∑
n=0

(
n+s−1

n

)
(z − 1)−n−1An(z)

(a− 1)n+s
+RN (z, s, a) .

We note that (2.36) is not defined for a = 1, and being the result of the termwise
integration of a divergent series does not converge. However, as will be shown later
via (2.48) and (2.49), optimal truncation given by Definition 2.2 holds. Examining
(2.18) to (2.20), from Lemma 2.4 we find that the dominant contribution to the
magnitude of an(z) in (2.32) is due to the principal part of the Laurent series
about the pole nearest the origin, while the contributions of the remaining poles
are negligible as n approaches infinity. Hence, an asymptotic bound on the error in
(2.36) can be obtained using a first order approximation to aN (z) based on (2.18),
giving

(2.37) |RN (z, s, a)| � CN
(N + s− 1)!

|z (log z)N+1| (a− 1)N+s
,

where CN is a constant.
Now consider an alternative choice of a Laplace type integral given by

(2.38) Φ(z, s, a) =
1

Γ(s)

∫ ∞

0

[
ts−1g̃(z, t)

]
e−at dt, g̃(z, t) =

1

1− ze−t
.

The Maclaurin series of g̃(z, t) resembles that of g(z, t), a fact easily deduced from

(2.39)

(
∂

∂t

)n
1

et − z

∣∣∣∣
t=0

=

(
∂

∂t

)n
1

1− zet

∣∣∣∣
t=0

=

(
−z

∂

∂z

)n
1

1− z
,

and we have

(2.40) g̃(z, t) = −
N−1∑
n=0

an(z) t
n + r̃N (z), an(z) =

An(z)

(z − 1)n+1 n!
,

which converges for 0 < t < | log z| .
Applying Watson’s Lemma to (2.38), a slightly different expansion formula is

obtained

(2.41) ΦN (z, s, a) = −
N−1∑
n=0

(
n+s−1

n

)
(z − 1)−n−1 An(z)

an+s
+RN (z, s, a),

which, contrary to (2.36), is well defined for all a > 0. In general, the error terms
in (2.36) and (2.41) are distinct. In particular, an asymptotic error bound for
(2.41) is obtained from Lemma 2.4 analogous to (2.37) by replacing Res(g, tk) with
Res(g̃, tk) = 1 in (2.18), giving

(2.42) |RN (z, s, a)| � CN
(N + s− 1)!

|(log z)N+1| aN+s
,

where CN is a constant.
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Combining the expansions (2.36) and (2.41) gives

(2.43)
ΦN (z, s, a) = −

N−1∑
n=0

(
n+s−1

n

)
(z − 1)−n−1 An(z)

(a− λa(z))n+s
+RN (z, s, a)

(z ∈ C\{1}, | arg(z)| < π; s ∈ N+; a ∈ N+, a → ∞; N ∈ N+),

where λa(z) is defined as

(2.44) λa(z) =

{
1 if a > 1 and |z| > 1,
0 otherwise,

z ∈ C, a ∈ N+,

and the asymptotic error term for (2.43) is bounded by

(2.45) |RN (z, s, a)| � CN
(N + s− 1)!

|zλa(z)(log z)N+1| (a− λa(z))N+s
,

where CN is a constant. The purpose of λa(z) is to employ (2.36) when |z| > 1
and a > 1, and (2.41) otherwise. This has the advantage that the magnitude of the
asymptotic error term in (2.45) is reduced by a factor proportional to |z| and also
ensures that (2.43) is defined for all a > 0.

A related expansion formula for Φ(z, s, a) was defined for z /∈ [1,∞) by Ferreira
et al. [12, Theorem 1]. In this case, a Maclaurin expansion of g̃(z, t) is employed
for all a > 0, and for |z| > 1 the error in the approximation is worse compared with
(2.43). Nonetheless, the results of [12] can be used to prove that (2.43) remains
valid when |z| < 1.

For fixed z and s, the error term in (2.45) is of order O(a−N−s) and so is negligible
as a → ∞. This is consistent with Poincaré’s definition for asymptotic series
expansions. Moreover, when (2.43) is optimally truncated according to Definition
2.2, the error term in the expansion is exponentially small. In order to show this,
rewrite (2.43) as

ΦN (z, s, a) = −
N−1∑
n=0

wn(z, s, a) +RN (z, s, a),

where

wn(z, s, a) =

(
n+s−1

n

)
(z − 1)−n−1An(z)

(a− λa(z))n+s
.

Then an estimate for the truncation order of the optimally truncated series expan-
sion (or the index of the least term of the series), denoted by N̂�(z, s, a), is obtained
by bounding the ratio of successive series terms as follows:

1 �
∣∣∣ wn+1(z, s, a)

wn(z, s, a)

∣∣∣(2.46)

� | An+1(z) |
| An(z) |

n+ s

(n+ 1)(z − 1)(a− λa(z))
∼

n+ s

(a− λa(z)) | log z|
,(2.47)



ANALOG OF THE PRIME NUMBER THEOREM FOR FINITE FIELDS 867

where the first order approximation for Eulerian polynomials provided by Lemma
2.4 has been used. Solving (2.47) for n and noting that N� − 1 = n, we have

(2.48) N� ∼ N̂�(z, s, a) �
⌊
(a− λa(z)) | log z|

⌋
− s+ 1 .

From Ursell’s strong form of Watson’s Lemma (see Ursell [38] and Paris [29, p. 76]),
we have that when (2.43) is truncated such that the order of the expansion is given
by

(2.49) N̂�(z, a) =
⌊
r (a− λa(z))

⌋
+ 1 ( 0 < r < | log z| ),

the error term satisfies RN̂�
(z, a) = O(e−r (a−λa(z))) as a → ∞. Noting that for

fixed s (2.48) and (2.49) are asymptotically equivalent, we conclude that the approx-
imation error of (2.43) is exponentially small when the series is optimally truncated.

For |z| > 1 the truncated polylogarithm as defined in (2.6) may be expressed in
terms of the optimally truncated series expansion of the Lerch transcendent given
in (2.43), and we have

(2.50) LÑ�,N�
(z, s,m) = zΦÑ�

(z, s, 1)− zm+1ΦN�
(z, s,m+ 1) (|z| > 1).

From (2.48) we observe that for fixed s and z, the optimal truncation order of
(2.43) depends only on the value of a. Contrary to the second term on the right-
hand side of (2.50), the value of a in the first term is not a function of m, but is

fixed. This implies that Ñ� is fixed and so the contribution of the first term is a
finite quantity, which when omitted results in a constant error that is negligible as
m → ∞ . Therefore, for fixed s and z, |z| > 1, we have

(2.51) LN (z, s,m) = −zm+1ΦN (z, s,m+ 1) +O(1) (m → ∞),

from which it follows that

(2.52)
LN (z, s,m) =

z

z − 1

zm

m

⎡⎣N−1∑
n=0

(
n+s−1

n

) An(z)

(z − 1)n mn+s−1
+RN (z, s,m)

⎤⎦
(z ∈ C, |z| > 1, | arg(z)| < π; s ∈ N+; m ∈ N+, m → ∞; N ∈ N+),

where

(2.53) |RN (z, s,m)| � CN
|z − 1| (N + s− 1)!

|z (log z)N+1|mN+s−1
,

and CN is a finite quantity independent of m that absorbs the constant error term
observed in (2.51). �
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3. A prime number theorem analog for finite fields

In this section we provide a proof of the finite field analog of the prime count-
ing function given in Theorem 1.1. The truncated polylogarithm function in the
previous section is central to this proof.

Proof of Theorem 1.1. From (1.11) and Definition 2.1 it directly follows that

(3.1) πq(m) = L(q, 1,m) +O

(
q

m
2

m

)
.

Replacing the truncated polylogarithm function in (3.1) with its asymptotic series
expansion from (2.29) gives

(3.2)
πq,N (m) ∼

q

q − 1

qm

m

⎡⎣N−1∑
n=0

An(q)

(q − 1)n mn
+Rq,N (m)

⎤⎦
(q ∈ R, q > 1; m ∈ N+, m → ∞; N ∈ N+),

where

(3.3) Rq,N (m) � CN
q − 1

q (log q)N+1

N !

mN
,

and CN is a finite quantity independent of m. Substituting X = qm yields Theorem
1.1, which completes the proof. �
Remark 3.1. Aside from the structural resemblance of the asymptotic expansion
formulas for the prime and prime polynomial counting functions, there is an inter-
esting and less obvious connection between the two series expansions. If qm = x
and q = 1 + ε with ε → 0+, then

(3.4) lim
ε→0+

πq,N (m) = πN (x) .

This result is easily obtained from (1.6), (1.7), (1.12), (1.13) and noting that

lim
ε→0+

An(1 + ε) = n! and lim
ε→0+

log(1 + ε)

ε
= 1 .

4. Computational results

In this section, numerical examples are presented to illustrate the accuracy of the
asymptotic expansions presented in Lemma 2.4 and Theorems 1.1 and 2.7 (Tables
1–10 and Figures 1 and 2). In all tables, εabs and εrel indicate absolute and relative
approximation errors, respectively. Round parenthesis that follow numeric entries
indicate the power of 10 multiplying the entry. Optimal truncation is employed ac-
cording to Definition 2.2. The index of the least expansion term (or the truncation
order of the optimally truncated expansion) is indicated by N�. For comparison
purposes, an expansion truncated at the term N which provides the smallest abso-
lute approximation error is given. This term was determined empirically and thus
is referred to as empirical truncation.
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Table 1. Asymptotic approximations to An,K(z) for z = 0.2 and three values
of n using the series expansion in (2.9). As K and n grow the precision of the
approximation increases.

n

K 3 6 12

1 1.83140457 26.99061729332598 270,839.39932067465073432075399

2 1.83887199 26.98754353174761 270,839.39845645427252513115984

4 1.83988563 26.98752012507686 270,839.39845767155530943918198

8 1.83998774 26.98752000071216 270,839.39845767167998984994921

16 1.83999859 26.98752000000460 270,839.39845767167999999908535

32 1.83999983 26.98752000000003 270,839.39845767167999999999991

Exact value of An(z) for z = 0.2

1.84 26.98752 270,839.39845767168

Relative approximation error at K = 32

9.1312e (−8) 1.2011 (−15) 3.4493 (−28)

Table 2. Asymptotic approximations to An,K(z) for z = 2 and three values
of n using the series expansion in (2.9).

n

K 3 6 12

1 12.99629051 4,683.00124726225744 28,091,567,594.98157244071518917609953

2 12.99969112 4,683.00000565855005 28,091,567,594.99999841159980097513895

4 12.99997138 4,683.00000002665499 28,091,567,594.99999999989018454893781

8 12.99999699 4,683.00000000014752 28,091,567,594.99999999999999182402913

16 12.99999966 4,683.00000000000095 28,091,567,594.99999999999999999927866

32 12.99999996 4,683.00000000000001 28,091,567,594.99999999999999999999993

Exact value of An(z) for z = 2

13 4,683 28,091,567,595

Relative approximation error at K = 32

3.1563 (−9) 1.4222 (−18) 2.6095 (−33)
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Table 3. Asymptotic approximations to An,K(z) for z = −7 + 11i and three
values of n using the series expansion in (2.9).

n

K 3 6 12

1
−93.11893 − −531,598.89055533 + 475,150,327,070,173.35238548 −
85.45339i 874,262.38289886i 3,061,637,862,706,965.99701066i

2
−100.51924 − −528,605.03041391 + 466,334,909,934,807.37188130 −
109.67358i 945,617.73392225i 3,040,705,750,998,494.88615944i

4
−99.14327 − −528,881.39280995 + 466,335,674,969,793.31438924 −
110.03634i 945,440.53805549i 3,040,705,929,911,602.98592405i

8
−99.01480 − −528,881.99788632 + 466,335,674,976,418.96557659 −
110.00537i 945,439.00909223i 3,040,705,929,869,754.08981405i

16
−99.00168 − −528,881.99998840 + 466,335,674,976,418.00011617 −
110.00065i 945,439.00005903i 3,040,705,929,869,751.00026510i

32
−99.00020 − −528,881.99999992 + 466,335,674,976,418.00000001 −
110.00008i 945,439.00000042i 3,040,705,929,869,751.00000003i

Exact value of An(z) for z = −7 + 11i

−99 − 110i −528,882 + 945,439i
466,335,674,976,418 −

3,040,705,929,869,751i

Relative approximation error at K = 32

1.4553 (−6) 3.9132 (−13) 9.5960 (−24)

Table 4. The Eulerian number triangle generated using Definition 2.3. Due
to the symmetry of these numbers, only about half of the entries in each
row have to be computed. This triangle permits the efficient evaluation of the
asymptotic expansion of the truncated polylogarithm function as no derivatives
need to be calculated for the Maclaurin series on which (2.29) is based.

k

n 0 1 2 3 4 5 · · ·

0 1

1 1 0

2 1 1 0

3 1 4 1 0

4 1 11 11 1 0

5 1 26 66 26 1 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

· · ·
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Table 5. Asymptotic approximations to LN (z, s,m) for z = 3, s = 1 and
six values of m using the series expansion from Theorem 2.7 for optimal and
empirical truncation. Empirical truncation provides the smallest absolute ap-
proximation error. These results confirm that optimal truncation gives very
accurate results with a rapid degradation in approximation accuracy as N ex-
ceeds N�. The optimal and empirical truncation orders are in close agreement
(see also Figure 1 for a comparison of optimal versus empirical truncation, and
Figure 2 for the absolute approximation error under optimal truncation).

m

N 1 2 4 8 10 12

1 4.5000 6.7500 30.3750 1,230.1875 8,857.3500 66,430.1250

2 6.7500 8.4375 34.1719 1,307.0742 9,300.2175 69,198.0469

3 11.2500 10.1250 36.0703 1,326.2959 9,388.7910 69,659.3672

4 23.6250 12.4453 37.3755 1,332.9034 9,413.1487 69,765.0864

5 68.6250 16.6641 38.5620 1,335.9067 9,422.0061 69,797.1226

6 273.3750 26.2617 39.9117 1,337.6149 9,426.0362 69,809.2696

7 1,391.6250 52.4707 41.7545 1,338.7811 9,428.2372 69,814.7980

8 8,516.8125 135.9690 44.6900 1,339.7099 9,429.6397 69,817.7335

9 60,401.8125 439.9827 50.0340 1,340.5553 9,430.6609 69,819.5149

10 485,451.5625 1,685.2456 60.9787 1,341.4211 9,431.4975 69,820.7309

11 4,354,421.0625 7,352.6814 85.8844 1,342.4061 9,432.2591 69,821.6534

12 43,092,987.1875 35,725.6546 148.2274 1,343.6390 9,433.0216 69,822.4230

13 466,229,337.1875 190,682.8141 318.4684 1,345.3222 9,433.8544 69,823.1236

14 5,473,248,288.1875 1,107,495.3661 822.0886 1,347.8121 9,434.8399 69,823.8145

15 69,279,439,093.3125 6,949,126.6044 2,426.5405 1,351.7782 9,436.0958 69,824.5481

Exact value of L(z, s,m) for z = 3 and s = 1

3 7.5 36.75 1,339.4036 9,431.3036 69,822.3263

Absolute and relative approximation error for empirical (N) and optimal (N�) truncation

N 1 1 4 8 10 12

εabs

[
LN

]
1.5 0.75 0.6255 0.3063 0.1940 0.0967

% εrel
[
LN

]
50 10 1.7 0.023 0.0021 0.00014

N� 1 2 4 8 10 13

εabs

[
LN�

]
1.5 0.9375 0.6255 0.3063 0.1940 0.7973

% εrel
[
LN�

]
50 13 1.7 0.023 0.0021 0.0011
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Figure 1. Comparison of empirical and optimal truncation of LN (z, s,m) for
z = 3, s = 1.
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Figure 2. Absolute approximation error of LN (z, s,m) for z = 3, s = 1 under
optimal truncation.
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Table 6. Relative approximation error of LN (z, s,m) for z = 3, s = 1 under
optimal truncation with the maximum truncation order limited to N = 500.
As m grows the optimal number of terms increases allowing for an ever more
accurate approximation. For m = 100, the relative error is less than 1.04 ×
10−46, which is remarkable.

m

N 10 100 500 1000

LN 1 8.85735 (3) 7.73066 (45) 1.09081 (236) 1.98311 (474)

εrel
[
LN

]
1 6.08562 (−2) 5.07695 (−3) 1.00302 (−3) 5.00752 (−4)

5 9.85814 (−4) 4.79114 (−9) 1.47063 (−12) 4.57272 (−14)

10 2.05661 (−5) 9.51681 (−15) 8.97529 (−22) 8.68040 (−25)

25 — 1.17310 (−26) 3.15510 (−44) 9.17894 (−52)

50 — 3.15964 (−38) 2.07677 (−73) 1.75535 (−88)

Exact value of L(z, s,m) for z = 3 and s = 1

9.43130 (3) 7.77011 (45) 1.09190 (236) 1.98410 (474)

(Optimal) truncation at N500
� = min(500, N�)

N500
� 10 109 500 500

LN500
�

9.43150 (3) 7.77011 (45) 1.09190 (236) 1.98410 (474)

εrel
[
LN500

�

]
1.01311 (−4) 1.03734 (−46) 1.25639 (−235) 5.15309 (−387)

Table 7. Relative approximation error of LN (z, s,m) for z = 1.25 and s = 2
under optimal truncation with the maximum truncation order limited to N =
500.

m

N 10 100 500 1000

LN 1 4.65661 (−1) 2.45455 (6) 5.70212 (43) 4.06427 (91)

εrel
[
LN

]
1 8.21847 (−1) 8.53779 (−2) 1.61821 (−2) 8.04474 (−3)

5 — 1.62688 (−4) 3.92053 (−8) 1.19469 (−9)

10 — 3.53141 (−6) 1.32108 (−13) 1.22567 (−16)

25 — — 3.04892 (−25) 7.87530 (−33)

50 — — 1.09064 (−36) 6.70461 (−52)

Exact value of L(z, s,m) for z = 1.25 and s = 2

2.61382 2.68367 (6) 5.79591 (43) 4.09724 (91)

(Optimal) truncation at N500
� = min(500, N�)

N500
� 1 21 110 222

LN500
�

4.65661 (−1) 2.68367 (6) 5.79591 (43) 4.09724 (91)

εrel
[
LN500

�

]
8.21847 (−1) 8.15237 (−7) 3.80060 (−44) 5.32815 (−92)
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Table 8. Relative approximation error of LN (z, s,m) for z = −9 + 2.5i and
s = 5 under optimal truncation with the maximum truncation order limited
to N = 500.

m

N 10 100 500 1000

LN 1
[−4.20914 − [−4.00940 − [−4.13030 + [ 1.53050 −

1.81022i ] (4) 9.04816i ] (86) 1.79962i ] (471) 1.56284i ] (955)

εrel
[
LN

]
1 6.56708 (−2) 4.99458 (−3) 9.75804 (−4) 4.86484 (−4)

5 2.70157 (−4) 9.54729 (−10) 2.97703 (−13) 9.27309 (−15)

10 1.82678 (−4) 2.47836 (−17) 2.51721 (−24) 2.45558 (−27)

25 1.82932 (−4) 1.16817 (−35) 3.74139 (−53) 1.10843 (−60)

50 — 2.90336 (−59) 3.03589 (−94) 2.67054 (−109)

Exact values of L(z, s,m) for z = −9 + 2.5i and s = 5

[−3.98121 − [−4.00090 − [−4.12597 + [ 1.52960 −
1.64277i ] (4) 8.99971i ] (86) 1.79890i ] (471) 1.56228i ] (955)

(Optimal) truncation at N500
� = min(500, N�)

N500
� 31 359 500 500

LN500
�

[−3.98045 − [−4.00090 − [−4.12597 + [ 1.52960 −
1.64295i ] (4) 8.99971i ] (86) 1.79890i ] (471) 1.56228i ] (955)

εrel
[
LN500

�

]
1.82931 (−4) 7.99936 (−87) 1.75037 (−471) 4.10294 (−638)

Table 9. Absolute approximation error for the prime polynomial counting
function L(q, 1,m) and πq,N (m), q = 2 under optimal truncation with the
maximum truncation order limited to N = 1000.

m πq(m), q = 2 εabs

[
L(q, 1,m)

]
εabs

[
πq,1(m)

]
N1000

� εabs

[
πq,N1000

�
(m)

]

21 3.000000 1.000000 1.000000 1 1.000000

22 8.000000 2.666667 0 2 2.000000

23 7.100000 (1) 7.019048 7.000000 5 6.796875

24 8.800000 (3) 4.579598 (1) 6.080000 (2) 11 4.597922 (1)

25 2.777378 (8) 4.505926 (3) 9.302341 (6) 22 4.506007 (3)

26 5.859217 (17) 1.389416 (8) 9.460913 (15) 44 1.389416 (8)

27 5.359458 (36) 2.929609 (17) 4.254646 (34) 88 2.929609 (17)

28 9.082015 (74) 2.679729 (36) 3.575822 (72) 177 2.679729 (36)

29 5.247715 (151) 4.541008 (74) 1.028980 (149) 354 4.541008 (74)

210 3.514558 (305) 2.623857 (151) 3.438916 (302) 709 2.623857 (151)

211 3.157501 (613) 1.757279 (305) 1.543257 (610) 1000 1.757279 (305)

212 5.100801 (1229) 1.578750 (613) 1.245921 (1226) 1000 1.578750 (613)

213 2.663285 (2462) 2.550401 (1229) 3.251874 (2458) 1000 5.714684 (1275)

214 1.452398 (4928) 1.331642 (2462) 8.865814 (4923) 1000 2.627392 (3440)

215 8.639552 (9859) 7.261988 (4927) 2.636743 (9855) 1000 1.391382 (8071)

216 6.114381 (19723) 4.319776 (9859) 9.330090 (19718) 1000 8.982976 (17633)

217 6.125126 (39451) 3.057191 (19723) 4.673172 (39446) 1000 8.304716 (37060)

218 1.229349 (78908) 3.062563 (39451) 4.689629 (78902) 1000 1.546957 (76216)

219 9.904387 (157820) 6.146743 (78907) 1.889119 (157815) 1000 1.159938 (154828)

220 1.285772 (315647) 4.952193 (157820) 1.226210 (315641) 1000 1.403384 (312353)
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Table 10. Relative approximation error for the prime polynomial counting
function estimates L(q, 1,m) and πq,N (m), q = 2 under optimal truncation
with the maximum truncation order limited to N = 1000. Using optimal
truncation significantly improves the approximation accuracy when compared
to a first order approximation.

m πq(m), q = 2 εrel
[
L(q, 1,m)

]
εrel

[
πq,1(m)

]
N1000

� εrel
[
πq,N1000

�
(m)

]

21 3.000000 3.333333 (−1) 3.333333 (−1) 1 3.333333 (−1)

22 8.000000 3.333333 (−1) 0 2 2.500000 (−1)

23 7.100000 (1) 9.885983 (−2) 9.859155 (−2) 5 9.573063 (−2)

24 8.800000 (3) 5.204089 (−3) 6.909091 (−2) 11 5.224911 (−3)

25 2.777378 (8) 1.622367 (−5) 3.349325 (−2) 22 1.622396 (−5)

26 5.859217 (17) 2.371334 (−10) 1.614706 (−2) 44 2.371334 (−10)

27 5.359458 (36) 5.466241 (−20) 7.938575 (−3) 88 5.466241 (−20)

28 9.082015 (74) 2.950589 (−39) 3.937256 (−3) 177 2.950589 (−39)

29 5.247715 (151) 8.653305 (−78) 1.960815 (−3) 354 8.653305 (−78)

210 3.514558 (305) 7.465682 (−155) 9.784773 (−4) 709 7.465682 (−155)

211 3.157501 (613) 5.565411 (−309) 4.887590 (−4) 1000 5.565411 (−309)

212 5.100801 (1229) 3.095103 (−617) 2.442600 (−4) 1000 3.095103 (−617)

213 2.663285 (2462) 9.576147 (−1234) 1.221001 (−4) 1000 2.145728 (−1187)

214 1.452398 (4928) 9.168579 (−2467) 6.104261 (−5) 1000 1.809003 (−1488)

215 8.639552 (9859) 8.405514 (−4933) 3.051944 (−5) 1000 1.610479 (−1789)

216 6.114381 (19723) 7.064944 (−9865) 1.525925 (−5) 1000 1.469155 (−2090)

217 6.125126 (39451) 4.991229 (−19729) 7.629511 (−6) 1000 1.355844 (−2391)

218 1.229349 (78908) 2.491208 (−39457) 3.814726 (−6) 1000 1.258355 (−2692)

219 9.904387 (157820) 6.206082 (−78914) 1.907356 (−6) 1000 1.171136 (−2993)

220 1.285772 (315647) 3.851534 (−157827) 9.536761 (−7) 1000 1.091472 (−3294)

5. Conclusion

An asymptotic approximation formula was derived for Eulerian polynomials and
the polylogarithm of negative integer orders with an arbitrary small error. An
accurate approximation of the Lerch transcendent Φ(z, s, a) was presented such
that, when optimally truncated, provides an exponentially accurate Poincaré-type
expansion formula for |z| > 1. Finally, the asymptotic expansion of the Lerch
transcendent was used to compute the truncated polylogarithm function L(z, s,m)
which in turn provides an approximation of the prime polynomial counting func-
tion that is analogous to the well-known asymptotic expansion of the prime number
theorem. This approximation allows for efficient computation and provides signifi-
cantly better numerical accuracy than the results presented in [21], [31], [39]. The
expansion formulas for the Eulerian polynomials and truncated polylogarithm func-
tion are general and find applications in many areas other than the enumeration
of irreducible polynomials. The accuracy of the expressions presented was verified
using extensive numerical evaluation.
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